9-2003

Preliminary Design of JML: A Behavioral Interface Specification Language for Java

Gary T. Leavens
Iowa State University

Albert L. Baker
Iowa State University

Clyde Ruby
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Software Engineering Commons, and the Theory and Algorithms Commons

Recommended Citation
http://lib.dr.iastate.edu/cs_techreports/356

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact hinefuku@iastate.edu.
Preliminary Design of JML:
A Behavioral Interface Specification Language for Java
by Gary T. Leavens, Albert L. Baker, and Clyde Ruby

TR #98-06w
June 1998, revised July, November 1998,
January, April, June, July, August, December 1999,
February, May, July, December 2000
February, April, May, August 2001
June, August, October, December 2002
April, May, September 2003

Keywords: Behavioral interface specification, Java, JML, Eiffel, Larch, model-based specification, assertion, precondition, postcondition, frame.

Copyright © 1998-2003 Iowa State University
This document is part of JML and is distributed under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

Department of Computer Science, Iowa State University
226 Atanasoff Hall
Ames, Iowa 50011-1041, USA
jml@cs.iastate.edu
1 Introduction

Abstract

JML is a behavioral interface specification language tailored to Java(TM). Besides pre- and postconditions, it also allows assertions to be intermixed with Java code; these aid verification and debugging. JML is designed to be used by working software engineers; to do this it follows Eiffel in using Java expressions in assertions. JML combines this idea from Eiffel with the model-based approach to specifications, typified by VDM and Larch, which results in greater expressiveness. Other expressiveness advantages over Eiffel include quantifiers, specification-only variables, and frame conditions.

This paper discusses the goals of JML, the overall approach, and describes the basic features of the language through examples. It is intended for readers who have some familiarity with both Java and behavioral specification using pre- and postconditions.

JML stands for “Java Modeling Language” [Leavens-Baker-Ruby99]. JML is a behavioral interface specification language (BISL) [Wing87] designed to specify Java [Arnold-Gosling-Holmes00] [Gosling-etal00] modules. Java modules are classes and interfaces.

The main goal of our research on JML is to better understand how to make BISLs (and BISL tools) that are practical and effective for production software environments. In order to understand this goal, and the more detailed discussion of our goals for JML, it helps to define more precisely what a behavioral interface specification is. After doing this, we return to describing the goals of JML, and then give a brief overview of the tool support for JML and an outline of the rest of the paper.

1.1 Behavioral Interface Specification

As a BISL, JML describes two important aspects of a Java module:

- its interface, which consists of the names and static information found in Java declarations, and
- its behavior, which tells how the module acts when used.

BISLs are inherently language-specific [Wing87], because they describe interface details for clients written in a specific programming language. For example, a BISL tailored to C++, such as Larch/C++ [Leavens97c], describes how to use a module in a C++ program. A Larch/C++ specification cannot be implemented correctly in Java, and a JML specification cannot be correctly implemented in C++ (except for methods that are specified as native code).

JML specifications can either be written in separate files or as annotations in Java code files. To a Java compiler such annotations are comments that are ignored [Luckham-vonHenke85] [Luckham-etal87] [Rosenblum95] [Tan94] [Tan95]. This allows JML specifications, such as the specification below, to be embedded in Java code files. Consider the following simple example of a behavioral interface specification in JML, written as annotations in a Java code file, ‘IntMathOps.java’.

```
// IntMathOps.java
package IntMathOps;

public class IntMathOps {
    // Interface:
    public static void add(int a, int b) {
        assert a + b == add(a, b);
    }
    // Behavior:
    public static int add(int a, int b) {
        return a + b;
    }
}
```
public class IntMathOps {
 /*@ public normal_behavior
 @ requires y >= 0;
 @ assignable \nothing;
 @ ensures 0 <= \result
 @ && \result * \result <= y
 @ && y < ((\result + 1) * (\result + 1)); */
 public static int isqrt(int y) {
 return (int) Math.sqrt(y);
 }
}

The specification above describes a Java class, \texttt{IntMathOps} that contains one static method (function member) named \texttt{isqrt}. The single-line comments to the far right (which start with /**) give the line numbers in this specification; they are ignored by both Java and JML. Comments with an immediately following at-sign, //@, or, as on lines 3–10, C-style comments starting with /*@, are annotations. Annotations are treated as comments by a Java compiler, but JML reads the text of an annotation. The text of an annotation is either the remainder of a line following //@ or the characters between the annotation markers /*@ and@*/. In the second form, at-signs (@) at the beginning of lines are ignored; they can be used to help the reader see the extent of an annotation.

In the above specification, interface information is declared in lines 1 and 11. Line 1 declares a class named \texttt{IntMathOps}, and line 10 declares a method named \texttt{isqrt}. Note that all of Java's declaration syntax is allowed in JML, including, on lines 1 and 11, that the names declared are public, that the method is static (line 11), that its return type is int (line 11), and that it takes one int argument.

Such interface declarations must be found in a Java module that correctly implements this specification. This is automatically the case in the file ‘IntMathOps.java’ shown above, since that file also contains the implementation. In fact, when Java annotations are embedded in ‘.java’ files, the interface specification is the actual Java source code.

To be correct, an implementation must have both the specified interface and the specified behavior. In the above specification, the behavioral information is specified in the annotation text on lines 3–10.\footnote{In JML method specifications must be placed either before the method’s header, as shown above, or between the method's header and its body. In this document, we always place the specification before the method header. This convention is followed by many Java tools, in particular by Javadoc; It has the advantage of working in all cases, even when the method has no body.} The keywords public normal_behavior are used to say that the specification is intended for clients (hence “public”), and that when the precondition is satisfied a call must return normally, without throwing an exception (hence “normal”). In such a public specification, only names with public visibility may be used.\footnote{In a protected specification, both public and protected identifiers can be used. In a specification with default (i.e., no) visibility specified, which corresponds to Java’s default visibility, public and protected identifiers can be used, as well as identifiers from the same package with default visibility. A private specification can use any identifiers that are available. The privacy level of a method specification}
4 is a precondition, which follows the keyword requires. On line 5 is frame condition, which says that this method, when called, does not assign to any locations. On lines 6–9 is a postcondition, which follows the keyword ensures. The precondition says what must be true about the arguments (and other parts of the state); if the precondition is true, then the method must terminate normally in a state that satisfies the postcondition. This is a contract between the caller of the method and the implementor [Hoare69] [Jones90] [Jonkers91] [Guttag-Horning93] [Meyer92a] [Meyer97] [Morgan94]. The caller is obligated to make the precondition true, and gets the benefit of having the postcondition then be satisfied. The implementor gets the benefit of being able to assume the precondition, and is obligated to make the postcondition true in that case.

In general, pre- and postconditions in JML are written using an extended form of Java expressions. In this case, the only extension visible is the keyword \result, which is used in the postcondition to denote the value returned by the method. The type of \result is the return type of the method; for example, the type of \result in isqrt is int. The postcondition says that the result is an integer approximation to the square root of y. The first conjuncts on line 6, 0 <= \result say that the result is non-negative. The second conjunct, \result <= y, also on line 6, is needed to ensure that the approximation does not simply result from overflow; overflow which can happen in Java when multiplying int values. The third conjunct, on line 7, says that the result squared is no larger than the argument, y. The fourth conjunct, on lines 8–9, is an implication; it has two expressions connected by ==>, which means implication in JML. This implication says that if the result plus one squared is non-negative, then the result plus one squared is strictly larger than y. (The result plus one squared will become negative if the result is larger than 46340, due to integer overflow.) Note that the behavioral specification does not give an algorithm for finding the square root.

Method specifications may also be written in Java's documentation comments. The following is an example. The part that JML sees is enclosed within the HTML “tags” <jml> and </jml>. As in this example, one can use surrounding tags <pre> and </pre> to tell javadoc to ignore what JML sees, and to leave the formatting of it alone. The <pre> and </pre> tags are not required by JML tools (including jmldoc, which does a better job of formatting specifications than does javadoc).

cannot allow more access than the method being specified. Thus a public method may have a private specification, but a private method may not have a public specification.

The keyword pre can also be used as a synonym for requires.

The keyword post can also be used as a synonym for ensures.

This part of the specification is especially tricky because Java integer arithmetic, which JML uses for expressions of type int, considers one plus the maximum integer to be the minimum integer. Patrice Chalin pointed out that an earlier version of this specification there were overflow problems [Chalin02]. This specification deals with these problems by limiting the result to be a positive integer and by the implication on lines 8–9.

Since HTML tags are not case sensitive, in this one place JML is also not case sensitive. That is, the syntax also permits the tags <JML>, </JML>. For compatibility with ESC/Java, JML also supports the tags <esc>, </esc>, <ESC>, and </ESC>.
public class IntMathOps4 {

/** Integer square root function.
 * @param int y
 * @return an integer approximating
 * the positive square root of y
 * <pre><jml>
 * public normal_behavior
 * requires y >= 0;
 * assignable \nothing;
 * ensures 0 <= \result
 * && \result * \result <= y
 * && y < ((\result + 1) * (\result + 1));
 * </jml></pre>
 */

public static int isqrt(int y) {
 return (int) Math.sqrt(y);
}
}

Because we expect most of our users to write specifications in Java code files, most of our
examples will be given as annotations in ‘.java’ files as in the specifications above. However,
it is possible to use JML to write documentation in separate, non-Java files, such as the file
‘IntMathOps2.jml-refined’ below. Since these files are not Java code files, JML requires
the user to omit the code for concrete methods in such a file (except that code for “model”
methods can be present, see Section 2.3.1 [Purity], page 26). The specification below shows
how this is done, using a semicolon (;), as in a Java abstract method declaration.

//@ model import org.jmlspecs.models.*;

public class IntMathOps2 {

//@ public normal_behavior
 @ requires y >= 0;
 @ assignable \nothing;
 @ ensures -y <= \result && \result <= y;
 @ ensures \result * \result <= y;
 @ // temporary fix necessary only because the implementation of \bigint in the RAC
 @ // ensures y < (JMLMath.abs(\result) + 1) * (JMLMath.abs(\result) + 1);
 @ ensures y < (Math.abs(\result) + 1) * (Math.abs(\result) + 1);
 @*

public static int isqrt(int y);
}

Besides files with suffixes of ‘.jml-refined’ or ‘.jml’, JML also works with files with
the suffixes ‘.spec’ and ‘.spec-refined’. All these files use Java’s syntax, and one must
use annotation markers just as in a ‘.java’ file. However, since these kinds of files files are not Java files, in such a file one must also omit the code for concrete, non-model methods.

The above specification also demonstrates that ensures clauses can be repeated in a specification. In IntMathOps2’s specification of isqrt, there are three ensures clauses; all of them must be satisfied. Thus the meaning is the same as the conjunction of all of the postconditions specified in the individual ensures clauses. This specification is also more underspecified than the specifications given previously, as it allows negative numbers to be returned as results.

The above specification would be implemented in the file ‘IntMathOps2.java’, which is shown below. This file contains a refine clause, which tells the reader of the ‘.java’ file what is being refined and the file in which to find its specification.

```java
//@ refine "IntMathOps2.jml-refined"
//@ model import org.jmlspecs.models.*;
public class IntMathOps2 {
    public static int isqrt(int y)
    {
        return (int) Math.sqrt(y);
    }
}
```

To summarize, a behavioral interface specification describes both the interface details of a module, and its behavior. The interface details are written in the syntax of the programming language; thus JML uses the Java declaration syntax. The behavioral specification uses pre- and postconditions.

1.2 Lightweight Specifications

Although we find it best to illustrate JML’s features in this paper using specifications that are detailed and complete, one can use JML to write less detailed specifications. In particular, one can use JML to write “lightweight” specifications (as in ESC/Java). The syntax of JML allows one to write specifications that consist of individual clauses, so that one can say just what is desired. More precisely, a lightweight specification is one that does not use a behavior keyword (like normal_behavior). By way of contrast, we call a specification a heavyweight specification if it uses one of the behavior keywords.

For example, one might wish to specify just that isqrt should be called only on positive arguments, but not want to be bothered with saying anything formal about the locations that can be assigned to by the method or about the result. This could be done as shown below. Notice that the only specification given below is a single requires clause. Since the specification of isqrt has no behavior keyword, it is a lightweight specification.
public class IntMathOps3 {
 //@ requires y >= 0;
 public static int isqrt(int y)
 {
 return (int) Math.sqrt(y);
 }
}

What is the access restriction, or privacy level, of such a lightweight specification? The syntax for lightweight specifications does not have a place to specify the privacy level, so JML assumes that such a lightweight specification has the same level of visibility as the method itself. (Thus, the specification below is implicitly public.) What about the omitted parts of the specification, such as the ensures clause? JML assumes nothing about these. In the example below when the precondition is met, an implementation might either signal an exception or terminate normally, so this specification technically allows exceptions to be thrown. However, the gain in brevity often outweighs the need for this level of precision.

JML has a semantics that allows most clauses to be sensibly omitted from a specification. When the requires clause is omitted, for example, it means that no requirements are placed on the caller. When the assignable clause is omitted, it means that nothing is promised about what locations may not be assigned to by the method; that is, the method may assign to all locations that it can otherwise legally assign to. When the ensures clause is omitted, it means that nothing is promised about the state resulting from a method call. See Appendix A [Specification Case Defaults], page 58, for the default meanings of various other clauses.

1.3 Goals

As mentioned above, the main goal of our research is to better understand how to develop BISLs (and BISL tools) that are practical and effective. We are concerned with both technical requirements and with other factors such as training and documentation, although in the rest of this paper we will only be concerned with technical requirements for the BISL itself. The practicality and effectiveness of JML will be judged by how well it can document reusable class libraries, frameworks, and Application Programming Interfaces (APIs).

We believe that to meet the overall goal of practical and effective behavioral interface specification, JML must meet the following subsidiary goals.

- JML must be able to document the interfaces and behavior of existing software, regardless of the analysis and design methods used to create it.

If JML were limited to only handling certain Java features, certain kinds of software, or software designed according to certain analysis and design methods, then some APIs would not be amenable to documentation using JML. This would mean that some existing software could not be documented using JML. Since the effort put into writing such documentation will have a proportionally larger payoff for software that is more widely reused, it is important to be able to document existing software components.
(However, it should be noted that we make some exceptions to this goal. One is that JML requires that all subtypes be behavioral subtypes [Dhara-Leavens96] [Leavens97c] [Wing87] of their supertypes. This is done because otherwise one cannot reason modularly about programs that use subtyping and dynamic dispatch. Another is that we specify \texttt{Object}'s method \texttt{equals} as a pure method, which prohibits even benevolent side effects in any \texttt{equals} method that takes an \texttt{Object} as an argument. This is done to permit purity checking for collection classes that contain objects as members and use \texttt{equals} to compare them, as in the collection types found in \texttt{java.util}.)

- The notation used in JML should be readily understandable by Java programmers, including those with only standard mathematical training.

A preliminary study by Finney [Finney96] indicates that graphic mathematical notations, such as those found in Z [Hayes93] [Spivey92] [Woodcock-Davies96] may make such specifications hard to read, even for programmers trained in the notation. This accords with our experience in teaching formal specification notations to programmers. Hence, our strategy for meeting this goal has been to shun most special-purpose mathematical notations in favor of Java's own expression syntax.

- The language must be capable of being given a rigorous, formal semantics, and must also be amenable to tool support.

This goal also helps ensure that the specification language does not suffer from logical problems, which would make it less useful for static analysis, prototyping, and testing tools.

We also have in mind a long range goal of a specification compiler, that would produce prototypes from specifications that happen to be constructive [Wahls-Leavens-Baker00].

Our partners at Compaq SRC and the University of Nijmegen have other goals in mind. At Compaq SRC, the goal is to make static analysis tools for Java programs that can help detect bugs. At the University of Nijmegen, the goal is to be able to do full program verification on Java programs.

As a general strategy for achieving these goals, we have tried to blend the Eiffel [Meyer92a] [Meyer92b] [Meyer97], Larch [Wing87] [Wing90a] [Guttag-Horning93] [LeavensLarchFAQ], and refinement calculus [Back88] [Back-vonWright98] [Morgan-Vickers94] [Morgan94] approaches to specification. From Eiffel we have taken the idea that assertions can be written in a language that is based on Java expressions. We also adapt the "\texttt{old}" notation from Eiffel, which appears in JML as \texttt{\texttt{old}}, instead of the Larch-style annotation of names with state functions. However, Eiffel specifications, as written by Meyer, are typically not as detailed as model-based specifications written, for example, in Larch BISLs or in VDM-SL [Fitzgerald-Larsen98] [ISO96] [Jones90]. Hence, we have combined these approaches, by using syntactic ideas from Eiffel and semantic ideas from model-based specification languages.

JML also has some other differences from Eiffel (and its cousins Sather and Sather-K). The most important is the concept of specification-only declarations. These declarations allow more abstract and exact specifications of behavior than is typically done in Eiffel; they allow one to write specifications that are similar to the spirit of VDM or Larch BISLs. A major difference is that we have extended the syntax of Java expressions with quantifiers and other constructs that are needed for logical expressiveness, but which are not always executable. Finally, we ban side-effects and other problematic features of code in assertions.
Chapter 1: Introduction

On the other hand, our experience with Larch/C++ has taught us to adapt the model-based approach in two ways, with the aim of making it more practical and easy to learn. The first adaptation is again the use of specification-only model variables. An object will thus have (in general) several such \textit{model fields}, which are used only for the purpose of describing, abstractly, the values of objects. This simplifies the use of JML, as compared with most Larch BISLs, since specifiers (and their readers) hardly ever need to know about algebraic-style specification. It also makes designing a model for a Java class or interface similar, in some respects, to designing an implementation data structure in Java. We hope that this similarity will make the specification language easier to understand. (This kind of model also has some technical advantages that will be described below.)

The second adaptation is hiding the details of mathematical modeling behind a facade of Java classes. In the Larch approach to behavioral interface specification [Wing87], the mathematical notation used in assertions is presented directly to the specifier. This allows the same mathematical notation to be used in many different specification languages. However, it also means that the user of such a specification language has to learn a notation for assertions that is different than their programming language’s notation for expressions. In JML we use a compromise approach, hiding these details behind Java classes. These classes have objects with many “pure” methods, in the sense that they do not use side-effects (at least not in any observable way). Such classes are intended to present the underlying mathematical concepts using Java syntax. Besides insulating the user of JML from the details of the mathematical notation, this compromise approach also insulates the design of JML from the details of the mathematical logic used for theorem proving.

We have generally taken features wholesale from the refinement calculus [Back88] [Back-vonWright98] [Morgan-Vickers94] [Morgan94]. Our adaptation of it consists in blending it with the idea of interface specification and adding features for object-oriented programming. We are using the adaptation of the refinement calculus by Büchi and Weck [Buechi-Weck00], which helps in specifying callbacks. However, since the refinement calculus is mostly needed for advanced specifications, in the remainder of this paper we do not discuss the JML features related to refinement, such as model programs.

1.4 Tool Support

Our partners at Compaq SRC have built a tool, ESC/Java, that does static analysis for Java programs [Leino-etal00]. ESC/Java uses a subset of the JML specification syntax, to help detect bugs in Java code. At the University of Nijmegen the LOOP tool [Huisman01] [Jacobs-etal98] is being adapted to use JML as its input language. This tool would generate verification conditions that could be checked using a theorem prover such as PVS or Isabelle/HOL. At the Massachusetts Institute of Technology (MIT), the Daikon invariant detector project [Ernst-etal01] is using a subset of JML to record invariants detected by runs of a program. Recent work uses ESC/Java to validate the invariants that are found.

In the rest of the section we concentrate on the tool support found in the JML release from Iowa State. Iowa State’s JML release has tool support for: static type checking of specifications, run-time assertion checking, generation of HTML pages, and generation of unit testing harnesses. Use a web browser on the ‘JML.html’ file in the Iowa State JML release to access more detailed documentation on these tools.
1.4.1 Type Checking Specifications

Details on how to run the JML checker can be found in its manual page, which is part of the JML release. Here we only indicate the most basic uses of the checker. Running the checker with filenames as arguments will perform type checking on all the specifications contained in the given files. For example, one could check the specifications in the file ‘UnboundedStack.java’ by executing the following command.

```bash
jml UnboundedStack.java
```

One can also pass several files to the checker. For example, the following shows a handy pattern to catch all of the JML files in the current directory.

```bash
jml *.j* *.spec*
```

One can also pass directories to the JML checker, for example the following will check all the specifications in the current directory.

```bash
jml .
```

By default, the checker does not recurse into subdirectories, but this can be changed by using the -R option. For example, the following checks specifications in the current directory and all subdirectories.

```bash
jml -R .
```

The checker recognizes several filename suffixes. The following are considered to be “active” suffixes: ‘.refines-java’, ‘.refines-spec’, ‘.refines-jml’, ‘.java’, ‘.spec’, and ‘.jml’; There are also three “passive” suffixes: ‘.java-refined’, ‘.spec-refined’, and ‘.jml-refined’. File with passive suffixes can be used in refinements (see Section 1.1 [Behavioral Interface Specification], page 1) but should not normally be passed explicitly to the checker on its command line. Graphical user interface tools for JML should, by default, only present the active suffixes for selection. Among files in a directory with the same prefix, but with different active suffixes, the one whose suffix appears first in the list of active suffixes above should be considered primary by such a tool.

1.4.2 Generating HTML Documentation

To generate HTML documentation that can be browsed on the web, one uses the `jmldoc` tool. This tool is a replacement for `javadoc` that understands JML specifications. In addition to generating web pages the JML annotated Java and JML files, `jmldoc` also generates the indexes and other HTML files that surround these and provide access, in the same way that `javadoc` does.

