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INTRODUCTION 

In ultrasonic NDE of materials, deconvolution techniques are widely used to 
improve time/space resolution, minimize spectral coloring, and compensate for 
different experimental settings, e.g., transducer variations, pulser-receiver 
energy / damping settings, etc. The reference signal that is used for deconvolution is 
typically obtained as the front (or back) surface echo from a suitable sample under 
conditions identical to those used in acquiring the signal to be processed 
(deconvolved). When the signal to be processed is acquired from an attenuating 
medium, the effect of signal attenuation should be appropriately accounted for in the 
deconvolution technique. If the signal arises from a localized inhomogeneity as in the 
case of flaw scattered signals, this is easily accomplished by suitably modifying the 
reference signal; for instance, in the Wiener filter based deconvolution technique [1], 
the frequency dependent attenuation corresponding to the flaw location is determined 
and incorporated into the reference signal spectrum. 'When the inhomogeneities are 
distributed throughout the material as in the case of grain backscattered signals, the 
correction for attenuation should vary along the depth of the material. A suitable 
deconvolution technique for incorporating such correction is based on the Kalman 
filter [2, 3]. In this technique, the reference signal and the signal to be processed are 
modeled respectively as the impulse response of a system and the system output. The 
input to the system is the deconvolved signal that has to be estimated. The Kalman 
filter algorithm processes the data sequentially and its formulation allows the system 
parameters to change at each step. This property can be taken advantage of in 
providing varying amounts of correction for attenuation along the depth of the 
material. 

In this paper, we investigate the use of a model parameter interpolation 
method to provide suitable correction for attenuation. System models (AR or 
ARMA) are first built for the front and back surface echos obtained from a suitable 
sample. The parameters of these models are then interpolated to obtain models 
corresponding to intermediate depths. The impulse responses of the interpolated 
models represent the reference signals corrected for attenuation. The effectiveness of 
this approach is evaluated using experimentally obtained signals from copper samples 
of different thicknesses (1/4", 1/2",3/4" and 1"). 
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MODELING THE REFERENCE SIGNAL 

In the Kalman filter based deconvolution technique, the signal to be processed, 
e.g., grain backscattered signal, is modeled as follows: 

z(k) u(k) * r(k) + v(k) 
y(k) + v(k), (1) 

where k denotes the sample index, " *" denotes deconvolution, z(k) is the measured 
signal to be processed, v( k) is the measurement noise, r( k) is the reference signal, and 
u( k) is the deconvolved signal to be estimated. If we regard r( k) as the impulse 
response of a system and u(k) as the system input, the measured signal z(k) is just 
the system output y(k) corrupted by the additive noise v(k). Using state-space 
notation, (1) can be expressed as follows: 

x(k + 1) 
z(k) 

FkX(k) + Gku(k) 
HkX(k) + v(k), 

(2) 
(:3) 

where x(k) is the (N X 1) system state vector, Fk is the (N X N) state transition 
matrix, Gk is the (N X 1) input matrix, and Hk is the (1 X N) measurement matrix. 
The matrices Fk , G k , and Hk which describe the system are chosen such that the 
system impulse response approximates the reference signal r(k). 

Two of the popular system models are the ARMA (Auto-Regressive Moving 
Average) and the AR (Auto-Regressive) models. The difference equation relating the 
input and output of an N-th order ARMA model is given by 

y(n) + oJ,ky(n - 1) + 02,ky(n - 2) + ... + oN,ky(n - N) 
f3J,ku(n - 1) + f32,ku(n - 2) + ... + f3N,ku(n - N), (4) 

where n is the sample index and (Oi,k, f3i,k: i = 1,2, ... , N) represent the system 
parameters. These parameters are chosen to minimize the average squared error 
between r(n) and the system impulse response, i.e., y(n) when u{n) is the unit sample 
sequence. This is accomplished using a nonlinear least squares optimization 
technique, viz., Levenberg-Marquardt method [4]. In Z-transform notation, the 
system function of the ARMA model in (4) is represented by 

Hk(Z) = f3J,kZ-J + j32,kZ-2 + ... + j3N,k Z - N . 
1 + 01,kZ-1 + 02,kZ-2 + ... + ON,kZ-N 

The system matrices corresponding to the ARMA model in (4) are realized in the 
controllable canonical form as follows: 

(5) 

In the case of an AR system model, (4), (5) and (6) are modified so that j3J,k = 1 and 
j3i,k = 0 for i = 2,3, ... , N. 

PARAMETER INTERPOLATION 

Suppose (Oi,O, j3i,O: i = 1,2, ... , N) and (Oi,L, j3i,L: i = 1,2, ... , N) represent 
the parameters of the systems obtained respectively using the front and back surface 
echos from a suitable sample as reference signals. The system model parameters at 
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any intermediate depth k is then obtained by interpolation of these parameters. For 
example, the interpolation corresponding to (3i,k is given by the following equation: 

k 
(3i,k = (3i,o + f( L) ((3i,L - (3i,O) , (7) 

where f(·) is used to control the type of interpolation, e.g., f( k / L) = k / L corresponds 

to linear interpolation and f( k / L) = J k / L corresponds to a nonlinear interpolation. 

