Systematic Location of Intersecting Seams of Conical Intersection in Triatomic Molecules: The 1 2A′–2 2A′ Conical Intersections in BH2

Mark S. Gordon
Iowa State University, mgordon@iastate.edu

Vassiliki-Alexandra Glezakou
Iowa State University

David R. Yarkony
Johns Hopkins University

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/333. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Systematic Location of Intersecting Seams of Conical Intersection in Triatomic Molecules: The 1 2A′–2 2A′ Conical Intersections in BH2

Abstract
Points of conical intersection are continuously connected forming seams. Recently a quite unanticipated situation has been found in which two distinct seams of conical intersection—one symmetry-allowed and one same-symmetry—originating from the same two states intersect each other. The identification of these confluences, based on ab initio electronic wave functions has been somewhat serendipitous. A systematic approach for locating such confluences, based solely on information obtained on the symmetry-allowed portion of the seam, has been suggested. In this work that approach is applied to identify the point where a Cs seam of conical intersection intersects a symmetry-allowed C2v seam of conical intersection for the 1 2A' and 2 2A' states of BH2, states that correlate with B(1s22s22p,2P)+H2. It is suggested, based on this and previous work, that this unexpected situation, which has fundamental implications for our understanding of nonadiabatic processes, is not at all uncommon.

Keywords
Ab initio calculations, Non adiabatic reactions, Wave functions

Disciplines
Chemistry

Comments

Rights
Copyright 1998 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/333
Systematic location of intersecting seams of conical intersection in triatomic molecules: The 1 2 A ′ – 2 2 A ′ conical intersections in BH 2
Mark S. Gordon, Vassiliki-Alexandra Glezakou, and David R. Yarkony

Citation: The Journal of Chemical Physics 108, 5657 (1998); doi: 10.1063/1.476318
View online: http://dx.doi.org/10.1063/1.476318
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/108/14?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

Theory of the photodissociation of ozone in the Hartley continuum: Potential energy surfaces, conical intersections, and photodissociation dynamics

Transition state dynamics of OHF on several electronic states: Photodetachment spectrum of OHF – and conical intersections

On the effects of spin–orbit coupling on conical intersection seams in molecules with an odd number of electrons. II. Characterizing the local topography of the seam

On the effects of spin–orbit coupling on conical intersection seams in molecules with an odd number of electrons. I. Locating the seam

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129.186.176.217 On: Wed, 02 Dec 2015 15:10:38

AIP | APL Photonics

APL Photonics is pleased to announce Benjamin Eggleton as its Editor-in-Chief
Systematic location of intersecting seams of conical intersection in triatomic molecules: The $1^2A' - 2^2A'$ conical intersections in BH$_2$

Mark S. Gordon and Vassiliki-Alexandra Glezakou
Department of Chemistry, Iowa State University, Ames, Iowa 50011

David R. Yarkony
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

(Received 20 January 1998; accepted 6 February 1998)

Points of conical intersection are continuously connected forming seams. Recently a quite unanticipated situation has been found in which two distinct seams of conical intersection—one symmetry-allowed and one same-symmetry—originating from the same two states intersect each other. The identification of these confluences, based on ab initio electronic wave functions has been somewhat serendipitous. A systematic approach for locating such confluences, based solely on information obtained on the symmetry-allowed portion of the seam, has been suggested. In this work that approach is applied to identify the point where a C_s seam of conical intersection intersects a symmetry-allowed C_{2v} seam of conical intersection for the $1^2A'$ and $2^2A'$ states of BH$_2$, states that correlate with B(1s2s2p2)+H$_2$. It is suggested, based on this and previous work, that this unexpected situation, which has fundamental implications for our understanding of nonadiabatic processes, is not at all uncommon. © 1998 American Institute of Physics.

1. INTRODUCTION

Conical intersections are of enormous importance in electronically nonadiabatic processes. Points of conical intersection are continuously connected forming seams. In triatomic molecules seams of conical intersection were usually assumed to be isolated features, that is in any plane perpendicular to the seam only avoided intersections are encountered. However recent research has suggested that this conventional wisdom is lacking, as instances of intersections of seams of conical intersection have been found for the $1^1A'$ and $2^1A'$ states of O$_3$, the $2^2A''$ and $3^2A''$ states of CH$_2$, and the $1^2A'$ and $2^2A'$ states of AlH$_2$ (Ref. 4) based on ab initio wave functions. Since points of conical intersection are frequently referred to as diabolical points, the points at the intersection of two seams will be referred to as doubly diabolical points. The existence of intersecting seams of the conical intersection has important implications for even a qualitative understanding of the dynamics of a nonadiabatic process, since strong nonadiabatic effects will be encountered in unexpected regions of nuclear coordinate space.

Establishing the existence of intersecting seams can be quite tedious. However a numerical procedure has been suggested that permits this feature to be anticipated using only information from the readily determined symmetry-allowed portion of the seam of the conical intersection. This procedure could provide a convenient tool for studying this situation, including the recent suggestion of Ruedenberg and co-workers that the doubly diabolical points in O$_3$ will have analogs in S$_2$, S$_2$O, and SO$_2$. Above we have referred to a doubly diabolical point as existing on either, a single seam of intersection with intersecting portions, or two intersecting seams. We will not distinguish between these semantic alternatives in this work.