For example, here is how we use `jmldoc` to generate the HTML pages for the MultiJava project.

```bash
rm -fr $HOME/MJ/javadocs
jmldoc -Q -private -d $HOME/MJ/javadocs \
    -link file:/cygwin/usr/local/jdk1.4/docs/api \
    -link file:/cygwin/usr/local/antlr/javadocs \
    --sourcepath $HOME/MJ \
    org.multijava.dis org.multijava.javadoc org.multijava.mjc \n    org.multijava.mjdoc org.multijava.util org.multijava.util.backend \
```

7 The `jmldoc` tool is generously provided by David Cok; thanks David!.
org.multijava.util.classfile org.multijava.util.compiler \
org.multijava.util.jperf org.multijava.util.lexgen \
org.multijava.util.msggen org.multijava.util.optgen \
org.multijava.util.optimize org.multijava.util.testing

The options used in the above invocation of jmldoc make jmldoc be quiet (-Q), document all members (including private ones) of classes and interfaces (-private), write the HTML files relative to `$HOME/MJ/javadocs` (-d), link to existing HTML files for the JDK and for ANTLR (-link), and find listed packages relative to `$HOME/MJ` (--sourcepath). More details on running jmldoc are available from its manual page, which is part of the JML release.

1.4.3 Run Time Assertion Checking

The JML runtime assertion checking compiler is called jmlc. It type checks assertions (so there is no need to run jml separately), and then generates a class file with the executable parts of the specified assertions, invariants, preconditions, and postconditions (and other JML constructs) checked at run-time. Its basic usage is similar to a Java compiler, as shown in the following example.

```
jmlc TestUnboundedStack.java UnboundedStack.java
```

The script jmlrac runs the resulting code with a CLASSPATH that includes a JAR file containing code needed for run-time assertion checking.

```
jmlrac org.jmlspecs.samples.stacks.TestUnboundedStack
```

More details on invoking jmlc and jmlrac are available from their manual pages, which are available in the JML release. Details on the implementation of jmlc are found in a paper by Cheon and Leavens [Cheon-Leavens02].

1.4.4 Unit Testing with JML

The run time assertion checker is also integrated with a tool, jmlunit that can write out a JUnit [Beck-Gamma98] test oracle class for given Java files. For example, to generate the classes UnboundedStack_JML_Test and UnboundedStack_JML_TestCase from UnboundedStack, one would execute the following.

```
jmlunit UnboundedStack.java
```

The file ‘UnboundedStack_JML_Test.java’ will then contain code for an abstract class to drive the tests. This class uses the runtime assertion checker to decide test success or failure. (Tests are only as good as the quality of the specifications; hence the specifications must be reasonably complete to permit reasonably complete testing.)

The file ‘UnboundedStack_JML_TestCase.java’ will contain code for a concrete subclass of UnboundedStack_JML_Test that can be used to fill in test data for such testing. You fill in the test data in the code for this subclass, and then run the test using the script jml-junit, as in the following example.

```
jml-junit org.jmlspecs.samples.stacks.UnboundedStack_JML_TestCase
```

More details on invoking these tools can be found in their manual pages which ship with the JML release. More discussion on this integration of JML and JUnit are explained in the ECOOP 2002 paper by Cheon and Leavens [Cheon-Leavens02].
JML also provides a tool, \texttt{jtest}, that combines both \texttt{jmlc} and \texttt{jmlunit}. The \texttt{jtest} tool both compiles a class with run-time assertion checks enabled using \texttt{jmlc}, and also generates the test oracle and test data classes, using \texttt{jmlunit}.

\section*{1.5 Outline}

In the next sections we describe more about JML and its semantics. See Chapter 2 \cite{Class and Interface Specifications}, page 12, for examples that show how Java classes and interfaces are specified; this section also briefly describes the semantics of subtyping and refinement. See Chapter 3 \cite{Extensions to Java Expressions}, page 49, for a description of the expressions that can be used in specifications. See Chapter 4 \cite{Conclusions}, page 57, for conclusions from our preliminary design effort. See Appendix B \cite{Syntax}, page 60, for details on the syntax of JML.
2 Class and Interface Specifications

In this section we give some examples of JML class specifications that illustrate the basic features of JML.

2.1 Abstract Models

A simple example of an abstract class specification is the ever-popular UnboundedStack type, which is presented below. It would appear in a file named ‘UnboundedStack.java’.

```java
package org.jmlspecs.samples.stacks;
import org.jmlspecs.models.*;

public abstract class UnboundedStack {
    //@ public model JMLObjectSequence theStack;
    //@ public initially theStack != null && theStack.isEmpty();
    //@
    //@ public invariant theStack != null;
    //@ public normal_behavior
    //@ requires !theStack.isEmpty();
    //@ assignable theStack;
    //@ ensures theStack.equals(\old(theStack.trailer()));
    //@
    public abstract void pop();

    //@ public normal_behavior
    //@ assignable theStack;
    //@ ensures theStack.equals(\old(theStack.insertFront(x)));
    //@
    public abstract void push(Object x);

    //@ public normal_behavior
    //@ assignable \nothing;
    //@ ensures \result == theStack.first();
    //@
    public /*@ pure @*/ abstract Object top();
}
```

The above specification contains the declaration of a model field, an invariant, and some method specifications. These are described below.

2.1.1 Model Fields

In the fourth non-blank line of ‘UnboundedStack.java’, a model data field, `theStack`, is declared. Since it is declared using the JML modifier `model`, such a field does not have
to be implemented; however, for purposes of the specification we treat much like any other Java field (i.e., as a variable location). That is, we imagine that each instance of the class UnboundedStack has such a field.

The type of the model field theStack is a type designed for mathematical modeling, JMLObjectSequence. Objects of this type are sequences of objects. This type is provided by JML in the package org.jmlspecs.models, which is imported in the second non-blank line of the figure. Note that this import declaration does not have to appear in the implementation, since it is modified by the keyword model. In general, any declaration form in Java can have this modifier, with the same meaning. That is, a model declaration is only used for specification purposes, and does not have to appear in an implementation.

At the end of the model field’s declaration above is an initially clause. (Such clauses are adapted from RESOLVE [Ogden-etal94] and the refinement calculus [Back88] [Back-vonWright98] [Morgan-Vickers94] [Morgan94].) Model fields cannot be explicitly initialized (and thus cannot be final), because there is no storage directly associated with them. However, one can use an initially clause to describe an abstract initialization for a model field. Initially clauses can be attached to any field declaration, including non-model fields, and permit one to constrain the initial values of such fields. Knowing something about the initial value of the field permits data type induction [Hoare72a] [Wing83] for abstract classes and interfaces. The initially clause must appear to be true of the field’s starting value. That is, all reachable objects of the type UnboundedStack must appear to have been created as empty stacks and subsequently modified using the type’s methods.

2.1.2 Invariants

Following the model field declaration is an invariant. An invariant does not have to hold during the execution of an object’s methods, but it must hold, for each reachable object in each publicly visible state; i.e., for each state outside of a public method or constructor’s execution, and at the beginning and end of each public method’s execution.1 The figure’s invariant just says that the value of theStack should never be null.

2.1.3 Method Specifications

Following the invariant are the specifications of the methods pop, push, and top. We describe the new aspects of these specifications below.

2.1.3.1 The Assignable Clause

The use of the assignable2 clauses in the behavioral specifications of pop and push is interesting (and another difference from Eiffel). These clauses give frame conditions

1 In JML invariants also apply to non-public methods as well. The only exception is that a private method or constructor may be marked with the helper modifier; such methods cannot assume and do not need to establish the invariant.

2 For historical reasons, one can also use the keyword modifiable as a synonym for assignable. Also, for compatibility with (older versions of) ESC/Java [Leino-etal00], in JML, one can also use the keyword modifies as a synonym for assignable. In the literature, the most common keyword for such a clause is modifies, and what JML calls the “assignable clause” is usually referred to as a “modifies clause”. However, in JML, “assignable” most closely corresponds to the technical meaning, so we use that throughout this document. Users of JML may write whichever they prefer, and may mix them if they please.
In JML, the frame condition given by a method’s assignable clause only permits the method to assign to a location, loc, if:

- loc is mentioned in the method’s assignable clause,
- loc is a member of a data group mentioned in the method’s assignable clause (see Section 2.2 [Data Groups], page 16),
- loc was not allocated when the method started execution, or
- loc is local to the method (i.e., a local variable, including the method’s formal parameters).

For example, push’s specification says that it may only assign to theStack (and locations in theStack’s data group). This allows push to assign to theStack (and the members of its data group), or to call some other method that makes such an assignment. Furthermore, push may assign to the formal parameter x itself, even though that location is not listed in the assignable clause, since x is local to the method. However, push may not assign to fields not mentioned in the assignable clause; in particular it may not assign to fields of its formal parameter x,\(^3\) or call a method that makes such an assignment.

The design of JML is intended to allow tools to statically check the body of a method’s implementation to determine whether its assignable clause is satisfied. This would be done by checking each assignment statement in the implementation to see if what is being assigned to is a location that some assignable clause permits. It is an error to assign to any other allocated, non-local location. However, to do this, a tool must conservatively track aliases and changes to objects containing the locations in question. Also, arrays can only be dynamically checked, in general.\(^4\) Furthermore, JML will flag as an error a call to a method that would assign to locations that are not permitted by the calling method’s assignable clause. It can do this using the assignable clause of the called method.

In JML, a location is modified by a method when it is allocated in both the pre-state of the method, reachable in the post-state, and has a value that is different in these two states. The pre-state of a method call is the state just after the method is called and parameters have been evaluated and passed, but before execution of the method’s body. The post-state of a method call is the state just before the method returns or throws an exception; in JML we imagine that $\backslash\text{result}$ and information about exception results is recorded in the post-state.

Since modification only involves objects allocated in the pre-state, allocation of an object, using Java’s new operator, does not itself cause any modification. Furthermore, since the fields of new objects are locations that were not allocated when the method started execution, they may be assigned to freely.

The reason assignments to local variables are permitted by the assignable clause is that a JML specification takes the client’s (i.e., the caller’s) point of view. From the client’s point of view, the local variables in a method are newly-allocated, and thus assignments to such variables are invisible to the client. Hence, in JML, it is an error to list formal parameters, or other local variables, in the assignable clause. Furthermore, when formal parameters are used in a postcondition, JML interprets these as meaning the value initially

\(^3\) Assuming that x is not the same object as this!

\(^4\) Thanks to Erik Poll for discussions on checking of assignable clauses.
given to the formal in the pre-state, since assignments to the formals within the method do not matter to the client.

JML’s interpretation of the assignable clause does not permit either temporary side effects or benevolent side effects. A method with a *temporary side effect* assigns a location, does some work, and then assigns the original value back to that location. In JML, a method may not have temporary side effects on locations that it is not permitted to modify [Ruby-Leavens00]. A method has a *benevolent side effect* if it assigns to a location in a way that is not observable by clients. In JML, a method may not have benevolent side effects on locations that it is not permitted to modify [Leino95] [Leino95a].

Because JML’s assignable clauses give permission to assign to locations, it is safe for clients to assume that only the listed locations (and locations of their data group members) may have their values modified. Because locations listed in the assignable clause are the only ones that can be modified, we often speak of what locations a method can “modify,” instead of the more precise “can assign to.”

What does the assignable clause say about the modification of locations? In particular, although the “location” for a model field or model variable cannot be directly assigned to in JML, its value is determined by the concrete fields and variables that it (ultimately) depends on, specifically the members of its data group. That is, a model field or variable can be modified by assignments to the concrete members of its data group (see Section 2.2 [Data Groups], page 16). Thus, a method’s assignable clause only permits the method to modify a location if the location:

- is mentioned in the method’s assignable clause,
- is a member of a data group mentioned in the assignable clause (see Section 2.2 [Data Groups], page 16),
- was not allocated when the method started execution, or
- is local to the method.

In the specification of `top`, the assignable clause says that a call to `top` that satisfies the precondition cannot assign to any locations. It does this by using the *store-ref* “\nothing.” Unlike some formal specification languages (including Larch BISLs and older versions of JML), when the assignable clause is omitted in a heavyweight specification, the default *store-ref* for the assignable clause is \everything. Thus an omitted assignable clause in JML means that the method can assign to all locations (that could otherwise be assigned to by the method). Such an assignable clause plays havoc with formal reasoning, and thus if one cares about verification, one should give an assignable clause explicitly if the method is not pure (see Section 2.3.1 [Purity], page 26).

2.1.3.2 Old Values

When a method can modify some locations, they may have different values in the pre-state and post-state of a call. Often the post-condition must refer to the values held in both of these states. JML uses a notation similar to Eiffel’s to refer to the pre-state value of a variable. In JML the syntax is \old(E), where E is an expression. (Unlike Eiffel, we use parentheses following \old to delimit the expression to be evaluated in the pre-state explicitly. JML also uses backslashes (\) to mark the keywords it uses in expressions; this avoids interfering with Java program identifiers, such as “\old”.)
The meaning of $\text{old}(E)$ is as if E were evaluated in the pre-state and that value is used in place of $\text{old}(E)$ in the assertion. It follows that, an expression like $\text{old(myVar)}.\text{theStack}$ may not mean what is desired, since only the old value of myVar is saved; access to the field theStack is done in the post-state. If it is the field, theStack, not the variable, myVar, that is changing, then probably what is desired is $\text{old(myVar.theStack)}$. To avoid such problems, it is good practice to have the expression E in $\text{old}(E)$ be such that its type is either the type of a primitive value, such as an int, or a type with immutable objects, such as JMLObjectSequence.

As another example, in pop’s postcondition the expression $\text{old(theStack.trailer()})$ has type JMLObjectSequence, so it is immutable. The value of theStack.trailer() is computed in the pre-state of the method.

Note also that, since JMLObjectSequence is a reference type, one is required to use equals instead of == to compare them for equality of values. (Using == would be a mistake, since it would only compare them for object identity, which in combination with new would always yield false.)

2.1.3.3 Correct Implementation

The specification of push does not have a requires clause. This means that the method imposes no obligations on the caller. (The meaning of an omitted requires clause is that the method’s precondition is true, which is satisfied by all states, and hence imposes no obligations on the caller.) This seems to imply that the implementation must provide a literally unbounded stack, which is surely impossible. We avoid this problem, by following Poetzsch-Heffter [Poetzsch-Heffter97] in releasing implementations from their obligations to fulfill the postcondition when Java runs out of storage. In general, a method specified with normal_behavior has a correct implementation if, whenever it is called in a state that satisfies its precondition, either
- the method terminates normally in a state that satisfies its postcondition, having assigned to only the locations permitted by its assignable clause, or
- Java signals an error, by throwing an exception that inherits from java.lang.Error.

We discuss the specification of methods with exceptions in the next subsection.

2.2 Data Groups

In this subsection we present two example specifications. The two example specifications, BoundedThing and BoundedStackInterface, are used to describe how model (and concrete) fields can be related to one another, and how dependencies among them affect the meaning of the assignable clause. Along the way we also demonstrate how to specify methods that can throw exceptions and other features of JML.

2.2.1 Specification of BoundedThing

The specification in the file ‘BoundedThing.java’, shown below, is an interface specification with a simple abstract model. In this case, there are two model fields MAX_SIZE and size.
package org.jmlspecs.samples.stacks;

public interface BoundedThing {
 //@ public model instance int MAX_SIZE;
 //@ public model instance int size;

 //@ public instance invariant MAX_SIZE > 0;
 public instance invariant
 0 <= size && size <= MAX_SIZE;
 public instance constraint MAX_SIZE == \old(MAX_SIZE);
 @*/

 //@ public normal_behavior
 ensures \result == MAX_SIZE;
 @*/
 public /*@ pure @*/ int getSizeLimit();

 //@ public normal_behavior
 ensures \result <= size == 0;
 @*/
 public /*@ pure @*/ boolean isEmpty();

 //@ public normal_behavior
 ensures \result <= size == MAX_SIZE;
 @*/
 public /*@ pure @*/ boolean isFull();

 //@ also
 public behavior assignable \nothing;
 ensures \result instanceof BoundedThing
 && size == ((BoundedThing)\result).size;
 signals (CloneNotSupportedException) true;
 @*/
 public Object clone () throws CloneNotSupportedException;
}

After discussing the model fields, we describe the other parts of the specification below.

2.2.1.1 Model Fields in Interfaces

In the specification above, the fields MAX_SIZE and size are both declared using the modifier instance. Because of the use of the keyword instance, these fields are thus treated as normal model fields, i.e., as an instance variable in each object that implements this interface. By default, as in Java, fields are static in interfaces, and so if instance is omitted, the field declarations would be treated as class variables. The instance keyword tells the reader that the variable being declared is not static, but has a copy in each instance of a class that implements this interface.
Java does not allow non-static fields to be declared in interfaces. However, JML allows non-static model (and ghost) fields in interfaces when one uses instance. The reason for this extension is that such fields are essential for defining the abstract values and behavior of the objects being specified.5

In specifications of interfaces that extend or classes that implement this interface, these model fields are inherited. Thus, every object that has a type that is a subtype of the BoundedThing interface is thought of, abstractly, as having two fields, MAX_SIZE and size, both of type int.

2.2.1.2 Invariant and History Constraint

Three pieces of class-level specification come after the abstract model in the above specification.

The first two are invariant clauses. Writing several invariant clauses in a specification, like this is equivalent to writing one invariant clause which is their conjunction. Both of these invariants are instance invariants, because they use the instance modifier. By default, in interfaces, invariants and history constraints are static, unless marked with the instance modifier. Static invariants may only refer to static fields, while instance invariants can refer to both instance and static fields.

The first invariant in the figure says that in every publicly visible state, every reachable object that is a BoundedThing must have a positive MAX_SIZE field. The second invariant says that, in each publicly visible state, every reachable object that is a BoundedThing must have a size field that is non-negative and less than or equal to MAX_SIZE.

Following the invariants is a history constraint [Liskov-Wing94]. Like the invariants, it uses the modifier instance, because it refers to instance fields. A history constraint is used to say how values can change between earlier and later publicly-visible states, such as a method’s pre-state and its post-state. This prohibits subtype objects from making certain state changes, even if they implement more methods than are specified in a given class. The history constraint in the specification above says that the value of MAX_SIZE cannot change, since in every pre-state and post-state, its value in the post-state, written MAX_SIZE, must equal its value in the pre-state, written \texttt{old(MAX_SIZE)}.

2.2.1.3 Details of the Method Specifications

Following the history constraint are the interfaces and specifications for four public methods. Notice that, if desired, the at-signs (@) may be omitted from the left sides of intermediate lines, as we do in this specification.

The use of == in the method specifications is okay, since in each case, the things being compared are primitive values, not references. The notation <=> can be read “if and only if”. It has the same meaning for Boolean values as ==, but has a lower precedence. Therefore, the expression “\texttt{\textbackslash result <=> size == 0}” in the postcondition of the isEmpty method means the same thing as “\texttt{\textbackslash result == (size == 0)}”.

5 Furthermore, static model fields must have concrete implementations in the interfaces in which they are declared, if they are to have any representation at all. See Section 2.2.2.1 [Data Groups and Represents Clauses], page 21, for more on this subject.
2.2.1.4 Adding to Method Specifications

The specification of the last method of `BoundedThing`, `clone`, is interesting. Note that it begins with the keyword `also`. This form is intended to tell the reader that the specification given is in addition to any specification that might have been given in the superclass `Object`, where `clone` is declared as a protected method. A form like this must be used whenever a specification is given for a method that overrides a method in a superclass, or that implements a method from an implemented interface.

2.2.1.5 Specifying Exceptional Behavior

The specification of `clone` also uses `behavior` instead of `normal_behavior`. In a specification that starts this way, one can describe not just the case where the execution returns normally, but also executions where exceptions are thrown. In such a specification, the conditions under which exceptions can be thrown can be described by the predicate in the `signals` clauses, and the conditions under which the method may return without throwing an exception are described by the `ensures` clause. In this specification, the `clone` method may always throw the exception, because it only needs to make the predicate “true” true to do so. When the method returns normally, it must make the given postcondition true.

In JML, a `normal_behavior` specification can be thought of as a syntactic sugar for a `behavior` specification to which the following clause is added [Raghavan-Leavens00].

```plaintext
signals (java.lang.Exception) false;
```

This formalizes the idea that a method with a `normal_behavior` specification may not throw an exception when the specification’s precondition is satisfied.

JML also has a specification form `exceptional_behavior`, which can be used to specify when exceptions must be thrown. A specification that uses `exceptional_behavior` can be thought of as a syntactic sugar for a `behavior` specification to which the following clause is added [Raghavan-Leavens00].

```plaintext
ensures false;
```

This formalizes the idea that a method with a `exceptional_behavior` specification may not return normally when the specification’s precondition is satisfied.

Since in the specification of `clone`, we want to allow the implementation to make a choice between either returning normally or throwing an exception, and we do not wish to distinguish the preconditions under which each choice must be made, we cannot use either of the more specialized forms `normal_behavior` or `exceptional_behavior`. Thus the specification of `clone` demonstrates the somewhat unusual case when the more general form of a `behavior` specification is needed.

Finally note that in the specification of `clone`, the postcondition says that the result will be a `BoundedThing` and that its size will be the same as the model field `size`. The use of the cast in this postcondition is necessary, since the type of \texttt{result} is \texttt{Object}. (This also adheres to our goal of using Java syntax and semantics to the extent possible.) Note also that the conjunct \texttt{result instanceof BoundedThing} “protects” the next conjunct [Leavens-Wing97a] since if it is false the meaning of the cast does not matter.

