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ABSTRACT
Property specification in model checking is currently handled 
without adequately taking software product lines into account. 
This is largely due to the fact that the available model checkers 
and property specification tools lack sufficient support for reusing 
model-checking effort. The challenge is twofold: first, we need to 
make the properties accurately trace to individual system 
requirements and models even as they evolve; and second, we 
need to make the property specification easy to share and reuse 
among different systems of the same product line. The 
contribution of this work is a tool-supported technique to guide 
users in generating, selecting, managing, and reusing product-line 
properties and patterns of properties. The technique is evaluated 
in a product-line application. Results show that it improves the 
reusability and traceability of property specifications for model 
checking in a product line setting. 

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Tools; D.2.4 
[Software/Program Verification]: Model Checking 

General Terms
Management, Design, Verification. 

Keywords
Model Checking, Property Specification, Software Product Lines,  
Tool Support. 

1. INTRODUCTION
Model checking is a powerful technique for enhancing the quality 
of software systems [6], e.g., by identifying flaws that would not 
have been caught otherwise ([14], [18]). However, there is 
currently insufficient support for model checking in product lines, 
most specifically, for property specification and management. A 
software product line is a set of software systems developed by a 
single company that share a common set of core requirements yet 
differ amongst each other according to a set of allowable 
variations [37].  

In this paper we present a detailed technique, supported by a 
property specification and management tool, FormulaEditor, for 
helping with the model checking of software product lines. The 
core of the technique is a product-line-oriented user interface to 
guide users in generating, selecting, managing, and reusing useful 
product line properties, and patterns of properties for model 
checking. The tool also associates the properties with the 
requirements, models and verification results of each product in 
the product line so that any changes can be readily traced and the 
properties updated accordingly.  The technique is evaluated in 
applications to telecommunication-protocol and cardiac-
pacemaker product lines. 

In a product line, some requirements, called commonalities, are 
shared by all the products. For example, a commonality for the 
pacemaker product line described below is, “When a heartbeat is 
detected during the SenseTime, the pacemaker shall not generate 
a pulse.”  This property is to keep the pacemaker from giving a 
pulse when it is unneeded by the patient. The difficulty with reuse 
across a product line is that the differences among the products, 
called their variations, can complicate the implementation and 
verification of the properties.  For example, some pacemakers can 
distinguish whether a patient is exercising or at rest, and adjust 
the SenseTime accordingly.  This variation means that the 
specification of the common property described above, in fact, 
varies slightly among products.   

Verification that each new system built in a product line satisfies 
the common properties takes many forms including inspection, 
state-based simulation, and testing [2], [24], [37]. However, these 
techniques do not provide the coverage or level of assurance 
needed for products in some domains.  For example, in our work 
with both communication protocols and pacemakers, we found 
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that more rigorous verification to show key properties held in 
each new product was needed. Model checking, in particular, can 
provide insights into rare and boundary cases. We thus wanted to 
be able to model check these properties in the product lines.

Product-line verification, like product-line engineering in general, 
tries to reuse whatever is common across the product line to 
reduce the cost and increase the quality of each new product. 
However, correctly specifying and keeping track of the properties 
across a product line is a challenge. This is especially true in large 
product lines where new features are added regularly in response 
to market pressures. The many commonalities in a product line 
urge reuse, but the variations among the products demand very 
careful management of that reuse.

The challenge for model checking a product line is twofold. First, 
we need to make properties precisely and accurately trace to 
individual system requirements and models even as they evolve. 
Second, we need to make the property specifications easy to share 
and reuse among different systems of the same product line. For 
example, how do we know if a property should still be satisfied in 
the presence of some specific variations?  For a new system in the 
product line, how can we easily reuse properties from other 
product-line members? In this paper we present a technique that is 
able to associate properties with variations without compromising 
the completeness or accurateness of properties for individual 
products. The property specifications captured and maintained in 
the tool thus become reusable assets of the product line. Thus, 
verification of common patterns can be enforced in all products in 
the product line. By making it easier to specify and manage the 
properties, we hope to extend the use of model checking in 
product lines. Moreover, this approach and tool can benefit not 
only safety-critical product lines (e.g., pacemakers, mobile 
communication devices for emergency workers, constellations of 
satellites, and medical-imaging systems), but also single systems 
that experience frequent maintenance or evolution.

The rest of this paper is organized as follows. Section 2 presents 
needed background information and related work. Section 3 
describes the method by presenting a motivating example 
followed by design rationale and tool support. Section 4 evaluates 
our technique in a pacemaker product line case study and 
discusses the results. Finally, Section 5 offers some concluding 
remarks and possible future work. 

2. BACKGROUND & RELATED WORK 
Formal verification, the application of rigorous mathematical 
reasoning to prove that a system satisfies certain properties (or 
formal specifications) [33], has gained increasing importance in 
the software industry. This is particularly true for safety-critical 
and mission-critical software systems.  

Model checking gained favor among various formal verification 
techniques because of its automated verification procedure and 
the close resemblance between modeling language and high-level 
programming languages [6]. A model checker accepts formal 
models of system requirements and design [14], [27] or 
sometimes implementation [7], as well as some desired or 
undesired properties of the system [6], and then employs 
systematic exploration of the execution paths (exhaustive 
exploration if the model size is manageable) of the model to see if 
those properties are satisfied or not [16]. Researchers have used 

model checking to find flaws in software designs that are 
otherwise hard to detect [14], e.g., by testing. 