Here the procedure is used to consider the conical intersections of the $1^2A'$ and $2^2A'$ potential energy surfaces of BH$_2$. These surfaces govern the reaction of boron with molecular hydrogen

$$B(2P) + H_2 \rightarrow B-H_2(1^2A_1, 1^2B_2) \rightarrow BH_2(X^2A_1) \rightarrow BH(X^1\Sigma^+) + H,$$

(1a)

(1b)

Reactions (1a) and (1b) are of considerable practical importance, being relevant to the use of B doped cryogenic hydrogen as an energetic material. As explained below, the region of the $1^2A'-2^2A'$ seam of conical intersection is likely to be important for the stability the van der Waals complex B–H$_2$ that constitutes the energetic material, since formation of the dihydride BH$_2$(X2A_1), which has been prepared by laser ablation of boron, could limit the stability of the van der Waals complex. The reason for focusing, initially, on the conical intersections is based on previous work on the AlH$_2$ system. There, as in BH$_2$, the 2^1A_1 section of the $2^2A'$ potential energy surface has a high barrier to the formation of the ground X^2A_1 state of the dihydride. Low energy pathways to the dihydride start on the 2^1B_2 section of the $1^2A'$ potential energy surface. The 2^1A_1 portion of the $1^2A'$ potential energy surface is reached (for exclusively C_{2v} approach) via the ridge represented by the $2^2B_2-2^1A_1$ seam of conical intersection. The assumption of C_{2v} symmetry is, of course, simplistic. There are two directions perpendicular to the ridge one that preserves C_{2v} symmetry, the aforementioned constrained reaction path, and an asymmetric mode that removes the C_{2v} symmetry. It has emerged, however, that in AlH$_2$, only small displacements along this mode give rise to the true transition state so that the minimum energy crossing point (MECP), the minimum energy point on the $2^2B_2-1^1A_1$ seam of conical intersection, gives approximately the barrier height.

0021-9606/98/108(14)/5657/3/$15.00 5657 © 1998 American Institute of Physics
Thus the $1^2\Lambda' - 2^2\Lambda'$ seam of conical intersections in BH$_2$ is considered in this work. This is the subject of Sec. II. Section III summarizes and discusses directions for future research.

II. COMPUTATIONAL APPROACH AND RESULTS

A. Electronic wave functions

The calculations performed here parallel those in our previous treatment of Al+H$_2$ (Ref. 4) where the reader can find more details concerning the level of treatment. Briefly, then the present ab initio calculations employ standard state-averaged multiconfigurational self-consistent field (SA-MCSCF)/configuration interaction (CI) techniques so that the electronic wave functions, $\Psi_f(r;R) = \sum_{a=1}^{N_{SCF}} c_a \phi_a(r;R)$, are eigenstates of the nonrelativistic Born–Oppenheimer Hamiltonian and the $c_a(R)$ satisfy, $H(R)c_a(R) = E(R)c_a(R)$, where $H(R)$ is the electronic Hamiltonian matrix. The wave functions are described at the second order CI(SOCl) level—all single and double excited electron configurations relative to a five electron, six orbital (5a', 1a') active space, comprising the B(2s, 2p) orbitals and the H(1s) orbitals. Contracted Gaussian basis sets B (8s5p3d) and H (6s3p1d) are used to expand the molecular orbitals determined from a SA-MCSCF procedure. Using this basis $N_{SCF}=252$ 255. It is useful to note that this level of treatment predicts a reaction endoergicity of 1.051 eV for reaction (1b) in excellent agreement with the experimental value given parenthetically.

B. Specification of molecular geometries and seams of conical intersection

Molecular geometries will be specified by the Jacobi coordinates, $R=(R,r,\gamma)$, where r is the H$_2$H$_2$ distance, R (H$_2$H$_2$), R is the distance between B and the center of mass of H$_2$, and γ is the angle between the line segments corresponding to R and r, such that $\gamma = 90^\circ$ for C_{2v} geometries. Points, R_α, on a seam of conical intersection will be parameterized either by r, that is, $R_\alpha(r)=(R(r),r,\gamma(r))$ or by γ, that is, $R_\alpha(\gamma)=(R(r),r,\gamma)$. Thus a doubly diabolical point cannot be located directly using this procedure. However since the C_{2v} seam, $\gamma = 90^\circ$, is easy to anticipate and locate, plotting $t^{IJ}(R_\alpha)$ for R_α on the C_{2v} seam should enable the presence (or absence) of a doubly diabolical point to be established.