6 The keyword “ensures” can also be used in place of `signals`.
2.2.2 Specification of BoundedStackInterface

The specification in the file ‘BoundedStackInterface.java’ below gives an interface for bounded stacks that extends the interface for BoundedThing. Note that this specification can refer to the instance fields MAX_SIZE and size inherited from the BoundedThing interface.

```java
package org.jmlspecs.samples.stacks;
//@ model import org.jmlspecs.models.*;
public interface BoundedStackInterface extends BoundedThing {
    //@ public initially theStack != null && theStack.isEmpty();
    //@ public model instance JMLObjectSequence theStack;
    // in size;
    @/*
    //@ public instance represents size <- theStack.length();
    //@ public instance invariant theStack != null;
    //@ public instance invariant_redundantly
    // theStack.length() <= MAX_SIZE;
    //@ public instance invariant
    // (\forall int i; 0 <= i & i < theStack.length();
    // theStack.itemAt(i) != null);
    @*/

    //@ public normal_behavior
    //@ requires !theStack.isEmpty();
    //@ assignable size, theStack;
    //@ ensures theStack.equals(\old(theStack.trailer()));
    @ also
    //@ public exceptional_behavior
    //@ requires theStack.isEmpty();
    //@ assignable \nothing;
    //@ signals (BoundedStackException);
    @*/
    public void pop() throws BoundedStackException;

    //@ public normal_behavior
    //@ requires theStack.length() < MAX_SIZE && x != null;
    //@ assignable size, theStack;
    //@ ensures theStack.equals(\old(theStack.insertFront(x)));
    //@ ensures_redundantly theStack != null & top() == x
    //= \old(theStack.length() + 1);
    @ also
    //@ public exceptional_behavior
    //@ requires theStack.length() >= MAX_SIZE || x == null;
    //@ assignable \nothing;
    //@ signals (BoundedStackException)
    //= theStack.length() == MAX_SIZE;
    //@ signals (NullPointerException) x == null;
    @*/
    public void push(Object x)
```
Chapter 2: Class and Interface Specifications

```java
throws BoundedStackException, NullPointerException;

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ ensures \result == theStack.first() && \result != null;
@ also
@ public exceptional_behavior
@ requires theStack.isEmpty();
@ signals (BoundedStackException e)
@ \fresh(e) && e != null
@ \fresh(e) && e.getMessage().equals("empty stack");
@ signals_redundantly (BoundedStackException);
@*/
public /*@ pure @*/ Object top( ) throws BoundedStackException;
}
```

The abstract model for `BoundedStackInterface` adds to the inherited model by declaring a model instance field named `theStack`. This field is typed as a `JMLObjectSequence`.

In the following we describe how the new model instance field, `theStack`, is related to `size` from `BoundedThing`. We also use this example to explain more JML features.

2.2.2.1 Data Groups and Represents Clauses

The `in` and `represents` clauses that follow the declaration of `theStack` are an important feature in modeling with layers of model fields. They also play a crucial role in relating model fields to the concrete fields of objects, which can be considered to be the final layer of detail in a design.

When a model field is declared, a data group with the same name is automatically created; furthermore, this field is always a member of the group it creates. A data group is a set of fields (locations) referenced by a specific name, i.e., the name of the model field that created it. When a data group (or field) is mentioned in the `assignable` clause for a method `M`, then all members (i.e., fields) in that group can be assigned to in the body of `M`. Fields can become a member of a data group through the `in` clause. The `in` clause in `BoundedStackInterface` says that `theStack` is a member of `theStack` that created it. However, another way of looking at this is that, if one wants to change `size`, this can be done by changing `theStack`. We also say that `theStack` is a member of `size`.

The `maps-into` clause is another way of adding members to a data group; it allows the fields of an object to be included in an existing data group. For example, if a field `F` is a reference or an array type, then the fields or array elements of `F` can be included in a data group using the `maps-into` clause. The following are examples.

```java
protected ArrayList elems;
// maps elems.theList \into theStack;
```

7 Of course, one could specify `BoundedStackInterface` without separating out the interface `BoundedThing`, and in that case, these layers would be unnecessary. We have made this separation partly to demonstrate more advanced features of JML, and partly to make the parts of the example smaller.
protected java.lang.Object[] theItems;
 // maps theItems[*] \ into theStack;

In the first example, the maps-into clause says that theList field of elems is a member of theStack data group. Field elems is a concrete field of the type (i.e., it is not a model field and thus is part of the implementation). This allows model field theList of elems to change when theStack changes. Since theList is a model field and data group, this also allows concrete fields of elems to change as theStack changes. Similarly, the second example says that the elements of the array theItems can change when theStack changes.

Data groups have the same visibility as the model field that declared it, i.e., public, protected, private, or package visibility. A field cannot be a member of a group that is less visible than it is. For example, a public field cannot be a member of a protected group.

The in and maps-into clauses are important in “loosening up” the assignable clause, for example to permit the fields of an object that implement the abstract model to be changed [Leino95] [Leino95a]. This “loosening up” also applies to model fields that are members of other groups. For example, since theStack is a member of size, whenever size is mentioned in an assignable clause, then theStack is implicitly allowed to be modified. Thus it is only for rhetorical purposes that we mention both size and theStack in the assignable clauses of pop and push. Note, however, that just mentioning theStack would not permit size to be modified, because size is not a member of theStack’s group. Furthermore, it is redundant to mention theStack when size has already been mentioned (although this can help clarify the assignable clause, i.e., clarify which fields can be changed).

The represents clause in BoundedStackInterface says how the value of size is related to the value of theStack. It says that the value of size is theStack.length().

A represents clause gives additional facts that can be used in reasoning about the specification. It serves the same purpose as an abstraction function in various proof methods for abstract data types (such as [Hoare72a]).

One can only use a represents clause to state facts about a field and its data group members. To state relationships among concrete data fields or on fields that are not related by a data group membership, one should use an invariant.

2.2.2.2 Redundant Specification

The second invariant clause that follows the represents clause in the specification of BoundedStackInterface above is our first example of checkable redundancy in a specification [Leavens-Baker99] [Tan94] [Tan95]. This concept is signaled in JML by the use of the suffix _redundantly on a keyword (as in ensures_redundantly). It says both that the stated property is specified to hold and that this property is believed to follow from the other properties of the specification. In this case the redundant invariant follows from the given invariant, the invariant inherited from the specification of BoundedThing, and the fact stated in the represents clause. Even though this invariant is redundant, it is

Note that the permission to assign a field goes from the more abstract field to the one in its group (which in this case is also abstract). Müller points out that this direction is necessary for information hiding, because concrete fields are often hidden (e.g., they may be private), and as such cannot appear in public specifications, so the public specification has to mention the more abstract field, which give assignment rights to its members [Mueller02].
sometimes helpful to state such properties, to bring them to the attention of the readers of the specification.

Checking that such claimed redundancies really do follow from other information is also a good way to make sure that what is being specified is really what is intended. Such checks could be done manually, during reviews, or with the aid of a theorem prover. JML's runtime assertion checker can also check such redundant specifications, but, of course, can only find examples where they do not hold.

2.2.2.3 Multiple Specification Cases

Following the redundant invariant of BoundedStackInterface are the specifications of the pop, push, and top methods. These are interesting for several new features that they present. Each of these has both a normal and exceptional behavior specified. The meaning of such multiple specification cases is that, when the precondition of one of them is satisfied, the rest of that specification case must also be obeyed.

A specification with several specification cases is shorthand for one in which the separate specifications are combined [Dhara-Leavens96] [Leavens97c] [Wing83] [Wills94]. The desugaring can be thought of as proceeding in two steps (see [Raghavan-Leavens00] for more details). First, the public normal_behavior and public exceptional_behavior cases are converted into public behavior specifications as explained above. This would produce a specification for pop as shown below. The use of implies_that introduces a redundant specification that can be used, as is done here, to point out consequences of the specification to the reader. In this case the specification in question is the one mentioned in the refine clause. Note that in the second specification case of the figure below, the signals clause has been expanded to include the implicit predicate “true”; this “true” was omitted from the original specification, since such a use of the signals clause is common enough for JML to allow it to be omitted.

//@ refine "BoundedStackInterface.java";

public interface BoundedStackInterface extends BoundedThing {
 /*@ also
 @ implies_that
 @ public behavior
 @ requires !theStack.isEmpty();
 @ assignable size, theStack;
 @ ensures theStack.equals(old(theStack.trailer()));
 @ signals (java.lang.Exception) false;
 @ also
 @ public behavior
 @ requires theStack.isEmpty();
 @ assignable \nothing;
 @ ensures false;
 @ signals (BoundedStackException) true;
 @*/
 public void pop() throws BoundedStackException;
}
The second step of the desugaring is shown below. As can be seen from this example, public behavior specifications that are joined together using also have a precondition that is the disjunction of the preconditions of the combined specification cases. The assignable clause for the expanded specification is the union of all the assignable clauses for the cases, with each modification governed by the corresponding precondition (which follows the keyword if). That is, variables are only allowed to be modified if the modification was permitted in the corresponding case, as determined by its precondition. The ensures clauses of the second desugaring step correspond to the ensures clauses for each specification case; they say that whenever the precondition for that specification case held in the pre-state, its postcondition must also hold. As can be seen in the specification below, in logic this is written using an implication between old wrapped around the case’s precondition and its postcondition. Having multiple ensures clauses is equivalent to writing a single ensures clause that has as its postcondition the conjunction of the given postconditions. Similarly, the signals clauses in the desugaring correspond to those in the given specification cases; as for the ensures clauses, each has a predicate that says that signaling that exception can only happen when the predicate in that case’s precondition holds.

```java
//@ refine "BoundedStackInterface.jml";
public interface BoundedStackInterface extends BoundedThing {
    //@ also
    @ implies_that
    @ public behavior
    @ requires !theStack.isEmpty() || theStack.isEmpty();
    @ assignable size if !theStack.isEmpty(),
    @ theStack if !theStack.isEmpty();
    @ ensures \old(!theStack.isEmpty())
    @ ==> theStack.equals(\old(theStack.trailer()));
    @ ensures \old(theStack.isEmpty()) ==> false;
    @ signals (java.lang.Exception)
    @ \old(!theStack.isEmpty()) ==> false;
    @ signals (BoundedStackException)
    @ \old(theStack.isEmpty()) ==> true;
    @*/
    public void pop( ) throws BoundedStackException;
}
```

In the file `BoundedStackInterface.refines-java` above, the precondition of pop reduces to true. However, the precondition shown is the general form of the expansion. Similar remarks apply to other predicates.

Finally, note how, as in the specification of top, one can specify more details about the exception object thrown. The exceptional behavior for top says that the exception object thrown, e, must be freshly allocated, non-null, and have the given message.

2.2.2.4 Pitfalls in Specifying Exceptions

A particularly interesting example of multiple specification cases occurs in the specification of the BoundedStackInterface’s push method. Like the other methods, this example has two specification cases; one of these is a normal_behavior and one is an exceptional_behavior. However, the exceptional behavior of push is interesting because it specifies more
than one exception that may be thrown. The requires clause of the exceptional behavior says that an exception must be thrown when either the stack cannot grow larger, or when the argument \(x \) is null. The first signals clause says that, if a \texttt{BoundedStackException} is thrown, then the stack cannot grow larger, and the second signals clause says that, if a \texttt{NullPointerException} is thrown, then \(x \) must be null. The specification is written in this way because it may be that both conditions occur; when that is the case, the specification allows the implementation to choose (even nondeterministically) which exception is thrown.

Specifiers should be wary of such situations, where two exceptional conditions may both be true simultaneously, because it is impossible in Java to throw more than one exception from a method call. Thus, for example, if the specification of \texttt{push} had been written as follows, it would not be implementable.\footnote{Thanks to Erik Poll for pointing this out.} The problem is that both exceptional preconditions may be true, and in that case an implementation cannot throw both exceptions.

```java
/*@ public normal_behavior
  @ requires theStack.length() < MAX_SIZE && x != null;
  @ assignable size, theStack;
  @ ensures theStack.equals(old(theStack.insertFront(x)));
  @ ensures_redundantly theStack != null && top() == x
  @ and theStack.length() == old(theStack.length()+1);
  @ also
  @ public exceptional_behavior
  @ requires theStack.length() >= MAX_SIZE;
  @ assignable \nothing;
  @ signals (BoundedStackException);
  @ also // this is wrong!
  @ public exceptional_behavior
  @ requires x == null;
  @ assignable \nothing;
  @ signals (NullPointerException);
  @*/
public void push(Object x )
  throws BoundedStackException, NullPointerException;
```

One could fix the example above by writing one of the requires clauses in the two exceptional behaviors to exclude the other, although this would make the specification deterministic about which exception would be thrown when both exceptional conditions occur. In general, it seems best to avoid this pitfall by writing several exceptional cases together in a single exceptional behavior clause, as was done originally for \texttt{push} (see Section 2.2.2.3 [Multiple Specification Cases], page 23) or to simply use a single behavior clause. One can also use a lightweight specification, which is like using a single behavior clause, but with different defaults.

2.2.2.5 Redundant Ensures Clauses

Finally, there is more redundancy in the specifications of \texttt{push} in the original specification of \texttt{BoundedStackInterface} above, which has a redundant \texttt{ensures} clause in its normal behavior. For an \texttt{ensures_redundantly} clause, what one checks is that the conjunction of
the precondition, the meaning of the assignable clause, and the (non-redundant) postcondition together imply the redundant postcondition. It is interesting to note that, for push, the specifications for stacks written in Eiffel (see page 339 of [Meyer97]) expresses just what we specify in push's redundant postcondition. This conveys strictly less information than the non-redundant postcondition for push's normal behavior, since it says little about the elements of the stack.\footnote{Meyer's second specification and implementation of stacks (see page 349 of [Meyer97]) is no better in this respect, although, of course, the implementation does keep track of the elements properly.}

2.3 Types For Modeling

JML comes with a suite of types with immutable objects and pure methods, that can be used for defining abstract models. These are found in the package \texttt{org.jmlspecs.models}, which includes both collection and non-collection types (such as \texttt{JMLInteger}) and a few auxiliary classes (such as exceptions and enumerators).

The collection types in this package can hold either objects or values; this distinction determines the notion of equality used on their elements and whether cloning is done on the elements. The object collections, such as \texttt{JMLObjectSet} and \texttt{JMLObjectBag}, use \texttt{==} and do not clone. The value collections, such as \texttt{JMLValueSet} and \texttt{JMLValueBag}, use \texttt{.equals} to compare elements, and clone the objects added to and returned from them. The objects in a value collection are representatives of equivalence classes (under \texttt{.equals}) of objects; their values matter, but not their object identities. By contrast an object container contains object identities, and the values in these objects do not matter.

Simple collection types include the set types, \texttt{JMLObjectSet} and \texttt{JMLValueSet}, and sequence types \texttt{JMLObjectSequence} and \texttt{JMLValueSequence}. The binary relation and map types can independently have objects in their domain or range. The binary relation types are named \texttt{JMLObjectToObjectRelation}, \texttt{JMLObjectToValueRelation}, and so on. For example, \texttt{JMLObjectToValueRelation} is a type of binary relations between objects (not cloned and compared using \texttt{==}) and values (which are cloned and compared using \texttt{.equals}). The four map types are similarly named according to the scheme \texttt{JML...To...Map}.

Users can also create their own types with pure methods for mathematical modeling if desired. Since pure methods may be used in assertions, they must be declared with the modifier \texttt{pure} and pass certain conservative checks that make sure there is no possibility of observable side-effects from their use. We discuss purity and give several examples of such types below.

2.3.1 Purity

We say a method is pure if it is either specified with the modifier \texttt{pure} or is a non-static method that appears in the specification of a \texttt{pure} interface or class. Similarly, a constructor is pure if it is either specified with the modifier \texttt{pure} or appears in the specification of a \texttt{pure} class.

A \textit{pure method} that is not a constructor implicitly has a specification that does not allow any side-effects. That is, its specification refines (i.e., is stronger than) the following\footnote{For this reason, if one is writing a pure method, it is not necessary to otherwise specify an assignable clause (see Section 2.1.3.1 [The Assignable Clause], page 13), although doing so may improve the specification's clarity.}:...
behavior
 assignable \nothing;

A pure constructor implicitly has a specification that only allows it to assign to the non-static fields of the class in which it appears (including those inherited from its superclasses and model instance fields from the interfaces that implements).

Implementations of pure methods and constructors will be checked to see that they meet these conditions on what locations they can assign to. To make such checking modular, a pure method or constructor implementation is prohibited from calling methods or constructors that are not pure.

A pure method or constructor must also be provably terminating.12 Recursion is permitted, both in the implementation of pure methods and the data structures they manipulate, and in the specifications of pure methods. When recursion is used in a specification, the proof of well-formedness for the specification involves the use of JML’s \texttt{measured_by} clause.

Since a pure method may not go into an infinite loop, if it has a non-trivial precondition, it should throw an exception when its normal precondition is not met. This exceptional behavior does not have to be specified or programmed explicitly, but technically there is an obligation to meet the specification that the method never loops forever.

A pure method can be declared in any class or interface, and a pure constructor can be declared in any class. JML will specify the pure methods and constructors in the standard Java libraries as pure.

As a convenience, instead of writing \texttt{pure} on each method declared in a class and interface, one can use the modifier \texttt{pure} on classes and interfaces and classes. This simply means that each non-static method and each constructor declared in such a class or interface is \texttt{pure}. Note that this does not mean that all methods inherited (but not declared in and hence not overridden in) the class or interface are pure. For example, every class inherits ultimately from \texttt{java.lang.Object}, which has some methods, such as \texttt{notify} and \texttt{notifyAll} that are manifestly not pure. Thus each class will have some methods that are not pure. Despite this, it is convenient to refer to classes and interfaces declared with the \texttt{pure} modifier as \texttt{pure}.

In JML the modifiers \texttt{model} and \texttt{pure} are orthogonal. (Recall something declared with the modifier \texttt{model} does not have to be implemented, and is used purely for specification purposes.) Therefore, one can have a model method that is not pure (these might be useful in JML’s model programs) and a pure method that is not a model method. Nevertheless, usually a model method (or constructor) should be pure, since there is no way to use non-pure methods in an assertion, and model methods cannot be used in normal Java code.

By the same reasoning, model classes should, in general, also be pure. Model classes cannot be used in normal Java code, and hence their methods are only useful in assertions (and JML’s model programs). Hence it is typical, although not required, that a model class also be a pure class. We give some examples of pure interfaces, abstract classes, and classes below.

12 This is already implicit in the specification given above for pure methods, since the default \texttt{diverges} clause is \texttt{false} (see Appendix A \texttt{[Specification Case Defaults]}, page 58).
2.3.2 Money

The following example begins a specification of money that would be suitable for use in abstract models. Our specification is rather artificially broken up into pieces to allow each piece to have a specification that fits on a page. This organization is not necessarily something we would recommend, but it does give us a chance to illustrate more features of JML.

Consider first the interface `Money` specified below. The abstract model here is a single field of the primitive Java type `long`, which holds a number of pennies. Note that the declaration of this field, `pennies`, again uses the JML keyword `instance`.

```java
package org.jmlspecs.samples.prelimdesign;

import org.jmlspecs.models.JMLType;

public /*@ pure @*/ interface Money extends JMLType {
    //@ public model instance long pennies;
    //@ public instance constraint pennies == \old(pennies);

    //@ public normal_behavior
    @ assignable \nothing;
    @ ensures \result == pennies / 100;
    @ for_example
    @ public normal_example
    @ requires pennies == 703;
    @ assignable \nothing;
    @ ensures \result == 7;
    @ also
    @ public normal_example
    @ requires pennies == 799;
    @ assignable \nothing;
    @ ensures \result == 7;
    @ also
    @ public normal_example
    @ requires pennies == -503;
    @ assignable \nothing;
    @ ensures \result == -5;
    @*/
    public long dollars();

    //@ public normal_behavior
    @ assignable \nothing;
    @ ensures \result == pennies % 100;
    @ for_example
    @ requires pennies == 703;
    @ assignable \nothing;
    @ ensures \result == 3;
    @ also
```
@ requires pennies == -503;
@ assignable \nothing;
@ ensures \result == -3;
@*/
public long cents();

/*@ also
@ public normal_behavior
@ assignable \nothing;
@ ensures \result <=> o2 instanceof Money
@ && pennies == ((Money)o2).pennies;
@*/
public boolean equals(Object o2);

/*@ also
@ public normal_behavior
@ assignable \nothing;
@ ensures \result instanceof Money
@ && ((Money)\result).pennies == pennies;
@*/
public Object clone();
}

This interface has a history constraint, which says that the number of pennies in an object cannot change.\cite{footnote:13}

The following explain more aspects of JML related to the above specification.

\subsection{Redundant Examples}

The interesting aspect of \texttt{Money}'s method specifications is another kind of redundancy. This new form of redundancy is examples, which follow the keyword \texttt{"for_example"}.\footnote{There is no use of \texttt{initially} in this interface, so data type induction cannot assume any particular starting value. But this is desirable, since if a particular starting value was specified, then by the history constraint, all objects would have that value.}

Individual examples are given by \texttt{normal_example} clauses (adapted from our previous work on Larch/C++ \cite{leavens96b} \cite{leavens99}). Any number of these\footnote{One may also give \texttt{exceptional_example} clauses, which are analogous to \texttt{exceptional_behavior} specifications, and \texttt{example} clauses, which are analogous to \texttt{behavior} specifications. There is also a lightweight form, that is similar to the \texttt{example} form, except that the introductory keywords \texttt{public example} are omitted.} can be given in a specification. In the specification of \texttt{Money} above there are three normal examples given for \texttt{dollars} and two in the specification of \texttt{cents}.

The specification in each example should be such that:

- the example's precondition implies the precondition of the expanded meaning of the specified behaviors,
- the example's assignable clause specifies a subset of the locations that are assignable according to the expanded meaning of the specified behaviors, and
the conjunction of the example’s precondition (wrapped by `\old()`), the precondition of the expanded meaning of the specified behaviors (also wrapped by `\old()`), the assignable clause of the expanded meaning of the specified behaviors, and the postcondition of the expanded meaning of the specified behaviors should be equivalent to the conjunction of the assignable clause of the expanded meaning of the example and the example’s postcondition.

Requiring equivalence to the example’s postcondition means that it can serve as a test oracle for the inputs described by the example’s precondition. If there is only one specified `public normal_behavior` clause and if there are no preconditions and assignable clauses, then the example’s postcondition should be equivalent to the conjunction of the example’s precondition and the postcondition of the `public normal_behavior` specification. Typically, examples are concrete, and serve to make various rhetorical points about the use of the specification to the reader. (Exercise: check all the examples given!)