If (7) is used to interpolate G:i/S, the stability of the resulting system cannot 
be guaranteed. To overcome this problem, we first convert the G:i,k'S into an 
equivalent set of parameters 1'i,k'S called the PARCOR (Partial Correlation) 
coefficients. These coefficients are interpolated using (7) and the resulting values are 
converted back to G:i,k'S. Such an interpolated system will always be stable if the 
systems corresponding to k = 0 and k = L are stable. The procedure for converting 
G:i,k'S to 1'i,k'S and vice versa is described below [5]. Let {am(i), i = 1,2, ... ,m, 
am (0) = I} denote the coefficients of the denominator polynomial of an m-th order 
system function. The conversion of G:i,k"S to 1'i,k"S proceeds as follows. First, set 

i = 1,2, ... ,N. 

Next, for m = N, N - 1, ... ,1, compute 

and 

i = 1,2, ... , m - 1. 

Then the PARCOR coefficients 1'i,k are given by 

1'i,k = IC i= 1,2, ... ,N. 

Conversion of 1'i,k"S to G:i,k'S is done as follows. First, set 

f{i = 1'i,k i = 1,2, ... ,N. 

Next, for m = 1,2, ... , N, compute 

and 
am(i) = am-lei) + f{mam-l(m - i) 

Then G:i,k"S can be determined as 

i=1,2, ... ,m-1. 

i = 1,2, ... , N. 

EXPERIMENTAL RESULTS 

(8) 

(9) 

(10) 

(11 ) 

(12) 

(13) 

(14) 

(15) 

The effectiveness of the model parameter interpolation method was verified 
using experimentally obtained signals from copper samples of different thicknesses 
(1/4/1,1/2",3/4/1 and I"). Front and back surface echos obtained from the I" thick 
sample were used to build 14-th order ARMA models and 20-th order AR models. 
The parameters of these models were interpolated to obtain the system models and 
their impulse responses at depths of 1/4/1, 1/2" and :3/4/1. These signals were then 
compared with experimentally obtained back surface echos from the 1/4/1, 1/2" and 
3/4" thick copper samples. 
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Figure l. Measured signals from copper samples of different thicknesses 
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Figure 2. Interpolated signals using 14-th order ARMA models 
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Figure :3. Interpolated signals using 20-th order AR models 



Table 1. Comparison of performances of model parameter interpolation method and 
Wiener filter method 

Signal ARMA model AR model Wiener filter 
Lillear I Nonlinear Lillear IN onlillear GJ:-l 'Yo (J:....:U.l 'Yo I (J:..::U.Ul 'Yo 

1 4" BS 8.48 8.16 5.28 7.43 5.57 6.41 6.63 
1 2 BS 4.93 6.58 4.62 7.70 2.78 3.99 4.20 
3 4 BS 4.07 4.46 5.86 5.70 4.10 5.77 6.02 

In obtaining the front and back surface echos, a 15MHz focused transducer 
(radius: 0.25/1, focal length: 3.5") was used and was adjusted to focus respectively on 
the front and back surfaces of the samples. The back surface echos obtained from the 
samples were normalized by accounting for transmission and reflection coefficients and 
phase inversion. The front and back surface echo signals obtained from the copper 
samples and their frequency spectra are shown in Figure 1. Figure 2 shows the 
interpolated signals and their frequency spectra using 14-th order ARMA models; 
Figure 3 shows the interpolated signals and their frequency spectra using 20-th order 
AR models. Table 1 compares the performances of the model parameter interpolation 
method using both AR and ARMA models with the performance of Wiener filter 
based method. The performance measure is the signal-to-noise ratio (SNR) in dB 
computed using the actual (measured) back surface echo and the difference between 
the actual and interpolated signals. The nonlinear weighting function used here is 
f(x) = ,;x. In the Wiener filter based method, the spectrum of the attenuated signal 
Fk(w) is computed as 

Fk(w) = Fo(w)e-8(w)k. 

An estimate of the frequency dependent attenuation 8(w) in (16) is obtained as 
follows: 

e-8(w)L _ FL(W)Fo(w) 
- lFo(w)t 2 + QlFo{w)t?nax' 

where Fo{w) and FL(w) respectively denote the spectra of front and back surface 
echos, "-,, denotes complex conjugate, and Q is a desensitizing factor that avoids 
division by zero. The performance of the Wiener filter method was computed for 
different values of Q (1%, 0.1%, 0.01%) as shown in Table 1. 

CONCLUSIONS 

(16) 

( 17) 

We have investigated a model parameter interpolation method to provide 
varying amounts of correction for ultrasonic attenuation along the depth of a medium. 
The method is especially suited for use with a Kalman filter based deconvolution 
technique. Both ARMA and AR system models with nonlinear interpolation yield 
reasonably good results. 
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