D. The $1^2\Lambda' - 2^2\Lambda'$ seam of the conical intersection

Figure 1(a) presents $E_1 z_A(R_\alpha(r)) = E_2 z_A(R_\alpha(r))$ and $R(r)$ along seam 1, the C_{2v} portion of the seam of conical intersection of the $1^2\Lambda'$ and $2^2\Lambda'$ potential energy surfaces of BH$_2$. This portion of the seam is parameterized by r. Here and below E_{ref}, the zero of energy, is taken as the energy of the $1^2\Lambda'$ state at the B(2P)+H$_2$ asymptote, with R(H$_2$H$_2$) = 1.4 a$_0$. $E_{ref}=E_1 z_A = -25.770$ 181 a.u. The key result of this work, a plot $t^{IJ}(R_\alpha)$ for R_α on seam 1, is presented in the inset to Fig. 1(a). On the basis of the vanishing of $t^{IJ}(R_\alpha)$, this plot establishes the existence of a doubly diabolical point, $R_{dd}= (2.6, 3.11, 90^\circ)$. Using this information, non-C_{2v} points on the seam of conical intersection were sought and located. The result, seam 2, parameterized by γ, is reported in Fig. 1(b). Seam 2 has two symmetry equivalent branches, for γ and $180^\circ - \gamma$; only the $\gamma<90^\circ$ branch is shown. It has only C_2 symmetry except at $\gamma = 90^\circ$, where seam 1 and seam 2 intersect. Figure 1(b) presents $E_1 z_A(R_\alpha(\gamma)) = E_2 z_A(R_\alpha(\gamma))$, $r(\gamma)$, and $R(\gamma)$ along seam 2. The inset to Fig. 1(b) plots $t^{IJ}(R_\alpha)$ for R_α on seam 2. $t^{IJ}(R_{dd})=0$ as expected, although this plot is less useful than that in Fig. 1(a) since seam 2 is difficult to anticipate.

The points reported were shown to be true conical intersections rather than narrowly avoided intersections by showing that the circulation of the derivative coupling along a small loop surrounding the point in question is π rather than zero.

When R_{dd} is compared with the equilibrium structures, of the van der Waals complex R_{dw} and, of the dihydride R_{eq}, which are $R_{dw}= (6.082, 1.405, 90^\circ)$, $R_{eq}=(3.206, 4.059, 90^\circ)$, it is seen that R_{dd} is located in the molecular region. The confluence is therefore not the consequence of an asymptotic degeneracy or a highly compressed, energetically irrelevant, configuration.

E. Implications

$E_1 z_A(R_{dd})$ is ~ 0.6 eV above that at the MECP on seam 1, R_{MECP1}, and ~ 0.15 eV above that at the MECP on seam 2, R_{MECP2}. Thus for this system R_{dd} will not contribute to processes dominated by ‘threshold’ energetics. $E_1 z_A(R_{MECP1})$ is only ~ 0.6 eV above the B+H$_2$ asymptote. This is over 0.5 eV lower than in the Al+H$_2$ system. It will be important to determine the true transition state for, and the propensity for electronic nonadiabaticity—induced by this seam of conical intersection—in, the formation of BH$_2$(X 2A$_1$). In this regard determination of potential energy, and derivative coupling, surfaces is currently in progress.

For AlH$_2$, R_{dd} was found to be quite close to R_{MECP1} and R_{MECP2}. Thus for AlH$_2$ threshold processes should re-
reflect the presence of the doubly diabolical point of the conical intersection.

For both BH$_2$ and AlH$_2$ the lowest energy conical intersections are found on seam 1, the C$_{2v}$ seam. This is likely a reflection of the fact that the H$_2$ bond is approximately 1 eV (1.4 eV) stronger than the BH (AlH) bond. This situation is reversed for MeX$_2$ species, where Me is an alkaline earth atom such as Ca or Ba, and X is a halogen including F, Cl, and Br. In this case the MeX bond is stronger than the XX bond. Thus it will be important to examine these molecules from the present perspective.

III. SUMMARY AND CONCLUSIONS

In this work intersecting seams of conical intersection were established for the 1$^2A'$ and 2$^2A'$ states of BH$_2$. One seam is a conventional C_{2v} symmetry-allowed B_2^-–A_1 seam of conical intersection, while the second occurs for C_s nuclear configurations. The two seams intersect at a point of C_{2v} symmetry. The existence of the C$_s$ seam was anticipated by monitoring the quantity g^2h^2 [Eq. (2)] along the readily established C$_{2v}$ seam. The C$_s$ seam provides regions of large nonadiabatic effects that do not possess even approximate C_{2v} symmetry and thus can have profound and unexpected effects on reaction dynamics. This finding, together with similar findings based on ab initio wave functions in O$_3$, CH$_2$, and AlH$_2$, and in H$_2$Cl$^+$ (Ref. 16) based on diatomic in molecules wave functions, suggests that this situation is not at all uncommon.

For the triatomic systems considered here the R_{dd} are isolated points. It will be most interesting to study this situation in larger molecules where the locus of such points will be more complicated.

ACKNOWLEDGMENTS

This collaboration was enabled by concurrent participation of M.S.G. and D.R.Y. in the AFOSR high energy density materials program through AFOSR grants F49620-95-1-0077 to M.S.G. and V-A.G. F49620-96-1-0017 to D.R.Y. The calculations reported in this work were performed on D.R.Y.’s IBM RS 6000 workstations purchased with funds provided by the AFOSR, NSF, and DOE-BES.