2.3.2.2 JMLType and Informal Predicates

The interface `Money` is specified to extend the interface `JMLType`. This interface is given below. Classes that implement this interface must have pure `equals` and `clone` methods with the specified behavior. The methods specified override methods in the class `Object`, and so they use the form of specification that begins with the keyword “`also`”.
package org.jmlspecs.models;

/** Objects with a clone and equals method.
 * JMLObjectType and JMLValueType are refinements
 * for object and value containers (respectively).
 * @version $Revision: 1.12 $
 * @author Gary T. Leavens
 * @author Albert L. Baker
 * @see JMLObjectType
 * @see JMLValueType
 */
public interface JMLType extends Cloneable, java.io.Serializable {

 /** Return a clone of this object.
 */
 /**+@ also
 * @ public normal_behavior
 * @ ensures \result != null;
 * @ ensures \result instanceof JMLType;
 * @ ensures ((JMLType)\result).equals(this);
 */
 public /*+@ pure @+*/ Object clone();

 /** Test whether this object’s value is equal to the given argument.
 */
 /**+@ also
 * @ public normal_behavior
 * @ ensures \result ==>
 * @ requires ob2 != null && ob2 instanceof JMLType;
 * @ ensures ((JMLType)ob2).equals(this) == \result;
 * @ also
 * @ requires ob2 == this;
 * @ ensures \result <=> true;
 */
 public /*+@ pure @+*/ boolean equals(Object ob2);

 /** Return a hash code for this object.
 */
 public /*+@ pure @+*/ int hashCode();
}
The specification of JMLType is noteworthy in its use of informal predicates [Leavens96b]. In JML these start with an open parenthesis and an asterisk ('(*') and continue until a matching asterisk and closing parenthesis ('*)'). In the public specification of equals, the normal_behavior's ensures clause uses an informal predicate as an escape from formality. The use of informal predicates avoids the delicate issues of saying formally what observable aliasing means, and what equality of values means in general.15

In the implies_that section of the specification of the equals method is a nested case analysis, between \{\} and \{|}. The meaning of this is that each pre- and postcondition pair has to be obeyed. The first of these nested pairs is essentially saying that equals has to be symmetric. The second of these is saying that it has to be reflexive.

The implies_that section of the clone method states some implications of the specification given that are useful for ESC/Java. These repeat, from the first part of clone's specification, that the result must not be null, and that the result's dynamic type, typeof(result), must be a subtype of (written <:) the type JMLType.

ESC/Java understands only annotations written between the annotation markers /*@ and @*/ and on annotation comment lines of that start with //@. It does not understand annotations written between the annotation markers /@* and *@/ and on annotation comment lines of that start with //+.16 This makes it possible for the user of JML to write specifications that can be read by both JML's tools and by ESC/Java, since JML understands (essentially) a superset of the syntax that ESC/Java understands.

2.3.3 MoneyComparable and MoneyOps

The type Money lacks some useful operations. The extensions below provide specifications of comparison operations and arithmetic, respectively.

The specification in file 'MoneyComparable.java' is interesting because each of the specified preconditions protects the postcondition from undefinedness in the postcondition [Leavens-Wing97a]. For example, if the argument m2 in the greaterThan method were null, then the expression m2.pennies would not be defined.

```java
package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyComparable extends Money
{
  /*@ public normal_behavior
   @ requires m2 != null;
   @ assignable \nothing;
   @ ensures \result <=> pennies > m2.pennies;
   @*/
  public boolean greaterThan(Money m2);

  /*@ public normal_behavior

  Observable aliasing is a sharing relation between objects that can be detected by a program. Such a program, might, for example modify one object and read a changed value from the shared object. Formalizing this in general is beyond the scope of this paper, and probably beyond what JML can describe.

  ESC/Java also does not understand annotations written in Javadoc comments between <jml> and </jml>, <JML> and </JML>, or <ESC> and </ESC>.
```
The interface specified in the file `MoneyOps.java` below extends the interface specified above. `MoneyOps` is interesting for the use of its pure model methods: `inRange`, `can_add`, and `can_scaleBy`. These methods cannot be invoked by Java programs; that is, they would not appear in the Java implementation. When, for example `inRange` is called in a predicate it is equivalent to using some correct implementation of its specification. The specification of `inRange` also makes use of a local specification variable declaration, which follows the keyword “old”. Such declarations allow one to abbreviate long expressions, or, to make rhetorical points by naming constants, as is done with `epsilon`. These `old` declarations are treated as locations that are initialized to the pre-state value of the given expression. Model methods can be normal (instance) methods as well as static (class) methods.

```java
package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyOps extends MoneyComparable {
    /**
     * @ requires m2 != null;
     * @ assignable \nothing;
     * @ ensures \result <=\Rightarrow pennies >= m2.pennies;
     */
    public boolean greaterThanOrEqualTo(Money m2);

    /**
     * @ requires m2 != null;
     * @ assignable \nothing;
     * @ ensures \result <=\Rightarrow pennies < m2.pennies;
     */
    public boolean lessThan(Money m2);

    /**
     * @ requires m2 != null;
     * @ assignable \nothing;
     * @ ensures \result <=\Rightarrow pennies <= m2.pennies;
     */
    public boolean lessThanOrEqualTo(Money m2);
}

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyOps extends MoneyComparable {
    /**
     * @ old double epsilon = 1.0;
     * @ assignable \nothing;
     * @ ensures \result <=\Rightarrow Long.MIN_VALUE + epsilon < d
     *          && d < Long.MAX_VALUE - epsilon;
     */
    public model boolean inRange(double d);

    /**
     * @ requires m2 != null;
     * @ assignable \nothing;
     * @ ensures \result <=\Rightarrow inRange((double) pennies + m2.pennies);
     */
    public model boolean can_add(Money m2);

    /**
     * @ requires m2 != null;
     * @ assignable \nothing;
     * @ ensures \result <=\Rightarrow inRange((double) pennies + m2.pennies);
     */
    public model boolean can_scaleBy(Money m2);
}
```
public MoneyOps plus(Money m2);

/*@ public normal_behavior
@ requires m2 != null && can_add(m2);
@ assignable \nothing;
@ ensures \result != null
@ && \result.pennies == this.pennies + m2.pennies;
@ for_example
@ public normal_example
@ requires this.pennies == 300 && m2.pennies == 400;
@ assignable \nothing;
@ ensures \result != null && \result.pennies == 700;
@*/
public MoneyOps minus(Money m2);

/*@ public normal_behavior
@ requires m2 != null
@ && inRange((double) pennies - m2.pennies);
@ assignable \nothing;
@ ensures \result != null
@ && \result.pennies == this.pennies - m2.pennies;
@ for_example
@ public normal_example
@ requires this.pennies == 400 && m2.pennies == 300;
@ assignable \nothing;
@ ensures \result != null && \result.pennies == 100;
@*/
public MoneyOps scaleBy(double factor);

Note also that JML uses the Java semantics for mixed-type expressions. For example in the ensures clause of the above specification of plus, m2.pennies is implicitly coerced to a double-precision floating point number, as it would be in Java.
2.3.4 MoneyAC

The key to proofs that an implementation of a class or interface specification is correct lies in the use of in, maps-into, and represents clauses [Hoare72a] [Leino95].

Consider, for example, the abstract class specified in the file ‘MoneyAC.java’ below. This class is abstract and has no constructors. The class declares a concrete field numCents, which is related to the model instance field pennies by the represents clause.\footnote{This represents clause is implicitly an instance, as opposed to a static, represents clause, because it appears in a class declaration.} The represents clause states that the value of pennies is the value of numCents. This allows relatively trivial proofs of the correctness of the dollars and cents methods, and is key to the proofs of the other methods.

```java
package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ abstract class MoneyAC implements Money {

    protected long numCents;
    //@ in pennies;
    //@ protected represents pennies <- numCents;
    //@ protected constraint_redundantly numCents == \old(numCents);

    public long dollars()
    {
        return numCents / 100;
    }

    public long cents()
    {
        return numCents % 100;
    }

    public boolean equals(Object o2)
    {
        try {
            Money m2 = (Money)o2;
            return numCents == (100 * m2.dollars() + m2.cents());
        } catch (ClassCastException e) {
            return false;
        }
    }

    public Object clone()
    {
        return this;
    }
}
```
2.3.5 MoneyComparableAC

The straightforward implementation of the pure abstract subclass MoneyComparableAC is given below. Besides extending the class MoneyAC, it implements the interface MoneyComparable. Note that the model and concrete fields are both inherited by this class.

```java
package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ abstract class MoneyComparableAC
extends MoneyAC implements MoneyComparable
{
    protected static long totalCents(Money m2)
    {
        long res = 100 * m2.dollars() + m2.cents();
        //@ assert res == m2.pennies;
        return res;
    }

    public boolean greaterThan(Money m2)
    {
        return numCents > totalCents(m2);
    }

    public boolean greaterThanOrEqualTo(Money m2)
    {
        return numCents >= totalCents(m2);
    }

    public boolean lessThan(Money m2)
    {
        return numCents < totalCents(m2);
    }

    public boolean lessThanOrEqualTo(Money m2)
    {
        return numCents <= totalCents(m2);
    }
}
```

An interesting feature of the class MoneyComparableAC is the protected static method named totalCents. For this method, we give its code with an embedded assertion, written following the keyword assert.\(^\text{18}\)

\(^{18}\) As of JDK 1.4, assert is also a reserved word in Java. One can thus write assert statements either in standard Java or in JML annotations. If one writes an assert statement as a JML annotation, all of the JML extensions to the Java expression syntax see Section 3.1 [Extensions to Java Expressions for Predicates], page 49 for the predicate can be used, but no side-effects are allowed in this predicate. Such a JML assert-statement may also refer to model and ghost variables. In a Java assert statement, i.e., in an assert-statement that is not in an annotation, one cannot use JML’s extensions for assertions, because such assertions must compile with a Java compiler.
Note that the model method, `inRange` is not implemented, and does not need to be implemented to make this class correctly implement the interface `MoneyComparable`.

2.3.6 USMoney

Finally, a concrete class implementation is given in the file 'USMoney.java' shown below. The class `USMoney` implements the interface `MoneyOps`. Note that specifications as well as code are given for the constructors.

```java
package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ class USMoney
    extends MoneyComparableAC implements MoneyOps
{
    /*@ public normal_behavior
     @ assignable pennies;
     @ ensures pennies == cs;
     @ implies_that
     @ protected normal_behavior
     @ assignable pennies, numCents;
     @ ensures numCents == cs;
     @*/
    public USMoney(long cs)
    {
        numCents = cs;
    }

    /*@ public normal_behavior
     @ assignable pennies;
     @ ensures pennies == (long)(100.0 * amt);
     @ ensures_redundantly (* pennies holds amt dollars *); @*/
    public USMoney(double amt)
    {
        numCents = (long)(100.0 * amt);
    }

    public MoneyOps plus(Money m2)
    {
        //@ assume m2 != null;
        return new USMoney(numCents + totalCents(m2));
    }

    public MoneyOps minus(Money m2)
    {
        //@ assume m2 != null;
        return new USMoney(numCents - totalCents(m2));
    }

    public MoneyOps scaleBy(double factor)
    {
```
public String toString()
{
 return "\$" + dollars() + "." + cents();
}

The constructors each mention the fields that they initialize in their assignable clause. This is because the constructor’s job is to initialize these fields. One can think of a new expression in Java as executing in two steps: allocating an object, and then calling the constructor. Thus the specification of a constructor needs to mention the fields that it can initialize in the assignable clause.

The first constructor’s specification also illustrates that redundancy can also be used in an assignable clause. A redundant assignable clause follows if the meaning of the set of locations named is a subset of the ones denoted by the non-redundant clause for the same specification case. In this example the redundant assignable clause follows from the given assignable clause and the meaning of the in clause inherited from the superclass MoneyAC.

The second constructor above is noteworthy in that there is a redundant ensures clauses that uses an informal predicate [Leavens96b]. In this instance, the informal predicate is used as a comment (which could also be used). Recall that informal predicates allow an escape from formality when one does not wish to give part of a specification in formal detail.

The plus and minus methods use assume statements; these are like assertions, but are intended to impose obligations on the callers [Back-Mikhajlova-vonWright98]. The main distinction between a assume statement and a requires clause is that the former is a statement and can be used within code. These may also be treated differently by different tools. For example, ESC/Java [Leino-etal00] will require callers to satisfy the requires clause of a method, but will not enforce the precondition if it is stated as an assumption.

2.4 Use of Pure Classes

Since USMoney is a pure class, it can be used to make models of other classes. An example is the abstract class specified in the file ‘Account.jml’ below. The first model field in this class has the type USMoney, which was specified above. (Further explanation follows the specification below.)

```java
package org.jmlspecs.samples.prelimdesign;

public class Account {

    //@ public model MoneyOps credit;
    //@ public model String owner;

    //@ public invariant owner != null && credit != null
    //@     && credit.greaterThanOrEqualTo(new USMoney(0));
    //@
    //@ public constraint owner.equals(\old(owner));
```
Chapter 2: Class and Interface Specifications

/*@ public normal_behavior
 requires own != null && amt != null
 && (new USMoney(1)).lessThanOrEqualTo(amt);
 assignable credit, owner;
 ensures credit.equals(amt) && owner.equals(own);
 */
public Account(MoneyOps amt, String own);

/*@ public normal_behavior
 assignable \nothing;
 ensures \result.equals(credit);
 */
public /*@ pure @*/ MoneyOps balance();

/*@ public normal_behavior
 requires 0.0 <= rate && rate <= 1.0
 && credit.can_scaleBy(1.0 + rate);
 assignable credit;
 ensures credit.equals(\old(credit.scaleBy(1.0 + rate)));
 for_example
 public normal_example
 requires rate == 0.05 && (new USMoney(4000)).equals(credit);
 assignable credit;
 ensures credit.equals(new USMoney(4200));
 */
public void payInterest(double rate);

/*@ public normal_behavior
 requires amt != null
 && amt.greaterThanOrEqualTo(new USMoney(0))
 && credit.can_add(amt);
 assignable credit;
 ensures credit.equals(\old(credit.plus(amt)));
 for_example
 public normal_example
 requires credit.equals(new USMoney(40000))
 && amt.equals(new USMoney(1));
 assignable credit;
 ensures credit.equals(new USMoney(40001));
 */
public void deposit(MoneyOps amt);

/*@ public normal_behavior
 requires amt != null && (new USMoney(0)).lessThanOrEqualTo(amt)
 && amt.lessThanOrEqualTo(credit);
 assignable credit;
 ensures credit.equals(\old(credit.minus(amt)));
 for_example
 public normal_example
The specification of Account makes good use of examples. It also demonstrates the various ways of protecting predicates used in the specification from undefinedness [Leavens-Wing97a]. The principal concern here, as is often the case when using reference types in a model, is to protect against the model fields being null. As in Java, fields and variables of reference types can be null. In the specification of Account, the invariant states that these fields should not be null. Since implementations of public methods must preserve the invariants, one can think of the invariant as conjoined to the precondition and postcondition of each public method, and the postcondition of each public constructor. Hence, for example, method pre- and postconditions do not have to state that the fields are not null. However, often other parts of the specification must be written to allow the invariant to be preserved, or established by a constructor. For example, in the specification of Account’s constructor, this is done by requiring amt and own are not null, since, if they could be null, then the invariant could not be established.

2.5 Composition for Container Classes

The following specifications lead to the specification of a class Digraph (directed graph). This gives a more interesting example of how more complex models can be composed in JML from other classes. In this example we use model classes and the pure containers provided in the package org.jmlspecs.models.

2.5.1 NodeType

The file ‘NodeType.java’ contains the specification of an abstract class NodeType. NodeType is an abstract class, as opposed to a model class, because it will require an implementation and because it does appear in the interface of the model class Digraph. However, we also declare this abstract class to be pure, since we want to use its methods in the specification of other classes. (And we do so appropriately, since all the methods for class NodeType are side-effect-free.)

```java
package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.*;

public /*@ pure @*/ abstract class NodeType implements JMLType {

    /*@ also
    @   public normal_behavior
    @       requires !(o instanceof NodeType);
    @   ensures \result == false;
    */
```

The specification of Account makes good use of examples. It also demonstrates the various ways of protecting predicates used in the specification from undefinedness [Leavens-Wing97a]. The principal concern here, as is often the case when using reference types in a model, is to protect against the model fields being null. As in Java, fields and variables of reference types can be null. In the specification of Account, the invariant states that these fields should not be null. Since implementations of public methods must preserve the invariants, one can think of the invariant as conjoined to the precondition and postcondition of each public method, and the postcondition of each public constructor. Hence, for example, method pre- and postconditions do not have to state that the fields are not null. However, often other parts of the specification must be written to allow the invariant to be preserved, or established by a constructor. For example, in the specification of Account’s constructor, this is done by requiring amt and own are not null, since, if they could be null, then the invariant could not be established.

2.5 Composition for Container Classes

The following specifications lead to the specification of a class Digraph (directed graph). This gives a more interesting example of how more complex models can be composed in JML from other classes. In this example we use model classes and the pure containers provided in the package org.jmlspecs.models.

2.5.1 NodeType

The file ‘NodeType.java’ contains the specification of an abstract class NodeType. NodeType is an abstract class, as opposed to a model class, because it will require an implementation and because it does appear in the interface of the model class Digraph. However, we also declare this abstract class to be pure, since we want to use its methods in the specification of other classes. (And we do so appropriately, since all the methods for class NodeType are side-effect-free.)

```java
package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.*;

public /*@ pure @*/ abstract class NodeType implements JMLType {

    /*@ also
    @   public normal_behavior
    @       requires !(o instanceof NodeType);
    @   ensures \result == false;
    */
```
Chapter 2: Class and Interface Specifications

public abstract boolean equals(Object o);

/** also
 @ public normal_behavior
 @ ensures \result instanceof NodeType
 @ && ((NodeType)\result).equals(this);
 @*/

public abstract Object clone();

} // end of class NodeType

2.5.2 ArcType

ArcType is specified as a pure model class in the file ‘ArcType.jml’ shown below. It is a
model class because it does not appear in the interface to Digraph, and so does not need to
be implemented. We declare ArcType to be a pure class so that its methods can be used in
assertions. The two model fields for ArcType, from and to, are both of type NodeType. We
specify the equals method so that two references to objects of type ArcType are equal if
and only if they have equal values in the from and to model fields. Thus, equals is specified
using NodeType.equals. We also specify that ArcType has a public clone method, fulfilling
the obligations of a type that implements JMLType. ArcType must implement JMLType so
that its objects can be placed in a JMLValueSet. We use such a set for one of the model
fields of Digraph.

package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.JMLType;

/*@ public pure model class ArcType implements JMLType {

 public model NodeType from;
 public model NodeType to;
 public invariant from != null && to != null;

 public normal_behavior
 requires from != null && to != null;
 assignable this.from, this.to;
 ensures this.from.equals(from) && this.to.equals(to);
 public ArcType(NodeType from, NodeType to);

 also
 public normal_behavior
 {/
 requires o instanceof ArcType;
 ensures \result <=> ((ArcType)o).from.equals(from)
 && ((ArcType)o).to.equals(to);
 also
 requires !(o instanceof ArcType);
 ensures \result == false;
2.5.3 Digraph

Finally, the specification of the class Digraph is given in the file ‘Digraph.jml’ shown below. This specification demonstrates how to use container classes, like JMLValueSet, combined with appropriate invariants to specify models that are compositions of other classes. Both the model fields nodes and arcs are of type JMLValueSet. However, the first invariant clause restricts nodes so that every object in nodes is, in fact, of type NodeType. Similarly, the next invariant clause we restrict arcs to be a set of ArcType objects. In both cases, since the type is JMLValueSet, membership is determined by the equals method for the type of the elements (rather than reference equality).

```java
package org.jmlspecs.samples.digraph;
//@ model import org.jmlspecs.models.*;
public class Digraph {

//@ public model JMLValueSet nodes;
//@ public model JMLValueSet arcs;

/*@ public invariant nodes != null
    && (forall JMLType n; nodes.has(n); n instanceof NodeType);
//@ public invariant arcs != null
    && (forall JMLType a; arcs.has(a); a instanceof ArcType);
//@ public invariant (forall ArcType a; arcs.has(a);
    nodes.has(a.from) && nodes.has(a.to));
@*/

/*@ public normal_behavior
    assignable nodes, arcs;
    ensures nodes.isEmpty() && arcs.isEmpty();
@*/
public Digraph();
```
public void addNode(NodeType n);

public void removeNode(NodeType n);

public void addArc(NodeType inFrom, NodeType inTo);

public void removeArc(NodeType inFrom, NodeType inTo);

public boolean isNode(NodeType n);

public boolean isArc(NodeType inFrom, NodeType inTo);
public /*@ pure @*/ boolean isAPath(NodeType start, NodeType end);

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result <=> !\exists ArcType a; arcs.has(a);
 a.from.equals(n) || a.to.equals(n));
@ public pure model boolean unconnected(NodeType n);
@*/

/*@ public normal_behavior
@ requires nodeSet != null
@ && (\forall JMLType o; nodeSet.has(o);
 o instanceof NodeType && nodes.has(o));
@ assignable \nothing;
@ also
@ requires nodeSet.equals(OneMoreStep(nodeSet));
@ ensures \result != null && \result.equals(nodeSet);
@ also
@ requires !nodeSet.equals(OneMoreStep(nodeSet));
@ ensures \result != null
 && \result.equals(reachSet(OneMoreStep(nodeSet)));
@ |
@ subclassing_contract
@ measured_by nodes.size() - nodeSet.size();
@ public pure model JMLValueSet reachSet(JMLValueSet nodeSet);
@*/

/*@ public normal_behavior
@ requires nodeSet != null
@ && (\forall JMLType o; nodeSet.has(o);
 o instanceof NodeType && nodes.has(o));
@ assignable \nothing;
@ ensures \result != null
 && \result.equals(nodeSet.union(
 new JMLValueSet { NodeType n | nodes.has(n)
 && \exists ArcType a; a != null && arcs.has(a);
 nodeSet.has(a.from) && n.equals(a.to))});
@ public pure model JMLValueSet OneMoreStep(JMLValueSet nodeSet);
@*/

} // end of class Digraph

An interesting use of pure model methods appears at the end of the specification of Digraph in the pure model method reachSet. This method constructively defines the set of all nodes that are reachable from the nodes in the argument nodeSet. This specification uses a nested case analysis, between {1 and 1}. The meaning of this is again that each pre- and postcondition pair has to be obeyed, but by using nesting, one can avoid duplication of the requires clause that is found at the beginning of the specification. The measured_by clause is needed because this specification is recursive; the measure given allows one to
describe a termination argument, and thus ensure that the specification is well-defined. This clause defines an integer-valued measure that must always be at least zero; furthermore, the measure for a call and recursive uses in the specification must strictly decrease [Owreetal95]. The recursion in the specification builds up the entire set of reachable nodes by, for each recursive reference, adding the nodes that can be reached directly (via a single arc) from the nodes in \texttt{nodeSet}.

2.6 Subtyping

Following Dhara and Leavens [Dhara-Leavens96] [Leavens97c], a subtype inherits the specifications of its supertype’s public and protected members (fields and methods), as well as its public and protected invariants and history constraints.\(^{19}\) This ensures that a subclass specifies a behavioral subtype of its supertypes. This inheritance can be thought of textually, by copying the public and protected specifications of the methods of a class’s ancestors and all interfaces that a class implements into the class’s specification and combining the specifications using \texttt{also} [Raghavan-Leavens00].\(^{20}\) (This is the reason for the use of \texttt{also} at the beginning of specifications in overriding methods.) By the semantics of method combination using \texttt{also}, these behaviors must all be satisfied by the method, in addition to any explicitly specified behaviors.

For example, consider the class \texttt{PlusAccount}, specified in file ‘\texttt{PlusAccount.jml}’ shown below. It is specified as a subclass of \texttt{Account} (see Section 2.4 [Use of Pure Classes], page 38). Thus it inherits the fields of \texttt{Account}, and \texttt{Account}'s public invariants, history constraints, and method specifications. (The specification of \texttt{Account} given above does not have any \texttt{protected} specification information.) Because it inherits the fields of its superclass, inherited method specifications of behavior are still meaningful when copied to the subclass. The trick is to always add new model fields to the subclass and relate them to the existing ones.

Note that in the \texttt{represents} clause below, instead of a left-facing arrow, \leftarrow, the connective \texttt{"such_that"} is used to introduce a relationship predicate. This form of the \texttt{represents} clause allows one to specify abstraction relations, instead of abstraction functions.

```java
package org.jmlspecs.samples.prelimdesign;

public class PlusAccount extends Account {
    //@ public model MoneyOps savings, checking;
    //@ public invariant savings != null && checking != null;
    //= public invariant_redundantly savings.plus(checking) .greaterThanOrEqualTo(new USMoney(0));

    public represents credit \such\_that
    @ credit.equals(savings.plus(checking));
    */
    //= public invariant savings != null & checking != null;
    //= public invariant_redundantly savings.plus(checking)
    @ .greaterThanOrEqualTo(new USMoney(0));

   \footnote{A subtype also inherits default privacy (package-protected) method specifications, invariants, and history constraints if it is in the same package as its supertype.}

   \footnote{However, textual copying shouldn’t be taken literally; if a subclass declares a field that hides the fields of its superclass, renaming must be done to prevent name capture.}
```
Chapter 2: Class and Interface Specifications

/*@*/

/*@ public normal_behavior
 @ requires sav != null && chk != null && own != null
 @ && (new USMoney(1)).lessThanOrEqualTo(sav)
 @ && (new USMoney(1)).lessThanOrEqualTo(chk);
 @ assignable credit, owner;
 @ assignable_redundantly savings, checking;
 @ ensures savings.equals(sav) && checking.equals(chk)
 @ && owner.equals(own);
 @ ensures_redundantly credit.equals(sav.plus(chk));
@*/

public PlusAccount(MoneyOps sav, MoneyOps chk, String own);

/*@ also
 @ public normal_behavior
 @ requires 0.0 <= rate && rate <= 1.0
 @ && credit.can_scaleBy(1.0 + rate);
 @ assignable credit, savings, checking;
 @ ensures checking.equals(\old(checking.scaleBy(1.0 + rate)));
@*/

public void payInterest(double rate);

/*@ also
 @ public normal_behavior
 @ requires amt != null
 @ && (new USMoney(0)).lessThanOrEqualTo(amt)
 @ && amt.lessThanOrEqualTo(savings);
 @ assignable credit, savings;
 @ ensures savings.equals(\old(savings.minus(amt)))
 @ && not_modified(checking);
 @ also
 @ public normal_behavior
 @ requires amt != null
 @ && (new USMoney(0)).lessThanOrEqualTo(amt)
 @ && amt.lessThanOrEqualTo(credit)
 @ && amt.greaterThan(savings);
 @ assignable credit, savings, checking;
 @ ensures savings.equals(new USMoney(0))
 @ && checking.equals(\old(checking.minus(amt.minus(savings))));
@*/

for_example
 @ public normal_example
public void withdraw(MoneyOps amt);

/*@ also */
public void deposit(MoneyOps amt);

/*@ public normal_behavior */
public void depositToChecking(MoneyOps amt);
ConfigurationException

/*@
 public normal_behavior
 @ requires amt != null;
 @ |
 @ requires (new USMoney(0)).lessThanOrEqualTo(amt)
 @ && amt.lessThanOrEqualTo(checking);
 @ assignable credit, checking;
 @ ensures checking.equals(\old(checking.minus(amt)))
 @ && \not_modified(savings);
 @ also
 @ requires (new USMoney(0)).lessThanOrEqualTo(amt)
 @ && amt.lessThanOrEqualTo(credit)
 @ && amt.greaterThan(checking);
 @ assignable credit, checking, savings;
 @ ensures checking.equals(new USMoney(0))
 @ && savings.equals(
 \old(savings.minus(amt.minus(checking))));
 @ |}
@ for_example
@ public normal_example
@ requires checking.equals(new USMoney(40001))
@ && amt.equals(new USMoney(40000));
@ assignable credit, checking;
@ ensures checking.equals(new USMoney(1))
@ && \not_modified(savings);
@ also
@ public normal_example
@ requires savings.equals(new USMoney(30001))
@ && checking.equals(new USMoney(10000))
@ && amt.equals(new USMoney(40000));
@ assignable credit, checking, savings;
@ ensures checking.equals(new USMoney(0))
@ && savings.equals(new USMoney(1));
@*/
 public void payCheck(MoneyOps amt);
}
3 Extensions to Java Expressions

JML makes extensions to the Java expression syntax for two purposes. The main set of extensions are used in predicates. But there are also some extensions used in `store-ref`s, which are themselves used in the `assignable`, `accessible`, and `represents` clauses.

3.1 Extensions to Java Expressions for Predicates

The expressions that can be used as predicates in JML are an extension to the side-effect free Java expressions. Since predicates are required to be side-effect free, the following Java operators are not allowed within predicates:

- assignment (=), and the various assignment operators (such as +=, -=, etc.),
- all forms of increment and decrement operators (++, --),
- calls to methods that are not pure, and
- any use of operator `new` that would call a constructor that is not pure.

Furthermore, within method specification that are not model programs, one cannot use `super` to call a pure superclass method, because it is confusing in combination with JML’s specification inheritance.¹

We allow the allocation of storage (e.g., using operator `new` and pure constructors) in predicates, because such storage can never be referred to after the evaluation of the predicate, and because such pure constructors have no side-effects other than initializing the new objects so created.

Also, expressions with side effects are permitted as arguments to the `\duration` and `\working_space` expressions, because their argument expressions are not evaluated.

JML adds the following new syntax to the Java expression syntax, for use in predicates (see Section B.1.10 [Predicate and Specification Expression Syntax], page 67 for syntactic details such as precedence):

- Informal descriptions, which look like

 (* some text describing a Boolean-valued predicate *)

 have type `boolean`. Their meaning is either `true` or `false`, but is entirely determined by the reader. Since informal descriptions are not-executable, they may be treated differently by different tools in different situations.

- `==>` and `<=` for logical implication and reverse implication. For example, the formula `raining ==> getsWet` is true if either `raining` is false or `getsWet` is true. The formula `getsWet <=> raining` means the same thing. The `==>` operator associates to the right, but the `<=` operator associates to the left. The expressions on either side of these operators must be of type `boolean`, and the type of the result is also `boolean`.

- `<=>` and `<=>` for logical equivalence and logical inequivalence, respectively. The expressions on either side of these operators must be of type `boolean`, and the type of

¹ Suppose `A` is the superclass of `B`, and `B` is the superclass of `C`. Suppose `B`’s specification used `super` to call a method of `A`. The problem is that when this specification is inherited by `C`, if we imagine copying `B`’s specification to `C`, then this use of `super` no longer refers to `A`, but to `B`. Thanks to Arnd Poetzsch-Heffter for pointing out this problem.
the result is also boolean. Note that
 means the same thing as == for expressions of type boolean, and != means the same thing as != for boolean expressions; however,
 and != have a much lower precedence, and are also associative and symmetric.

- < and <= to test order of locks. JML extends these two operators, but not > and >=, as comparisons on Objects. Using synchronized statements, Java programs can establish monitor locks to permit only one thread at a time to execute given sections of code. Any object can be used as a lock. In order for ESC/Java to reason about the possibility of deadlocks among threads, a partial order must be defined on lock objects, with "larger" objects being objects whose locks should be acquired later. The < and <= operators represent this partial order.

- \max, to provide the "largest" of a set of lock objects. The ordering used to determine the max is that defined by the < operator as applied to objects.

- \forall and \exists, which are universal and existential quantifiers (respectively); for example,

\[
\forall int i,j; 0 <= i \&\& i < j \&\& j < 10; a[i] < a[j]
\]

says that a is sorted at indexes between 0 and 9. The quantifiers range over all potential values of the variables declared which satisfy the range predicate, given between the semicolons (;). If the range predicate is omitted, it defaults to true. Since a quantifier quantifies over all potential values of the variables, when the variables declared are reference types, they may be null, or may refer to objects not constructed by the program; one should use a range predicate to eliminate such cases if they are not desired. The type of a universal and existential quantifier is boolean.

- \max, \min, \product, and \sum, which are generalized quantifiers that return the maximum, minimum, product, or sum of the values of the expressions given, where the variables satisfy the given range. The range predicate must be of type boolean. The expression in the body must be a built-in numeric type, such as int or double; the type of the quantified expression as a whole is the type of its body. The body of a quantified expression is the last top-level expression it contains; it is the expression following the range predicate, if there is one. As with the universal and existential quantifiers, if the range predicate is omitted, it defaults to true. For example, the following equations are all true (see chapter 3 of [Cohen90]):

\[
\\sum int i; 0 <= i \&\& i < 5; i) == 0 + 1 + 2 + 3 + 4
\]
\[
\\product int i; 0 < i \&\& i < 5; i) == 1 * 2 * 3 * 4
\]
\[
\\max int i; 0 <= i \&\& i < 5; i) == 4
\]
\[
\\min int i; 0 <= i \&\& i < 5; i-1) == -1
\]

For computing the value of a sum or product, Java’s arithmetic is used. The meaning thus depends on the type of the expression. For example, in Java, floating point numbers use the IEEE 754 standard, and thus when an overflow occurs, the appropriate positive or negative infinity is returned. However, Java integers wrap on overflow. Consider the following examples.

\[
\\product float f; 1.0e30f < f \&\& f < 1.0e38f; f) == Float.POSITIVE_INFINITY
\]
\[
\\sum int i; i == Integer.MAX_VALUE || i == 1; i) == Integer.MAX_VALUE + 1
\]
\[
== Integer.MIN_VALUE
\]
When the range predicate is not satisfiable, the sum is 0 and the product is 1; for example:

\[
\begin{align*}
\sum \text{int } i; \text{false}; i &= 0 \\
\prod \text{double } d; \text{false}; d\cdot d &= 1.0
\end{align*}
\]

When the range predicate is not satisfiable for \text{max} the result is the smallest number with the type of the expression in the body; for floating point numbers, negative infinity is used. Similarly, when the range predicate is not satisfiable for \text{min}, the result is the largest number with the type of the expression in the body.

\textbullet \ \texttt{num_of}, which is "numerical quantifier." It returns the number of values for its variables for which the range and the expression in its body are true. Both the range predicate and the body must have type \texttt{boolean}, and the entire quantified expression has type \texttt{long}. The meaning of this quantifier is defined by the following equation (see p. 57 of [Cohen90]).

\[
\text{num_of } T x; R(x); P(x) == \sum T x; R(x) && P(x); 1L
\]

\textbullet \ Set comprehensions, which can be used to succinctly define sets; for example, the following is the \texttt{JMLObjectSet} that is the subset of non-null \texttt{Integer} objects found in the set \texttt{myIntSet} whose values are between 0 and 10, inclusive.

\[
\text{new } \texttt{JMLObjectSet} \{ \text{Integer } i | \texttt{myIntSet}.\texttt{has}(i) \}
\]

The syntax of JML (see Section B.1.10 [Predicate and Specification Expression Syntax], page 67) limits set comprehensions so that following the vertical bar ('|') is always an invocation of the \texttt{has} method of some set on the variable declared. (This restriction is used to avoid Russell's paradox [Whitehead-Russell25].) In practice, one either starts from some relevant set at hand, or one can start from the sets containing the objects of primitive types found in \texttt{org.jmlspecs.models.JMLModelObjectSet} and (in the same Java package) \texttt{JMLModelValueSet}. The type of such an expression is the type named following \texttt{new}, which must be \texttt{JMLObjectSet} or \texttt{JMLValueSet}.

\textbullet \ \texttt{duration}, which describes the specified maximum number of virtual machine cycle times needed to execute the method call or explicit constructor invocation expression that is its argument; e.g., \texttt{duration(myStack.push(o))} is the maximum number of virtual machine cycles needed to execute the call \texttt{myStack.push(o)}, according to the contract of the static type of \texttt{myStack}'s type's \texttt{push} method, when passed argument \texttt{o}. Note that the expression used as an argument to \texttt{duration} should be thought of as quoted, in the sense that it is not to be executed; thus the method or constructor called need not be free of side effects. The argument expression must be a method call or explicit constructor invocation expression; the type of a \texttt{duration} expression is \texttt{long}. For a given Java Virtual Machine, a \textit{virtual machine cycle} is defined to be the minimum of the maximum over all Java Virtual Machine instructions, \textit{i}, of the length of time needed to execute instruction \textit{i}. The keyword \texttt{duration} can only be used in the \textit{spec-expression} of a \textit{duration-clause}; it cannot be used, for example, in postconditions.

\textbullet \ \texttt{elemtype}, which returns the most-specific static type shared by all elements of its array argument [Leino-Nelson-Saxe00]. For example, \texttt{elemtype(type(int[]))} is \texttt{type(int)}. The argument to \texttt{elemtype} must be an expression of type \texttt{\textit{TYPE}}, which JML considers to be the same as \texttt{java.lang.Class}, and its result also has type \texttt{\textit{TYPE}}.
• \texttt{\textcolor{red}{\texttt{fresh}}}, which asserts that objects were freshly allocated; for example, \texttt{\textcolor{red}{\texttt{fresh}}(x,y)} asserts that \texttt{x} and \texttt{y} are not null and that the objects bound to these identifiers were not allocated in the pre-state. The arguments to \texttt{\textcolor{red}{\texttt{fresh}}} can have any reference type, and the type of the overall expression is \texttt{boolean}.\footnote{Note that it is wrong to use \texttt{\textcolor{red}{\texttt{fresh}}(this)} in the specification of a constructor, because Java’s \texttt{new} operator allocates storage for the object; the constructor’s job is just to initialize that storage.}

• \texttt{\textcolor{red}{\texttt{invariant	extunderscore for}}}, which is true just when its argument satisfies the invariant of its static type; for example, \texttt{\textcolor{red}{\texttt{invariant	extunderscore for}}((MyClass)o)} is true when \texttt{o} satisfies the invariant of \texttt{MyClass}. The entire \texttt{\textcolor{red}{\texttt{invariant	extunderscore for}}} expression is of type \texttt{boolean}.

• \texttt{\textcolor{red}{\texttt{is	extunderscore initialized}}}, which is true just when its \texttt{reference	extunderscore type} argument is a class that has finished its static initialization. It is of type \texttt{boolean}.

• \texttt{\textcolor{red}{\texttt{\texttt{lblneg}}}} and \texttt{\textcolor{red}{\texttt{\texttt{lblpos}}}} can be used to attach labels to expressions [Leino-Nelson-Saxe00]; these labels might be printed in various messages by support tools, for example, to identify an assertion that failed. Such an expression has a \texttt{label} and a \texttt{body}; for example, in
 \[
 (\texttt{\textcolor{red}{\texttt{\texttt{lblneg indexInBounds 0 <= index \&\& index < length}}})
 \]
the label is \texttt{indexInBounds} and the body is the expression \texttt{0 <= index \&\& index < length}. The value of a labeled expression is the value of its body, hence its type is the type of its body. The idea is that if this expression is used in an assertion and its value is \texttt{false} (e.g., when doing run-time checking of assertions), then a warning will be printed that includes the label \texttt{indexInBounds}. The form using \texttt{\textcolor{red}{\texttt{\texttt{lblpos}}}} has a similar syntax, but should be used for warnings when the value of the enclosed expression is \texttt{true}.

• \texttt{\textcolor{red}{\texttt{lockset}}}, which is the set of locks held by the current thread. It is of type \texttt{JMLObjectSet}. (This is an adaptation from ESC/Java [Leino-etal00] [Leino-Nelson-Saxe00] for dealing with threads.)

• \texttt{\textcolor{red}{\texttt{nonnullelements}}}, which can be used to assert that an array and its elements are all non-null. For example, \texttt{\textcolor{red}{\texttt{nonnullelements}}(myArray)}, is equivalent to [Leino-Nelson-Saxe00]
 \[
 \texttt{myArray \neq null \&\& (\forall \texttt{int i}; 0 \leq i \&\& i < \texttt{myArray.length}; \texttt{myArray[i] \neq null})}
 \]

• \texttt{\textcolor{red}{\texttt{not	extunderscore modified}}}, which asserts that the values of objects are the same in the post-state as in the pre-state; for example, \texttt{\textcolor{red}{\texttt{not	extunderscore modified}}(xval,yval)} says that \texttt{xval} and \texttt{yval} have the same value in the pre- and post-states (in the sense of an \texttt{equals} method). The keyword \texttt{\textcolor{red}{\texttt{not	extunderscore modified}}} can only be used in an \texttt{ensures	extunderscore clause} or a \texttt{signals	extunderscore clause}; it cannot be used, for example, in preconditions. The type of a \texttt{\textcolor{red}{\texttt{not	extunderscore modified}}} expression is \texttt{boolean}.

• \texttt{\textcolor{red}{\texttt{old}}}, which can be used to refer to values in the pre-state; e.g., \texttt{\textcolor{red}{\texttt{old}}(myPoint.x)} is the value of the \texttt{x} field of the object \texttt{myPoint} in the pre-state. The type of such an expression is the type of the expression it contains; for example the type of \texttt{\textcolor{red}{\texttt{old}}(myPoint.x)} is the type of \texttt{myPoint.x}. The keyword \texttt{\textcolor{red}{\texttt{old}}} can only be used in an \texttt{ensures	extunderscore clause}, a \texttt{signals	extunderscore clause}, or a \texttt{history	extunderscore constraint}; it cannot be used, for example, in preconditions.

• Several notations using \texttt{\textcolor{red}{\texttt{reach}}} allow one to refer to the set of objects reachable from some particular object. The \texttt{\textcolor{red}{\texttt{reach}}} syntax is overloaded to reduce the number of
keywords. There are three cases, each of which has two alternatives depending on the static type of the first argument:

- The syntax $\texttt{\textbackslash reach}(x)$ denotes the smallest $\texttt{JMLObjectSet}$ containing the object denoted by x, if any, and all objects accessible through all fields of objects in this set. That is, if x is \texttt{null}, then this set is empty otherwise it contains x, all objects accessible through all fields of x, all objects accessible through all fields of these objects, and so on, recursively. If the expression x has static type $\texttt{org.jmlspecs.models.JMLObjectSet}$, then $\texttt{\textbackslash reach}(x)$ denotes the smallest $\texttt{JMLObjectSet}$ containing the non-null objects in x, if any, and all objects accessible through all fields of objects in this set.

- The syntax $\texttt{\textbackslash reach}(x, T)$ denotes the smallest $\texttt{JMLObjectSet}$ containing the object denoted by x, if such an object exists and has type T, and all objects of type T accessible through all fields of objects in this set. If x, the argument to $\texttt{\textbackslash reach}$ has the static type $\texttt{org.jmlspecs.models.JMLObjectSet}$, then this syntax denotes the smallest $\texttt{JMLObjectSet}$ containing the non-null objects in x of type T, if any, and all objects accessible through all fields of objects in this set.

Note that if x is a $\texttt{JMLObjectSet}$, it may contain objects of different types; the presence of objects of other types does not matter. Only the instances of type T participate, and there need not be any instances of type T in the set.

- The syntax $\texttt{\textbackslash reach}(x, T, f)$ denotes the smallest $\texttt{JMLObjectSet}$ containing the object denoted by x, if such an object exists and has type T, and all objects of type T accessible using the field f on objects in this set. The type T must have been declared with a (non-static) field f. If x has static type $\texttt{org.jmlspecs.models.JMLObjectSet}$, then this denotes the smallest $\texttt{JMLObjectSet}$ containing the objects in x that have type T, and all objects of type T accessible using the field f on objects in this set.

More generally, in this syntax one can use instead of f, a $\texttt{store-ref-expression}$. For example, in

$\texttt{\textbackslash reach(myPointSet, ColorPoint, neighbor[3])}$

if $\texttt{myPointSet}$ is a $\texttt{JMLObjectSet}$, then this expression denotes the smallest set of objects of type $\texttt{ColorPoint}$ such that the objects contained in $\texttt{myPointSet}$ of type $\texttt{ColorPoint}$ are in the set, and for each object \texttt{cp} of type $\texttt{ColorPoint}$ in the set, $\texttt{cp.neighbor[3]}$ is in the set.

- $\texttt{\textbackslash result}$, which, in an $\texttt{ensures}$ clause is the value or object that is being returned by a method. Its type is the return type of the method; hence it is a type error to use $\texttt{\textbackslash result}$ in a void method or in a constructor. The keyword $\texttt{\textbackslash result}$ can only be used in an $\texttt{ensures-clause}$; it cannot be used, for example, in preconditions or in signals clauses.

- $\texttt{\textbackslash space}$, which describes the amount of heap space, in bytes, allocated to the object referred to by its argument; e.g., $\texttt{\textbackslash space(myStack)}$ is number of bytes in the heap used by $\texttt{myStack}$, not including the objects it contains. The type of the $\texttt{spec-expression}$ that is the argument must be a reference type, and the result type of a $\texttt{\textbackslash space}$ expression is \texttt{long}. The keyword $\texttt{\textbackslash space}$ can only be used in the $\texttt{spec-expression}$ of a $\texttt{working-space-clause}$; it cannot be used, for example, in postconditions.
• \texttt{typeof}, which returns the most-specific dynamic type of an expression’s value \cite{Leino-Nelson-Saxe00}. The meaning of \texttt{typeof}(E) is unspecified if \textit{E} is null. If \textit{E} has a static type that is a reference type, then \texttt{typeof}(E) means the same thing as \textit{E}.\texttt{getClass}(). For example, if \textit{c} is a variable of static type \texttt{Collection} that holds an object of class \texttt{HashSet}, then \texttt{typeof}(c) is \texttt{HashSet.class}, which is the same thing as \texttt{type(HashSet)}. If \textit{E} has a static type that is not a reference type, then \texttt{typeof}(E) means the instance of \texttt{java.lang.Class} that represents its static type. For example, \texttt{typeof(true)} is \texttt{Boolean.TYPE}, which is the same as \texttt{type(boolean)}. Thus an expression of the form \texttt{typeof(E)} has type \texttt{TYPE}, which JML considers to be the same as \texttt{java.lang.Class}.

• \texttt{<:}, which compares two reference types and returns true when the type on the left is a subtype of the type on the right \cite{Leino-Nelson-Saxe00}. Although the notation might suggest otherwise, this operator is also reflexive; a type will compare as \texttt{<:} with itself. In an expression of the form \texttt{E1 <: E2}, both \textit{E1} and \textit{E2} must have type \texttt{TYPE}; since in JML \texttt{TYPE} is the same as \texttt{java.lang.Class} the expression \texttt{E1 <: E2} means the same thing as the expression \texttt{E2.isAssignableFrom(E1)}.

• \texttt{type}, which can be used to mark types in expressions. An expression of the form \texttt{type(T)} has the type \texttt{TYPE}. Since in JML \texttt{TYPE} is the same as \texttt{java.lang.Class}, an expression of the form \texttt{type(T)} means the same thing as \texttt{T.class}. For example, in

\texttt{typeof(myObj) <: \texttt{type(PlusAccount)}}

the use of \texttt{\texttt{type(PlusAccount)}} is used to introduce the type \texttt{PlusAccount} into this expression context.

• \texttt{working_space}, which describes the maximum specified amount of heap space, in bytes, used by the method call or explicit constructor invocation expression that is its argument; e.g., \texttt{working_space(myStack.push(o))} is the maximum number of bytes needed on the heap to execute the call \texttt{myStack.push(o)}, according to the contract of the static type of \texttt{myStack}'s type's \texttt{push} method, when passed argument \textit{o}. Note that the expression used as an argument to \texttt{working_space} should be thought of as quoted, in the sense that it is not to be executed; thus the method or constructor called need not be free of side effects. The argument expression must be a method call or explicit constructor invocation expression; the result type of a \texttt{working_space} expression is \texttt{long}. The keyword \texttt{working_space} can only be used in the \texttt{spec-expression} of a \texttt{working-space-clause}; it cannot be used, for example, in postconditions.

As in Java itself, most types are reference types, and hence many expressions yield references (i.e., object identities or addresses), as opposed to primitive values. This means that \texttt{==}, except when used to compare pure values of primitive types such as \texttt{boolean} or \texttt{int}, is reference equality. As in Java, to get value equality for reference types one uses the \texttt{equals} method in assertions. For example, the predicate \texttt{myString == yourString}, is only true if the objects denoted by \texttt{myString} and \texttt{yourString} are the same object (i.e., if the names are aliases); to compare their values one must write \texttt{myString.equals(yourString)}.

The reference semantics makes interpreting predicates that involve the use of \texttt{\texttt{old}} interesting. We want to have the semantics suited for two purposes:

• execution of assertions for purposes of debugging and testing, as in Eiffel, and
• generation of mathematical assertions for static analysis and possible theorem proving (e.g., to verify program correctness).

The key to the semantics of \texttt{old} is to treat it as an abbreviation for a local definition. That is, E in $\texttt{old}(E)$ can be evaluated in the pre-state, and its value bound to a locally defined name, and then the name can be used in the postcondition.

To avoid referring to the value of uninitialized locations, a constructor’s precondition can only refer to locations in the object being constructed that are not assignable. This allows a constructor to refer to instance fields of the object being constructed if they are not made assignable by the constructor’s assignable clause, for example, if they are declared with initializers. In particular, the precondition of a constructor may not mention a “blank final” instance variable that it must assign.

Since we are using Java expressions for predicates, there are some additional problems in mathematical modeling. We are excluding the possibility of side-effects by limiting the syntax of predicates, and by using type checking \cite{Gifford-Lucassen86} \cite{Lucassen87} \cite{Lucassen-Gifford88} \cite{Nielsen-Nelson-Amtoft97} \cite{Talpin-Jouvelot94} \cite{Wright92} to make sure that only pure methods and constructors may be called in predicates.

Exceptions in expressions are particularly important, since they may arise in type casts. JML deals with exceptions by having the evaluation of predicates substitute an arbitrary expressible value of the normal result type when an exception is thrown during evaluation. When the expression’s result type is a reference type, an implementation would have to return \texttt{null} if an exception is thrown while executing such a predicate. This corresponds to a mathematical model in which partial functions are mathematically modeled by under-specified total functions \cite{Gries-Schneider95}. However, tools sometimes only approximate this semantics. In tools, instead of fully catching exceptions for all subexpressions, many tools only catch exceptions for the smallest boolean-valued subexpression that may throw an exception (and for entire expressions used in JML’s \texttt{measured-clause} and \texttt{variant-function}).

JML will check that errors (i.e., exceptions that inherit from Error) are not explicitly thrown by pure methods. This means that they can be ignored during mathematical modeling. When executing predicates, errors will cause run-time errors.

3.2 Extensions to Java Expressions for Store-Refs

The grammatical production \texttt{store-ref} (see Section B.1.5 \cite{Store Ref Syntax}, page 62) is used to name locations in the \texttt{assignable}, \texttt{in}, \texttt{maps-into}, and \texttt{represents} clauses. A similar production for \texttt{object-ref} is used in the \texttt{accessible} clause. A \texttt{store-ref} names a location, not an object; a location is either a field of an object, or an array element. Besides the Java syntax of names and field and array references, JML supports the following syntax for \texttt{store-refs}. See Section B.1.4 \cite{Behavioral Specification Syntax for Types}, page 62, for more details on the syntax.

• Array ranges, of the form $A[E1 .. E2]$, denote the locations in the array A between the value of $E1$ and the value of $E2$ (inclusive). For example, the clause

\begin{verbatim}
assignable myArray[3 .. 5]
\end{verbatim}

can be thought of an abbreviation for the following.

\begin{verbatim}
assignable myArray[3], myArray[4], myArray[5]
\end{verbatim}
• One can also name all the indexes in an array A by writing, $A[*]$, which is shorthand for $A[0 .. A.length-1]$.

• Several notations using `\fields_of` allow one to refer to the fields and array elements in a set of objects, or in some particular object. The `\fields_of` syntax is overloaded to reduce the number of keywords. There are three cases, each of which has two alternatives depending on the static type of the first argument:

- The syntax `\fields_of(x)` names all of the non-static fields and array elements of the object(s) referred to by x. If the static type of x is `org.jmlspecs.models.JMLObjectSet`, then this names all the fields and array elements in all the objects in the set x, otherwise it simply names all the fields and array elements of the object x. For example, if p is a `Point` object with two fields, x and y of type `BigInteger`, then `\fields_of(p)` names the fields `p.x` and `p.y`. Notice that the fields of the `BigInteger` objects are not named. As another example, if a is an array of type `Rocket []`, then the `store-ref \fields_of(a)` is equivalent to $a[*]$.

- The syntax `\fields_of(x, T)` names all of the non-static fields and array elements of x, found in objects of type T. That is, either x must have type T (or a subtype), or if static type of x is `org.jmlspecs.models.JMLObjectSet`, then this names all non-static fields of all instances of type T (or a subtype) in the set x, otherwise x must have static type T (or a subtype), this `store-ref` names all the non-static fields of x found in type T (or the array elements of x, if T is an array type.)

 Note that if x is a `JMLObjectSet`, it may contain objects of different types; the presence of objects of other types does not matter. Only the instances of type T participate, and there need not be any instances of type T in the set.

- The syntax `\fields_of(x, T, f)` names the f fields of x in objects of type T. The type T must have been declared with a (non-static) field f.

 Note that in this case, T cannot be an array type. If x has static type `org.jmlspecs.models.JMLObjectSet`, then this names the f fields in all instances of type T in the set x, otherwise x must have static type T, this `store-ref` is the same as writing $x.f$.

 More generally, in this syntax one can use instead of f, a `store-ref-expression`. For example, in

 \[\fields_of(myPointSet, ColorPoint, val[3].color) \]

 if `myPointSet` is of type `JMLObjectSet`, then this expression refers to the locations `cp.val[3].color`, for each object `cp` of type `ColorPoint` in `myPointSet`.

 Note that `\reach` is useful for constructing sets of objects for use as the first argument to `\fields_of`. For example, one might write `\fields_of(\reach(myVar))`.

4 Conclusions

One area of future work for JML is concurrency. The main feature currently in JML that supports concurrency is the `when` clause [Lerner91] [Sivaprasad95]; it says that the caller will be delayed until the condition given holds. This permits the specification of when the caller is delayed to obtain a lock, for example. While syntax for this exists in the JML parser, our exploration of this topic is still in an early stage. JML also has several primitives from ESC/Java that deal with monitors and locks.

JML is an expressive behavioral interface specification language for Java. It combines the best features of the Eiffel and Larch approaches to specification. It allows one to write specifications that are quite precise and detailed, but also allows one to write lightweight specifications. It has examples and other forms of redundancy to allow for debugging specifications and for making rhetorical points. It supports behavioral subtyping by specification inheritance.

More information on JML, including software to aid in working with JML specifications, can be obtained from `http://www.jmlspecs.org/`.

Acknowledgments

The work of Leavens and Ruby was supported in part by a grant from Rockwell International Corporation and by NSF grant CCR-9503168. Work on JML by Leavens, Baker, and Ruby was also supported in part by NSF grant CCR-9803843. Work on JML by Leavens, Ruby, and others is supported in part by NSF grants CCR-0097907 and CCR-0113181.

Many people have helped with the semantics and design of JML, and on this document. Thanks to Yoonsik Cheon, Bart Jacobs, Rustan Leino, Peter Müller, Erik Poll, and Joachim van den Berg, for many discussions about the semantics of JML specifications. Thanks for Raymie Stata for spear-heading an effort at Compaq SRC to unify JML and ESC/Java, and to Rustan and Raymie for many interesting ideas and discussions that have profoundly influenced JML. For comments on earlier drafts and discussions about JML thanks to Yoonsik, Bart, Rustan, Peter, Eric, Joachim, Raymie, Abhay Bhorkar, Patrice Chalin, Curtis Clifton, John Boyland, Martin Büchi, Peter Chan, David Cok, Gary Daugherty, Jan Docxx, Marko van Dooren, Stephen Edwards, Michael Ernst, Arthur Fleck, Karl Hoech, Marieke Huisman, Anand Ganapathy, Doug Lea, Kristof Mertens, Yogy Namara, Sevtap Oltes, Arnd Poetzsch-Heffter, Jim Potts, Arun Raghavan, Jim Saxe, Tammy Scherbring, Tim Wahls, Wolfgang Weck, and others we may have forgotten. Thanks to David Cok, Yoonsik Cheon, Curtis Clifton, Abhay Bhorkar, Marko van Dooren, Anand Ganapathy, Yogy Namara, Todd Millstein, and Arun Raghavan for their work on the JML checker and tools used to check and manipulate the specifications in this document. Thanks to Katie Becker, Kristina Boysen, Brandon Shilling, and Arthur Thomas for help with case studies and specifications in JML. Thanks to Judy Chan Wai Ting, Peter Chan, Marko van Dooren, Fermin da Costa Gomez, Joseph Kiniry, Roy Patrick Tan, Julien Vermillard for bug reports about JML tools. Thanks to the students in 22C:181 at the University of Iowa in Spring 2001, and in Com S 362 at Iowa State University in Fall 2002 for suggestions and comments about JML.
Appendix A Specification Case Defaults

As noted above (see Section 1.2 [Lightweight Specifications], page 5), specifications in JML do not need to be as detailed as most of the examples given in this document. If a spec-case (see Section B.1.6 [Behavioral Specification Syntax for Methods], page 63) does not use one of the behavior keywords (behavior, normal_behavior, or exceptional_behavior), or if an example (see Section B.1.8 [Example Syntax], page 66) does not use one of the example keywords (example, normal_example, exceptional_example), then it is called a lightweight specification or example. Otherwise it is a heavyweight specification or example.

When the various clauses of a spec-case or example are omitted, they have the defaults given in the table below. The table distinguishes between lightweight and heavyweight specifications and examples. In each case the default for the lightweight form is that no assumption is made about the omitted clause. However, in a heavyweight specification or example, the specifier is assumed to be giving a complete specification or example. Therefore, in a heavyweight specification the meaning of an omitted clause is given a definite default. For example, the meaning of an omitted assignable clause is that all locations (that can otherwise be legally assigned to) can be assigned. Furthermore, in a non-lightweight specification, the meaning of an omitted diverges clause is that the method may not diverge in that case. (The diverges clause is almost always omitted; it can be used to say what should be true, of the pre-state, when the specification is allowed to loop forever or signal an error.)

<table>
<thead>
<tr>
<th>Omitted clause</th>
<th>lightweight</th>
<th>heavyweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>requires</td>
<td>not_specified</td>
<td>true</td>
</tr>
<tr>
<td>diverges</td>
<td>not_specified</td>
<td>false</td>
</tr>
<tr>
<td>measured_by</td>
<td>not_specified</td>
<td>not_specified</td>
</tr>
<tr>
<td>assignable</td>
<td>not_specified</td>
<td>everything</td>
</tr>
<tr>
<td>accessible</td>
<td>not_specified</td>
<td>everything</td>
</tr>
<tr>
<td>when</td>
<td>not_specified</td>
<td>true</td>
</tr>
<tr>
<td>working_space</td>
<td>not_specified</td>
<td>not_specified</td>
</tr>
<tr>
<td>duration</td>
<td>not_specified</td>
<td>not_specified</td>
</tr>
<tr>
<td>ensures</td>
<td>not_specified</td>
<td>true</td>
</tr>
<tr>
<td>signals</td>
<td>(Exception)</td>
<td>not_specified</td>
</tr>
</tbody>
</table>

A completely omitted specification is taken to be a lightweight specification. Thus one can read off the meaning of a completely omitted specification from the lightweight column of table.

It is intended that the meaning of not_specified may vary between different uses of a JML specification. For example, a static checker might treat a requires clause that is not_specified as if it were true, while a verification logic might treat it as if it were false. However, a reasonable default for the interpretation for an omitted clause in a lightweight specification is the most liberal possible (i.e., the one that permits the most correct implementations); this is generally the same as the heavyweight default, except for the diverges clause.

Note that specification statements (see Section B.1.7 [Model Program Syntax], page 64) cannot be lightweight. In addition, a spec-statement can specify abrupt termination. The additional clauses possible in a spec-statement have the following defaults.
<table>
<thead>
<tr>
<th>Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Omitted clause (heavyweight)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>continues</td>
<td>false</td>
</tr>
<tr>
<td>breaks</td>
<td>false</td>
</tr>
<tr>
<td>returns</td>
<td>false</td>
</tr>
</tbody>
</table>
Appendix B Syntax

We use an extended BNF grammar to describe the syntax of JML. The extensions are as follows [Ledgard80].

- Nonterminal symbols are written as follows: \textit{nonterminal}. That is, nonterminal symbols appear in an \textit{italic} font (in the HTML they are also hyperlinked to their definitions).
- Terminal symbols are written as follows: \texttt{terminal}. In a few cases we also quote terminal symbols using ‘‘ and ’’, such as when using ‘|’ as a terminal symbol instead of a meta-symbol.
- Square brackets ([and]) surround optional text. Note that ‘[’ and ‘]’ are terminals.
- The notation \ldots means that the preceding nonterminal or group of optional text can be repeated zero (0) or more times.

For example, the following gives a production for the nonterminal \texttt{name}, which is a non-empty list of \texttt{ident}'s separated by periods (.).

\[
\begin{align*}
\texttt{name} & ::= \texttt{ident} \ [. \ \texttt{ident}] \ldots \\
\end{align*}
\]

To remind the reader that the notation ‘\ldots’ means zero or more repetitions, we use ‘\ldots’ only following optional text.

We use “//” to start a comment (to you, the reader) in the grammar.

B.1 Context-Free Syntax

B.1.1 Compilation Unit Syntax

The following is the syntax of compilation units in JML. The \texttt{compilation-unit} rule is the start rule for the JML grammar.

\[
\begin{align*}
\texttt{compilation-unit} & ::= [\texttt{package-definition}] \\
& [\texttt{refine-prefix}] \\
& [\texttt{import-definition}] \ldots \\
& [\texttt{type-definition}] \ldots \\
\texttt{package-definition} & ::= \texttt{package} \ \texttt{name} ; \\
\texttt{refine-prefix} & ::= \texttt{refine} \ \texttt{string-literal} ; \\
\texttt{ident-list} & ::= \texttt{ident} [, \ \texttt{ident}] \ldots \\
\texttt{import-definition} & ::= [\texttt{model}] \texttt{import} \ \texttt{name-star} ; \\
\texttt{name} & ::= \texttt{ident} [, \ \texttt{ident}] \ldots \\
\texttt{name-star} & ::= \texttt{ident} [, \ \texttt{ident}] \ldots [. *] \\
\end{align*}
\]

B.1.2 Type Definition Syntax

The following is the syntax of type definitions. The order of the \texttt{modifier} productions suggests the relative order for writing the modifiers in code and specifications, with \texttt{public} before all other modifiers, and \texttt{non_null} last.

\[
\begin{align*}
\texttt{type-definition} & ::= [\texttt{doc-comment}] \texttt{modifiers} \ \texttt{class-or-interface-def} \\
& | ; \\
\texttt{class-or-interface-def} & ::= \texttt{class-definition} | \texttt{interface-definition} \\
\texttt{type-spec} & ::= \texttt{type} [\texttt{dims}] | \\texttt{\textbackslash TYPE} [\texttt{dims}] \\
\end{align*}
\]
type ::= reference-type | builtInType
reference-type ::= name
modifiers ::= [modifier] ...
modifier ::= public | private | protected
| spec_public | spec_protected
| abstract | static |
| model | ghost | pure
| final | synchronized
| instance | helper
| transient | volatile
| native | strictfp
| const | monitored | uninitialized
| non_null
class-definition ::= class ident [extends name [weakly]]
| implements-clause] class-block
interface-definition ::= interface ident [interface-extends] class-block
interface-extends ::= extends name-weakly-list
implements-clause ::= implements name-weakly-list
name-weakly-list ::= name [weakly] [, name [weakly]] ...
class-block ::= { [field] ... }

B.1.3 Field Syntax

The following gives the syntax of fields.

field ::= [doc-comment] ... modifiers member-decl
| modifiers jml-declaration
| [method-specification] [static] compound-statement
| method-specification static_initializer
| method-specification initializer
| axiom predicate ;
| ;
member-decl ::= variable-decls | method-decl
| class-definition | interface-definition
variable-decls ::= [field] type-spec variable-declarators ; [jml-data-group-clause] ...
variable-declarators ::= variable-declarator [, variable-declarator] ...
variable-declarator ::= ident [dims] [= initializer]
initializer ::= expression | array-initializer
array-initializer ::= { [initializer-list] }
initializer-list ::= initializer [, initializer] ... [,]
jml-data-group-clause ::= in-data-group-clause | maps-into-clause
in-group-clause ::= in-keyword group-list ;
maps-into-clause ::= maps-keyword member-field-ref into group-list ;
in-keyword ::= in | in_redundantly
group-list ::= ident [, ident] ...
maps-keyword ::= maps | maps_redundantly
member-field-ref ::= maps | maps_redundantly
| ident spec-array-dim [spec-array-dim] ... [maps-member-ref-expr]
maps-member-ref-expr ::= ident | *
spec-array-dim ::= [’ spec-array-ref-expr ’]
method-decl ::= method-specification
 modifiers method-or-constructor-keyword
 [type-spec] method-head method-body
 | method-or-constructor-keyword
 [type-spec] method-head
 [method-specification]
method-body
method-or-constructor-keyword ::= method | constructor
method-head ::= ident ([param-declaration-list])
 [dims] [throws-clause]
method-body ::= compound-statement | ;
throws-clause ::= throws name [, name] . . .
param-declaration-list ::= param-declaration [, param-declaration] . . .
param-declaration ::= [param-modifier] . . . type-spec ident [dims]
param-modifier ::= final | non_null

B.1.4 Behavioral Specification Syntax for Types

The following gives the syntax of behavioral specifications for types.

jml-declaration ::= invariant | history-constraint
 | jml-var-assertion | represents-decl
invariant ::= invariant-keyword predicate ;
invariant-keyword ::= invariant | invariant_redundantly
history-constraint ::= constraint-keyword predicate
 [for constrained-list] ;
constraint-keyword ::= constraint | constraint_redundantly
constrained-list ::= method-name-list | \everything
method-name-list ::= method-name [, method-name] . . .
method-name ::= method-ref [([param-disambig-list])]
 | new reference-type
method-ref-start ::= super | this | ident | \other
method-ref-rest ::= this | ident | \other
param-disambig-list ::= param-disambig [, param-disambig] . . .
param-disambig ::= type-spec [ident [dims]]
jml-var-assertion ::= initially predicate ;
 | readable ident if predicate ;
 | monitors_for ident Larrow-or-eq spec-expression-list ;
represents-decl ::= represents-keyword
 store-ref-expression Larrow-or-eq spec-expression ;
represents-keyword
 store-ref-expression \such_that predicate ;
represents-keyword ::= represents | represents_redundantly
Larrow-or-eq ::= =

B.1.5 Store Ref Syntax

The syntax related to the store-ref production is used in several places.
store-ref-list ::= store-ref [, store-ref] . . .
B.1.6 Behavioral Specification Syntax for Methods

The following gives the syntax of behavioral specifications for methods. We start with the top-level syntax that organizes these specifications.

\[
\text{method-specification ::= specification | extending-specification}
\]

\[
\text{specification ::= spec-case-seq}
\]

\[
\text{spec-case-seq ::= spec-case [also spec-case] . . .}
\]

\[
\text{spec-case ::= generic-spec-case | behavior-spec | model-program}
\]

\[
\text{extending-specification ::= also specification}
\]

\[
\text{privacy ::= public | protected | private}
\]

\[
\text{exceptional-simple-spec-body ::= exceptional-spec-clause [exceptional-spec-clause] . . .}
\]

\[
\text{exceptional-spec-clause ::= diverges-clause | measured-clause}
\]

\[
\text{assignable-clause | accessible-clause}
\]

\[
\text{when-clause | working-space-clause}
\]

\[
\text{duration-clause | signals-clause}
\]

\[
\text{normal-simple-spec-body ::= normal-spec-clause [normal-spec-clause] . . .}
\]

\[
\text{normal-spec-clause ::= diverges-clause | measured-clause}
\]

\[
\text{assignable-clause | accessible-clause}
\]

\[
\text{when-clause | working-space-clause}
\]

\[
\text{duration-clause | ensures-clause}
\]

\[
\text{redundant-spec ::= implications [examples] | examples}
\]

\[
\text{implications ::= implies_that spec-case-seq}
\]

\[
\text{examples ::= for_example example [also example] . . .}
\]

The following is the syntax of generic specification cases. These are the least verbose and most general specification cases.

\[
\text{generic-spec-case ::= [spec-var-decls] spec-header [generic-spec-body]}
\]

\[
\text{generic-spec-body ::= requires-clause [requires-clause] . . .}
\]

\[
\text{simple-spec-body ::= simple-spec-body-clause [simple-spec-body-clause] . . .}
\]
simple-spec-body-clause ::= diverges-clause | measured-clause
| assignable-clause | accessible-clause
| when-clause | working-space-clause
| duration-clause | ensures-clause | signals-clause

The following gives the syntax of specification cases that start with one of the behavior keywords.

```
behavior-spec ::= |
| [ privacy ] behavior generic-spec-case
| [ privacy ] exceptional_behavior exceptional-spec-case
| [ privacy ] normal_behavior normal-spec-case
exceptional-spec-case ::= |
| [ spec-var-decls ] spec-header
| [ exceptional-spec-body ]

exceptional-spec-body ::= exceptional-spec-clause [ exceptional-spec-clause ] ... |
{ | exceptional-spec-case-seq |
exceptional-spec-case-seq ::= exceptional-spec-case |
also exceptional-spec-case |
... 

normal-spec-case ::= |
| [ spec-var-decls ] spec-header
| [ normal-spec-body ]

normal-spec-body ::= normal-spec-clause [ normal-spec-clause ] ... |
{ | normal-spec-case-seq |

normal-spec-case-seq ::= normal-spec-case | also normal-spec-case |
... 
```

The following gives the syntax of subclassing contracts.

```
subclassing-contract ::= subclassing_contract

subclassing-contract-clause [ subclassing-contract-clause ] ... 
subclassing-contract-clause ::= accessible-clause | callable-clause
accessible-clause ::= accessible-keyword object-ref-list ;
object-ref-list ::= object-ref [ , object-ref ] ...
| store-ref-keyword
object-ref ::= store-ref-expression |
| \other [ store-ref-name-suffix ] ... 
accessible-keyword ::= accessible | accessible_redundantly
callable-clause ::= callable-keyword callable-methods-list ;
callable-keyword ::= callable | callable_redundantly
callable-methods-list ::= method-name-list | store-ref-keyword
```

B.1.7 Model Program Syntax

The following gives the syntax of model programs, adapted from the refinement calculus [Back88] [Back-vonWright89a] [Morgan94] [Morris87]. See Section B.1.11 [Statement and Annotation Statement Syntax], page 68, for the parts of the syntax of statements that are unchanged from Java. The jml-compound-statement and jml-statement syntax is the same as the compound-statement and statement syntax, except that model-prog-statements are not flagged as errors within the jml-compound-statement and jml-statements.

```
model-program ::= |
| [ privacy ] model_program jml-compound-statement
jml-compound-statement ::= compound-statement
jml-statement ::= statement
model-prog-statement ::= nondeterministic-choice
```
The grammar for specification statements appears below. It is unusual, compared to specification statements in refinement calculus, in that it allows one to specify statements that can signal exceptions, or terminate abruptly. The reasons for this are based on verification logics for Java [Huisman01] [Poll-Jacobs00], which have these possibilities. The meaning of an abrupt-spec-case is that the normal termination and signaling an exception are forbidden; that is, the equivalent spec-statement using behavior would have ensures false; and signals (Exception) false; clauses.

```
spec-statement ::= [ privacy ] behavior generic-spec-statement-case
                    | [ privacy ] exceptional_behavior exceptional-spec-case
                    | [ privacy ] normal_behavior normal-spec-case
                    | [ privacy ] abrupt_behavior abrupt-spec-case

generic-spec-statement-case ::= [ spec-var-decls ] generic-spec-statement-body

generic-spec-statement-body ::= simple-spec-statement-body
                                | { | generic-spec-statement-case-seq | }

generic-spec-statement-body-seq ::= generic-spec-statement-case
                                | ... abrupt-spec-case-seq

simple-spec-statement-clause ::= diverges-clause
                                | assignable-clause | accessible-clause
                                | when-clause | working-space-clause | duration-clause
                                | ensures-clause | signals-clause
                                | continues-clause | breaks-clause | returns-clause

abrupt-spec-case ::= [ spec-var-decls ] spec-header
                      | abrupt-spec-body
                      | ... abrupt-spec-case-seq

abrupt-spec-case-seq ::= abrupt-spec-case
                      | ... abrupt-spec-case-case-seq
```

nondeterministic-if ::= choose alternative-statements
alternative-statements ::= jml-compound-statement
 [or jml-compound-statement] ...

nondeterministic-if ::= choose_if guarded-statements
 [else jml-compound-statement]

guarded-statements ::= guarded-statement
 [or guarded-statement] ...

guarded-statement ::= {
 assume-statement
 jml-statement | jml-statement
 [jml-statement] ...
```
continues-clause ::= continues-keyword [ target-label ] [ pred-or-not ] ;
continues-keyword ::= continues | continues_redundantly
target-label ::= -> ( ident )
breaks-clause ::= breaks-keyword [ target-label ] [ pred-or-not ] ;
breaks-keyword ::= breaks | breaks_redundantly
returns-clause ::= returns-keyword [ pred-or-not ] ;
returns-keyword ::= returns | returns_redundantly

B.1.8 Example Syntax

The following gives the syntax of examples.
example ::= [ [ privacy ] example ]
    | [ privacy ] exceptional_example
    | [ privacy ] exceptional_example
    | [ privacy ] normal_example
    | [ privacy ] normal_example
exceptional-example-body ::= exceptional-spec-clause [ exceptional-spec-clause ] . . .
normal-example-body ::= normal-spec-clause [ normal-spec-clause ] . . .

B.1.9 Method Specification Clause Syntax

The following gives the syntax of clauses that occur in method specifications.
spec-var-decls ::= forall-var-decls [ old-var-decls ]
    | old-var-decls
forall-var-decls ::= forall-var-decl [ forall-var-decl ] . . .
forall-var-decl ::= forall quantified-var-decl ;
old-var-decls ::= old-var-decl [ old-var-decl ] . . .
old-var-decl ::= old type-spec spec-variable-declarators ;
requires-clause ::= requires-keyword pred-or-not ;
requires-keyword ::= requires | pre
    | requires_redundantly | pre_redundantly
pred-or-not ::= predicate | \not_specified
when-clause ::= when-keyword pred-or-not ;
when-keyword ::= when | when_redundantly
working-space-clause ::= working-space-keyword \not_specified ;
    | working-space-keyword spec-expression [ if predicate ] ;
working-space-keyword ::= working_space | working_space_redundantly
duration-clause ::= duration-keyword \not_specified ;
    | duration-keyword spec-expression [ if predicate ] ;
duration-keyword ::= duration | duration_redundantly
measured-clause ::= measured-by-keyword \not_specified ;
    | measured-by-keyword spec-expression [ if predicate ] ;
measured-by-keyword ::= measured_by | measured_by_redundantly
assignable-clause ::= assignable-keyword conditional-store-ref-list ;
assignable-keyword ::= assignable | assignable_redundantly
   | modifiable | modifiable_redundantly
   | modifies | modifies_redundantly
conditional-store-ref-list ::= conditional-store-ref [ , conditional-store-ref ] . . .
conditional-store-ref ::= store-ref [ if predicate ]
ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post
   | ensures_redundantly | post_redundantly
signals-clause ::= signals-keyword
   ( reference-type [ ident ] ) [ pred-or-not ] ;
signals-keyword ::= signals | signals_redundantly
   | ensures | ensures_redundantly
diverges-clause ::= diverges-keyword pred-or-not ;
diverges-keyword ::= diverges | diverges_redundantly

B.1.10 Predicate and Specification Expression Syntax

The following gives the syntax of predicates and specification expressions. Within a spec-expression, one cannot use any of the operators (such as ++, --, and the assignment operators) that would necessarily cause side effects. See Section B.1.12 [Expression Syntax], page 69, for the syntax of expressions.
predicate ::= spec-expression
spec-expression-list ::= spec-expression [ , spec-expression ] . . .
spec-expression ::= expression

jml-primary ::= \result
   | \old ( spec-expression )
   | \not_modified ( store-ref-list )
   | \fresh ( spec-expression-list )
   | \reach ( spec-expression [ , reference-type [ , store-ref-expression ] ] )
   | \duration ( expression )
   | \space ( spec-expression )
   | \working_space ( expression )
   | \max ( expression )
   | informal-description
   | \nonnull_elements ( spec-expression )
   | \typeof ( spec-expression )
   | \elemtype ( spec-expression )
   | \type ( type )
   | \lockset
   | \is_initialized ( reference-type )
   | \invariant_for ( spec-expression )
   | ( \lblneg ident spec-expression )
   | ( \lblpos ident spec-expression )
   | spec-quantified-expr

set-comprehension ::= { type-spec quantified-var-declarator
Appendix B: Syntax

```
| set-comprehension-pred }

set-comprehension-pred ::= postfix-expr . has (ident)
 & predicate

spec-quantified.expr ::= (quantifier quantified-var-decls ; [[predicate] ;]
 spec-expression)
quantifier ::= \forall | \exists | \max | \min | \num_of | \product | \sum
quantified-var-decls ::= type-spec quantified-var-declarator
 [, quantified-var-declarator] . . .
quantified-var-declarator ::= ident [dims]

spec-variable-declarators ::= spec-variable-declarator
 [, spec-variable-declarator] . . .
spec-variable-declarator ::= ident [dims] [= spec-initializer]
spec-array-initializer ::= { [spec-initializer
 [, spec-initializer] . . . [,]] }
spec-initializer ::= spec-expression
 | spec-array-initializer

B.1.11 Statement and Annotation Statement Syntax

The following gives the syntax of statements. These are the standard Java statements,
with the addition of annotations, the hence-by-statement, assert-redundantly-statement,
assume-statement, set-statement, and unreachable-statement, and the various forms of
model-prog-statement. See Section B.1.7 [Model Program Syntax], page 64, for the syntax
of model-prog-statement, which is only allowed in model programs.

compound-statement ::= { statement [statement] . . . }
statement ::= compound-statement
 | local-declaration ;
 | ident : statement
 | expression ;
 | if (expression) statement [else statement]
 | break [ident] ;
 | continue [ident] ;
 | return [expression] ;
 | switch-statement
 | try-block
 | throw expression ;
 | synchronized (expression) statement
 |
 | assert-statement
 | hence-by-statement
 | assert-redundantly-statement
 | assume-statement
 | set-statement
 | unreachable-statement
 | model-prog-statement // only allowed in model programs

loop-stmt ::= while (expression) statement
```
do statement while ( expression ) ;
for ( [ for-init ]; [ expression ]; [ expression-list ] ) statement
for-init ::= local-declaration | expression-list
local-declaration ::= local-modifiers variable-decls
local-modifiers ::= [ local-modifier ] . . .
local-modifier ::= model | ghost | final | non_null
switch-statement ::= switch ( expression ) { [ switch-body ] . . . }
switch-body ::= switch-label-seq [ statement ] . . .
switch-label-seq ::= switch-label [ switch-label ] . . .
switch-label ::= case expression : | default :
try-block ::= try compound-statement [ handler ] . . .
[ finally compound-statement ]
handler ::= catch ( param-declaration ) compound-statement
assert-statement ::= assert expression [ : expression ] ;
The following gives the syntax of JML annotations that can be used on statements. See Section B.1.7 [Model Program Syntax], page 64, for the syntax of statements that can only be used in model programs.

hence-by-statement ::= hence-by-keyword predicate ;
hence-by-keyword ::= hence_by | hence_by_redundantly
assert-redundantly-statement ::= assert_redundantly predicate [ : expression ] ;
assume-statement ::= assume-keyword predicate [ : expression ] ;
assume-keyword ::= assume | assume_redundantly
set-statement ::= set assignment-expr ;
unreachable-statement ::= unreachable ;
loop-invariant ::= maintaining-keyword predicate ;
maintaining-keyword ::= maintaining | maintaining_redundantly
loopInvariant ::= loopInvariant | loopInvariant_redundantly
variant-function ::= decreasing-keyword spec-expression ;
decreasing-keyword ::= decreasing | decreasing_redundantly

B.1.12 Expression Syntax

The JML syntax for expressions extends the Java syntax with several operators and primitives. See Section 3.1 [Extensions to Java Expressions for Predicates], page 49, for a brief description of the meaning of the JML syntax added to Java expressions.

The precedence of operators in JML expressions is similar to that in Java. The precedence levels are given in the following table, where the parentheses, quantified expressions, [], ., and method calls on the first three lines all have the highest precedence, and for the rest, only the operators on the same line have the same precedence.

<table>
<thead>
<tr>
<th>operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>highest</td>
</tr>
<tr>
<td>\ .</td>
</tr>
<tr>
<td>unary + and − ! (typecast)</td>
</tr>
<tr>
<td>* / %</td>
</tr>
<tr>
<td>+ (binary) − (binary)</td>
</tr>
<tr>
<td>&lt;&lt; &gt;&gt; &gt;&gt;</td>
</tr>
</tbody>
</table>
The following is the syntax of Java expressions, with JML additions. The additions are the operators `==>`, `<==`, `<==><=]`, and `<:`; and the syntax found under the nonterminals `jml-primary`, `set-comprehension`, and `spec-quantified-expr` (see Section B.1.10 [Predicate and Specification Expression Syntax], page 67). The JML additions to the Java syntax can only be used in assertions and other annotations. Furthermore, within assertions, one cannot use any of the operators (such as `++`, `--`, and the assignment operators) that would necessarily cause side effects.

expression-list ::= expression [ , expression ] . . .
expression ::= assignment-expr
assignment-expr ::= conditional-expr [ assignment-opt assignment-expr ]
assignment-opt ::= = | += | -= | *= | /= | %= | >>= | >>>= | <<= | &= | ^= | |=
conditional-expr ::= equivalence-expr
equivalence-expr ::= implies-expr [ equivalence-op implies-expr ] . . .
equivalence-op ::= <=> | <=!=>
implies-expr ::= logical-or-expr
logical-or-expr ::= logical-and-expr [ '||' logical-and-expr ] . . .
logical-and-expr ::= inclusive-or-expr [ '&&' inclusive-or-expr ] . . .
inclusive-or-expr ::= exclusive-or-expr [ '!' exclusive-or-expr ] . . .
exclusive-or-expr ::= and-expr [ '^^' and-expr ] . . .
and-expr ::= equality-expr [ '& equality-expr ] . . .
equality-expr ::= relational-expr [ '==' relational-expr ] . . .
relational-expr ::= shift-expr < shift-expr
shift-expr ::= additive-expr [ shift-op additive-expr ] . . .
shift-op ::= <<= | >>= | >>>=

lowest = ** /= %= += -= <<= >>= >>>= &^= ^= |=

== != & ^ | && || =><= <==<==> <=!=> : instanceof
additive-expr ::= mult-expr [ additive-op mult-expr ] . . .
additive-op ::= + | -
mult-expr ::= unary-expr [ mult-op unary-expr ] . . .
mult-op ::= * | / | %
unary-expr ::= ( type-spec ) unary-expr
  | ++ unary-expr
  | -- unary-expr
  | + unary-expr
  | - unary-expr
  | unary-expr-not-plus-minus
unary-expr-not-plus-minus ::= ~ unary-expr
  | ! unary-expr
  | ( builtinType ) unary-expr
  | ( reference-type ) unary-expr-not-plus-minus
  | postfix-exp
postfix-exp ::= primary-expr [ primary-suffix ] . . . [ ++ ]
  | primary-expr [ primary-suffix ] . . . [ -- ]
  | builtinType [ ' ' ] . . . class
primary-suffix ::= . ident
  | . this
  | . class
  | . new-exp
  | . super ( [ expression-list ] )
  | ( [ expression-list ] )
  | ' ' expression ' '
  | [ ' ' ] . . . class
primary-expr ::= ident | new-exp
  | constant | super | true
  | false | this | null
  | ( expression )
  | jml-primary
  | informal-description
builtinType ::= void | boolean | byte
  | char | short | int
  | long | float | double
constant ::= java-literal
new-exp ::= new type new-suffix
new-suffix ::= ( [ expression-list ] ) [ class-block ]
  | array-decl [ array-initializer ]
  | set-comprehension
array-decl ::= dim-exprs [ dims ]
dim-exprs ::= ' ' expression ' ' [ ' ' expression ' ' ] . . .
dims ::= [ ' ' ] [ ' ' ] . . .
array-initializer ::= { [ initializer , initializer ] . . . [ , ] ] }
initializer ::= expression
  | array-initializer
B.2 Microsyntax or Lexical Grammar

Throughout the figures for the lexical grammar below, grammatical productions are to be understood lexically; that is, this grammar concerns individual characters, not tokens. Another way of thinking of this is that no white-space may intervene between the characters of a token.

The microsyntax of JML is described by the production microsyntax in the grammar below. It describes what a program looks like from the point of view of a lexical analyzer [Watt91].

\[
\text{microsyntax ::= lexeme } [ \text{ lexeme } ] \ldots \\
\text{lexeme ::= white-space } | \text{ lexical-pragma } | \text{ comment } \\
\text{ } | \text{ annotation-marker } | \text{ doc-comment } | \text{ token } \\
\text{token ::= ident } | \text{ keyword } | \text{ special-symbol } | \text{ java-literal } \\
\text{ } | \text{ informal-description }
\]

B.2.1 White Space

Blanks, horizontal and vertical tabs, carriage returns, formfeeds, and newlines, collectively called white space, are ignored except as they serve to separate tokens. Newlines are special in that they cannot appear in some contexts where other whitespace can appear, and are also used to end C++-style (//) comments. This is described formally below.

\[
\text{white-space ::= non-nl-white-space } | \text{ end-of-line } \\
\text{non-nl-white-space ::= a blank, tab, or formfeed character } \\
\text{end-of-line ::= newline } | \text{ carriage-return } | \text{ carriage-return newline } \\
\text{newline ::= a newline character } \\
\text{carriage-return ::= a carriage return character}
\]

B.2.2 Lexical Pragmas

ESC/Java [Leino-etal00] has a single kind of “lexical pragma,” nowarn, whose syntax is described below in general terms. The JML checker currently ignores these lexical pragmas, but nowarn is only recognized within an annotation. Note that, unlike ESC/Java, the semicolon is mandatory. This restriction seems to be necessary to prevent lexical ambiguity.

\[
\text{lexical-pragma ::= nowarn-pragma } \\
\text{nowarn-pragma ::= nowarn } [ \text{ spaces } | \text{ nowarn-label-list } ] ; \\
\text{spaces ::= non-nl-white-space } [ \text{ non-nl-white-space } ] \ldots \\
\text{nowarn-label-list ::= nowarn-label } [ \text{ spaces } ] , [ \text{ spaces } ] \text{ nowarn-label } [ \text{ spaces } ] \ldots \\
\text{nowarn-label ::= letter } [ \text{ letter } ] \ldots 
\]

B.2.3 Comments

Both kinds of Java comments are allowed in JML: old C-style comments and new C++-style comments. However, if what looks like a comment starts with the at-sign (@) character, or with a plus sign and an at-sign (+@), then it is considered to be the start of an annotation by JML, and not a comment. Furthermore, if what looks like a comment starts with an asterisk (*), then it is a documentation comment, which is parsed by JML.

\[
\text{comment ::= C-style-comment } | \text{ C++-style-comment }
\]
Appendix B: Syntax

C-style-comment ::= /* [ C-style-body ] C-style-end
C-style-body ::= non-at-plus-star [ non-star-slash ] . . .
 | + non-at [ non-star-slash ] . . .
 | stars-non-slash [ non-star-slash ] . . .
non-star-slash ::= non-star
 | stars-non-slash
stars-non-slash ::= * [ * ] . . . non-slash
non-at-plus-star ::= any character except @, +, or *
non-at ::= any character except @
non-star ::= any character except *
non-slash ::= any character except /
C-style-end ::= [ * ] . . . */
C++-style-comment ::= // [ + ] end-of-line
 | // non-at-plus-end-of-line [ non-end-of-line ] . . . end-of-line
 | //+ non-at-end-of-line [ non-end-of-line ] . . . end-of-line
non-end-of-line ::= any character except a newline or carriage return
non-at-plus-end-of-line ::= any character except @, +, newline, or carriage return
non-at-end-of-line ::= any character except @, newline, or carriage return

B.2.4 Annotation Markers

If what looks to Java like a comment starts with an at-sign (@) as its first character, then it is not considered a comment by JML. We refer to the tokens between //@ and the following end-of-line, and between pairs of /*@ and @*/ as annotations.

Annotations must hold entire grammatical units of JML specifications. For example the following is illegal, because the postcondition is split over two annotations, and thus each contains a fragment instead of a complete grammatical unit.

//@ ensures 0 <= x // illegal!
//@ && x < a.length;

However, implementations are not required to check for such errors.

Annotations look like comments to Java, and are thus ignored by it, but they are significant to JML. One way that this can be achieved is by having JML drop (i.e., ignore) the character sequences that are annotation-markers: //@, //+@, /+@, /+@*, and @+*/, @*/. The at-sign (@) in @*/ is optional, and more than one at-sign may appear in the other annotation markers. However, JML will recognize jml-keywords only within annotations.

Within annotations, on each line, initial white-space followed by at-signs (@) are ignored. The definition of an annotation marker is given below.

annotation-marker ::= //@ | //+@
 | /*@ | /+@ | /+@* | @+*/ | @*/ | */
ignored-at-in-annotation ::= @

B.2.5 Documentation Comments

If what looks like a C-style comment starts with an asterisk (*) then it is a documentation comment. The syntax is given below. The syntax doc-comment-ignored is used for documentation comments that are ignored by JML.
At the level of the rest of the JML grammar, a documentation comment that does not contain an embedded JML method specification is essentially described by the above, and the fact that a `doc-comment-body` cannot contain the two-character sequence `*/`.

However, JML and `javadoc` both pay attention to the syntax inside of these documentation comments. This syntax is really best described by a context-free syntax that builds on a lexical syntax. However, because much of the documentation is free-form, the context-free syntax has a lexical flavor to it, and is quite line-oriented. Thus it should come as no surprise that the first non-whitespace, non-asterisk (i.e., not `*`) character on a line determines its interpretation.

The microsyntax or lexical grammar used within documentation comments is as follows. Note that the token `doc-nl-ws` can only occur at the end of a line, and is always ignored within documentation comments. Ignoring `doc-nl-ws` means that any asterisks at the beginning of the next line, even in the part that would be a JML `method-specification`, is also ignored. Otherwise the lexical syntax within a `method-specification` is as in the rest of JML. This method specification is attached to the following method or constructor declaration. (Currently there is no useful way to use such specifications in the documentation comments for other declarations.) Note the exception to the grammar of `doc-non-empty-textline`.

### B.2.6 Tokens

Character strings that are Java reserved words are made into the token for that reserved word, instead of being made into an `ident` token. Within an `annotation` this also applies to `jml-keywords`. The details are given below.
Appendix B: Syntax

Ident ::= letter [ letter-or-digit ] . . .
letter ::= _ , $ , a through z , or A through Z
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter-or-digit ::= letter | digit

Several strings of characters are recognized as keywords or reserved words in JML. These fall into three separate categories: Java keywords, JML predicate keywords (which start with a backslash), and JML keywords. Java keywords are truly reserved words, and are recognized in all contexts. The nonterminal java-keywords represents the reserved words in Java (as in the JDK version 1.4). JML keywords are only recognized as such if they occur outside of a spec-expression but within an annotation. JML predicate keywords are, as their name implies, used within spec-expressions; they are also used in store-ref-lists and constrained-lists. The details are given below.

Keyword ::= java-keyword | jml-predicate-keyword | jml-keyword
JML-predicate-keyword ::= \duration | \elemtype
| \everything | \exists | \fields_of
| \forall | \fresh | \invariant_for
| \is_initialized | \lblneg | \lblrpos
| \max | \min
| \lockset | \max | \min
| \nonnullelements | \nothing | \not_modified
| \not_specified | \num_of \old
| \other | \private_data | \product
| \reach | \result | \space
| \such_that | \sum | \type
| \typeof | \TYPE | \working_space
JML-keyword ::= abrupt_behavior | accessible_redundantly | accessible
| also | assert_redundantly
| assignable_redundantly | assignable
| assume_redundantly | assume | axiom
| behavior | breaks_redundantly | breaks
| callable_redundantly | callable | choose_if
| choose | constraint_redundantly | constraint
| constructor | continues_redundantly | continues
| decreases_redundantly | decreases | decreasing_redundantly
| decreasing | diverges_redundantly | diverges
| duration_redundantly | duration | ensures_redundantly
| ensures | example | exceptional_behavior
| exceptional_example | ensures | ensures_redundantly | ensures
| field | forall
| for_example | ghost
| helper | hence_by_redundantly | hence_by
| implies_that | in | initializer | initially
| instance | invariant_redundantly | invariant
| loopInvariant_redundantly | loop_invariant
| maintaining_redundantly | maintaining | maps
| measured_by_redundantly | measured_by | method
| model_program | model | modifiable_redundantly
| modifiable modifies_redundantly | modifies
| monitored_by | monitored | non_null
The following describes the special symbols used in JML. The nonterminal `java-special-symbol` is the special symbols of Java, taken without change from Java [Gosling-Joy-Steele96].

```
special-symbol ::= java-special-symbol | jml-special-symbol
java-special-symbol ::= java-separator | java-operator
java-separator ::= (|) | { | } | '{' | '}' | ';' | , | .
java-operator ::= = | < | > | ! | ~ | ? | : | == | <= | >= | != | && | || | ++ | -- | + | - | * | / | & | | ^ | % | << | >> | >>>
infix expr ::= expr op expr

jml-special-symbol ::= ==> | <= | <== | <==> | <=!=> | -> | <- | <: | .. | '{' | '}'
```

The nonterminal `java-literal` represents Java literals which are taken without change from Java [Gosling-Joy-Steele96].

```
java-literal ::= integer-literal | floating-point-literal | boolean-literal
 | character-literal | string-literal | null-literal

integer-literal ::= decimal-integer-literal | hex-integer-literal | octal-integer-literal
decimal-integer-literal ::= decimal-numeral [integer-type-suffix]
decimal-numeral ::= 0 | non-zero-digit [digits]
digits ::= digit [digit] ...
digit ::= 0 | non-zero-digit
non-zero-digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer-type-suffix ::= L | l
hex-integer-literal ::= hex-numeral [integer-type-suffix]
hex-numeral ::= 0x hex-digit [hex-digit] .. | 0X hex-digit [hex-digit] ..
hex-digit ::= digit | a | b | c | d | e | f
octal-integer-literal ::= octal-numeral [integer-type-suffix]
octal-numeral ::= 0 octal-digit [octal-digit] ..
octal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

floating-point-literal ::= digits . [digits] [exponent-part] [float-type-suffix]
 | . digits [exponent-part] [float-type-suffix]
 | digits exponent-part [float-type-suffix]
 | digits exponent-part [float-type-suffix]
exponent-part ::= exponent-indicator signed-integer
exponent-indicator ::= e | E
signed-integer ::= [sign] digits
Appendix B: Syntax

sign ::= + | -
float-type-suffix ::= f | F | d | D

boolean-literal ::= true | false

character-literal ::= ' single-character ' | ' escape-sequence '

single-character ::= any character except ', ' , carriage return, or newline

escape-sequence ::= \b // backspace
| \t // tab
| \n // newline
| \r // carriage return
| \' // single quote
| \" // double quote
| \ // backslash
| octal-escape
| unicode-escape

octal-escape ::= \ octal-digit | octal-digit |
| \ zero-to-three octal-digit octal-digit
zero-to-three ::= 0 | 1 | 2 | 3

unicode-escape ::= \u hex-digit hex-digit hex-digit hex-digit

string-literal ::= " [string-character] . . . "

string-character ::= escape-sequence
| any character except " , , carriage return, or newline

null-literal ::= null

An informal-description looks like (* some text *). It is used in predicates. The exact syntax is given below.

informal-description ::= (* non-star-close [non-star-close] . . . *)

non-star-close ::= non-star
| stars-non-close
stars-non-close ::= * [*] . . . non-close
non-close ::= any character except)

Bibliography

[Arnold-Gosling-Holmes00]

[Back-vonWright89a]

[Back-Mikhajlova-vonWright98]

[Back-vonWright98]

[Beck-Gamm98]

[Buechi-Weck00]

[Borgida-Mylopoulos-Reiter95]

[Cheon-Leavens02]

[Cheon-Leavens02b]
Yoonsik Cheon and Gary T. Leavens. A Runtime Assertion Checker for the Java Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun

[Gries-Schneider95]

[Guttag-Horning93]

[Hayes93]

[Hoare69]

[Hoare72a]

[Huisman01]

[ISO96]

[Jacobs-etal98]

[Jones90]

[Jonkers91]

[Lano-Haughton94]
[Leavens96b]

[Leavens97c]

[LeavensLarchFAQ]

[Leavens-Baker99]

[Leavens-Baker-Ruby99]

[Leavens-Wing97a]

[Ledgard80]

[Leino-Nelson-Saxe00]

[Leino-etal00]

[Lerner91]

[Liskov-Wing94]

[Lucassen87]

[Lucassen-Gifford88]

[Luckham-vonHenke85]

[Luckham-etal87]

[Meyer92a]

[Meyer92b]

[Meyer97]

[Morgan94]

Example Index

A
```
Account.jml ........................................ 38
ArcType.jml ........................................ 41
```

B
```
BoundedStackInterface.java ......................... 20
BoundedStackInterface.jml ......................... 23
BoundedStackInterface.refines-java ............... 24
BoundedThing.java .................................. 16
```

D
```
Digraph.jml ........................................ 42
```

I
```
IntMathOps.java ................................... 1
IntMathOps2.java .................................. 5
IntMathOps2.jml-refined ......................... 4
IntMathOps3.java .................................. 5
IntMathOps4.java .................................. 3
isqrt ............................................... 1
```

J
```
JMLType.java ....................................... 30
```

M
```
Money.java ......................................... 28
MoneyAC.java ...................................... 35
MoneyComparable.java ......................... 32
MoneyComparableAC.java .................... 36
MoneyOps.java .................................... 33
```

N
```
NodeType.java .................................... 40
```

P
```
PlusAccount.jml .................................. 45
```

U
```
UnboundedStack.java .............................. 12
USMoney.java ..................................... 37
```
Concept Index

! 49
*=, for booleans 49

(*) 32, 49

* 32, 49
*, in array range 56

- 32, 49
\--., prohibited in assertions 49
\-=., prohibited in assertions 49
\-R option to jml script 9

. 55
................................. 60
'.java' 9
\java files 4
'.java-refined' 9
'.jml' 4, 9
'.jml-refined' 4, 9
\jml-refined files 4
'.refines-java' 9
'.refines-jml' 9
'.refines-spec' 9
'.spec' 4, 9
'.spec-refined' 4, 9

/ 2
/++@ 2
/++@ vs. /@ annotations 32
// 2
//@ 2
//++@ vs. //@ annotations 32

; 50

== 49
==, prohibited in assertions 49
==, for booleans 49
==, to compare values 18
==, vs equals 49
==, vs equals 16
==> 49

@ 2
@, in annotations 18

[.................................. 60
[.................................. 60

\{ 32, 44
\{ 51

\duration 49, 51
\elemtype 51
\exists 50
\fields_of 56
\forall 50
\fresh 52
\invariant_for 52
\is_initialized 52
\ lblneg 52
\alpos 52
\lockset 52
\max 50
\min 50
\nonnull_elements 52
\not_modified 52
Amtoft .. 19, 23, 30, 32, 42, 45
also .. 19, 23, 30, 32, 42, 45
Annotations 1, 4
Annotations, in documentation comments 3
Annotations, placement of 2
Arnold ... 1
array range 56
array ranges 55
array, specifying elements are non-null 52
assert .. 36
assertion checking 10
assertion, embedded 36
assertions, additions to Java expressions for . 49
assertions, expressions in 3
assertions, in Java vs. JML 36
assertions, Java expressions prohibited in ... 49
assertions, semantics of 55
assign to, locations a method can 15
assignable 13, 15, 16, 38
assignable clause 13, 55
assignable clause, and constructors 38
assignable clause, and data groups 22
assignable clause, checks 14
assignable clause, redundancy in 38
assignable clause, semantics of 14
assignable, default for 58
assignable_redundantly 38
assignment 49
assignment, to model variables 15
assume .. 38
Back ... 7, 8, 13, 38
Baker ... 1, 7
Becker .. 57
behavior .. 1
behavior, use in desugaring 23
behavior, vs. normal_behavior 19
behavior, when to use 19
behavioral interface specification language .. 1
behavioral subtyping 45
benevolent side effect 15
Bhokar .. 57
BIDL .. 1
blank final, and constructor specifications ... 55
BNF ... 60
body of a quantifier 50
Borgida ... 13
Boylan .. 57
breaks, default for 58
Büchi .. 8, 57
C

case analysis, nested 32
case analysis, nested, example of 44
Chalin ... 8
Chan, Judy 8
Chan, Peter 8
checkable redundancy 22
checker .. 22
checker, for JML 9
Cheon ... 10
Cheon, Yoonsik 10
class initialization predicate 24
class specification 2
classes, pure, use of 51
clauses, multiple 24
client, specification for 2
Clifton .. 57
clone ... 19, 30
Cohen ... 50, 51
Cok .. 57
collection model types 26
command for checking JML files 9
comments, in grammars 60
Compaq SRC 7, 8
comprehensions, for sets 51
conclusions 57
concrete fields, relating to models 57
concurrency 57
constraint ... 18
constructor, and preconditions 55
constructor, pure 27
constructors, and the assignable clause 38
container classes, in JML models directory 42
continues, default for 42
contract ... 3
correct implementation 16
correctness 16
correctness, of ADT implementation 35
cycle, virtual machine 51

directory, argument to jml script 9
diverges ... 58
diverges, default for 58
documentation comment, specification in 3
Doxx .. 57
Dooren .. 57
downloading, JML 57
duration, default for 58
duration, specification of 51
dynamic type of an expression 54
dynamic, assertion checking 10

E

Edwards ... 57
Eiffel .. 7, 13, 15, 54
element type, see \elemtype 51
empty range 50
ensures .. 2, 16
ensures clause, meaning of multiple 24
ensures, default for 58
ensures, multiple 5
ensures_redundantly 25
equality, guidelines for comparing 54
equals ... 32, 52
equals, vs. == 16, 54
equivalence, see \<==> 49
Ernst ... 8, 57
error, in Java virtual machine 16
ESC/Java ... 5, 7, 13, 38, 52, 57
ESC/Java, goals 8
example .. 29
elements, checking 29
elements, in method specifications 29
exceptional_behavior 19, 24
exceptional_behavior, desugaring 23
exceptional_example 29
exceptions, in expressions 55
exceptions, specification of 19, 24
exceptions, specifying details of 24
existential quantifier, see \exists 50
expressions, additions to Java 49
expressions, in assertions 3
ensures, see signals 19

F

fields of an object 56
fields, of an ADT 16
filename suffixes 9
files, for annotations 2
finiteness constraints 16
Finney .. 7
Fitzgerald 7
Fleck ... 57
for_example 29
formal parameters, and assignable clause 14
formality, escape from 32
L

Larch label (negative) .. 52
Larch label (positive) 52
Larch .. 7, 8
Larch, differences from 15
Larch/C++ ... 1, 7
Larsen .. 7
Lea ... 57
Leavens 1, 7, 15, 19, 22, 23, 31, 32, 38, 40, 45
Ledgard 60
Lerner ... 57
lightweight specification 5
lightweight specifications 58
Liskov ... 18
local variables, and assignable clause 14
locking order ... 50
locking order, max 50
locks held by a thread 52
logic, undefinedness in 55
logical equivalence, see <=> 49
logical implication, see ==> 49
Loop .. 8
Lucassen 55
Luckham 1

M

maps ... 21
maps-into clause .. 21
mathematical modeling 8
max of objects in locking order 50
maximum, see \max 50
measured_by .. 44
measured_by, default for 58
Mertens ... 57
method call, space used by 54
method specification 13, 18
method specification, addition to 19
method specification, multiple clauses in 24
method specification, omitted 58
method specifications, defaults for clauses 58
method, pure ... 26
method, result of 53
Meyer ... 3, 7, 25
Mikhajlova ... 38
Millstein .. 57
minimum, see \min 50
MIT .. 8
model 12
model class, example of 41
model classes .. 13, 26
model classes, vs. pure classes 27
model declaration 13
model field ... 12
model fields, in interfaces 17
model fields, inheritance of 20
model fields, relating to concrete 16
model import ... 13
model method, example of 33, 36
model methods, vs. pure methods 27
model types ... 26
model types, for collections 26
model types, value vs. object 26
model variables, modification of 15
model, for a subtype 45
model-based specification 7
modeling types, defining your own 26
modeling, for ADTs, example of 40
modifiable, see assignable 13
modification, of model variables 15
modification, specifying its opposite 52
modified ... 14
modifier ordering, suggested 60
modifies clause .. 13
modifies, see assignable 13
modify, locations a method can 15
module ... 1
monitors ... 57
Morgan ... 3, 7, 8, 13
Müller ... 22, 57
multiple clauses ... 24
multiple specification cases 23
multiple, exceptions 24
multiplication, quantified, see \product 50
Mylopoulos ... 13

N

Namara ... 57
new .. 14, 38
new {1} ... 51
new, and assertions 49
Nielson ... 55
Nijmegen, University of 7, 8
non-null ... 13
non-null elements, of an array 52
 nondeterminism in exception specifications 25
nonterminal symbol 60
normal termination .. 16
normal_behavior 2, 16
normal_behavior, desugaring 23
normal_example 29
notations, for grammars 60
NSF ... 57
null, protection from 40
numerical quantifier, see \num_of 51
S	Sather ... 7	
	Sather-K ... 7	
	satisfaction, see correct implementation 16	
	Saxe .. 57	
	Scherbring .. 57	
	Schneider ... 55	
	set comprehension 51	
	Shilling ... 57	
	side effects, freedom from in assertions 55	
	side-effects ... 7	
	`signals` ... 19, 24	
	signals clause 24	
	signals clauses, detailed 24	
	`signals`, default for 58	
	simultaneous exceptions 25	
	Sivaprasad ... 57	
	space, specification of 53	
	space, taken up by an object 53	
	`spec` filename suffix 9	
	`spec-refined` filename suffix 9	
	specification case, nested 32	
	specification cases 42	
	specification cases, multiple 23	
	specification of examples 29	
	specification of exceptions 19, 24	
	specification, of methods 18	
	specification, of overriding method 30	
	specification, of subtypes 45	
	specification-only declaration 7	
	Spivey .. 7	
	Statas ... 57	
	static, history constraint 18	
	static, invariant 18	
	store-references, additions to Java for 55	
	subtype ... 18, 45	
	subtype relation 54	
	subtype, adding to supertype’s model 45	
	subtype, specification 45	
	subtyping ... 45	
	suffixes, of filenames 9	
	summation, see \sum 50	
	super, prohibited in assertions 49	
	supertype .. 45	
	supertype, specification of 18	
	syntax notations 60	
	termination, normal 16	
	test data ... 10	
	test oracle .. 10	
	textual copying, and inheritance 45	
	Thomas ... 57	
	thread, specifying locks held by 52	
	time, specification of 51	
	time, virtual machine cycle 51	
	tool support, for JML 8	
	type checking, of specifications 9	
	type, correctness of implementation 35	
	typeof operator 54	
	types for mathematical modeling 26	
	types, comparing 54	
	types, marking in expressions 54	
	S	undefinedness, in expressions 55
	undefinedness, protection from 19, 32	
	unit testing, with JML 10	
	universal quantifier, see \forall 50	
	University of Iowa, 22C:181 57	
	University of Nijmegen 7, 8	
	unmodified, see `not_modified` 52	
	URL, for JML ... 57	
	V	value, vs. object model types 26
	van den Berg ... 57	
	VDM-SL .. 7	
	Vickers ... 7, 8, 13	
	virtual machine cycle time 51	
	von Henke ... 1	
	von Wright ... 7, 8, 13, 38	
	W	Wahls ... 7, 57
	web page, for JML 57	
	Weck ... 8, 57	
	when ... 57	
	when, default for 58	
	Whitehead ... 51	
	Wills .. 23	
	Wing ... 1, 7, 8, 13, 18, 19, 23, 32, 40	
	Woodcock .. 7	
	working space, specification of 54	
	working_space, default for 58	
	Wright ... 55	
	Z	Z, specification language 7