If a single product can be decomposed into a set of units that can 
be designed and implemented separately, we call them 
“individually-behaving units” (e.g., components in component-
based system [2] or collaborations in collaboration-based protocol 
design [12]). A product line can also be viewed as different 
compositions of such units [30]. No matter which form the 
product line is taking, one obstacle to model checking product 
lines is reuse management that accurately reflect the variations. 
The commonalities (or common units) in product lines make it 
possible to reuse some model checking effort (e.g., models 
created, properties specified). However, the variations (or 
different units) and the new dependencies (constraints between 
commonalities and variations, or among variations) or different 
composition of units they introduce can make it difficult to 
identify the properties to verify for each variation introduced. 
This currently limits the potential for reuse of model-checking 
assets.  
Thus, there is a need for property specification techniques that 
can incorporate the concept of product-line variation and reuse. 
When it comes to the product-line context, it is not sufficient to 
simply tie those specifications into model checking in an ad-hoc 
manner. The enumeration of all possible properties for a single 
product can be overwhelming if no systematic reuse is applied. 
Also, unless automatic traceability from requirements to 
properties and from properties to models exists, the properties are 
not likely to be maintained as the system evolves. 
Existing work has indicated the possibility of successfully 
conducting model checking for software product lines, e.g., Kishi 
and Noda [19] proposed an approach that models product-line 
variations in UML models and then translated them into SPIN 
models; Li, Krishnamurthi, and Fisler [22] have exploited 
compositional verification in the product-line context by 
automatically checking interfaces of separate features using the 
labeling algorithm in CTL model checking; and Robby, Dywer, 
and Hatcliff [32] have constructed Bogor, an extensible model-
checking framework that can be customized to tailor to different 
application domains, e.g., to be used as a back-end model checker 
for Cadena [5]– an integrated environment for building and 
modeling CORBA Component Model systems – that can be used 
to develop model-driven component-based product lines.

A major issue remaining unaddressed in work to date is the 
management of property specifications at the product-line scope. 
Traditionally, the properties being verified are derived from 
requirements [20] or subsystem/component/interface 
specifications [21]. Several techniques have been developed to 
ease the difficulty of translating informal (natural language) 
specifications into formal ones (e.g., temporal logic formulas 
[16]), such as the Property Specification Patterns [9] and various 
work that helps select and adapt those patterns ([7], [17], [26], 
[29], and [34]),  a set of tools to help edit the LTL temporal logic 
properties in a communication diagrams ([3], [35]), techniques 
that translate a subset of natural language ([15], [20]) or 
specification language (syntactic sugar) [4] into temporal logics, 
and syntax-directed editing environment [31]. However, these 
techniques, to the best of our knowledge, do not treat property 
specification in a reusable setting. 



3. METHOD
This section describes our property specification technique for 
software product lines, including a motivating example, the 
design rationale behind the work, and a description of the tool 
support.

3.1 Motivating Example 
The work was motivated by the need to model check a family of 
communication protocols that resulted from an Avaya refactoring 
project [11], [12]. In the following, we call the members of the 
protocol family “protocol variants”. Each protocol variant is 
composed of a set of smaller building blocks (called 
collaborations) that encapsulate behavior across agent 
boundaries. Agents are the distributed participants in the 
communication the protocol regulates Common collaboration 
examples are connection establishment, connection tear down, 
and authentication. 

There are two mechanisms for composing collaborations. The 
first mechanism is message multiplexing. If we treat each 
collaboration as a micro-protocol (in contrast to the composite 
protocol after composition), the outbound messages sent by the 
micro-protocols (we call them “micro-messages”) must be 
multiplexed together to form a composite message and be 
considered as one unit for transportation over the network. 
Consequently, any incoming composite messages need to be 
demultiplexed into micro-messages to be handled by micro-
protocols upon arrival. 

The second mechanism is sequencing, which manages the causal 
dependencies among the collaborations. We can divide a protocol 
agent into several roles, one for each collaboration in which the 
agent participates. The roles represent independent state 
machines. Protocol sequencing takes care that the roles are 
executed in the right order. 

In contrast to traditional protocol design where a protocol is 
viewed as the composition of protocol agents (each of which can 
be represented by a state machine), the collaboration-based design 
enables users to analyze, test, and change cross-cutting behavior 
independently, thus allowing easier evolution and maintenance 
([11], [12]). 

Fig. 1 shows part of a protocol for registering IP phones at IP 
telephony servers. There are four agents, namely the endpoint, the
station server, the gatekeeper, and the environment. (The 
environment is not shown in Fig. 1 but is needed for modeling 
user input and making the protocol state machine finite). The 
environment and gatekeeper together with the endpoint
implement the authentication collaboration. It is a four-way 
handshake to authenticate an endpoint. The environment,
endpoint, gatekeeper, and the station server collaborate to 
implement the associate-station collaboration. It consists of one 
two-way handshake between each of the two adjacent agents in 
order to allocate necessary resources for an endpoint.
As a motivating example, a simplified protocol product line 
consists of three protocol variants: 1) the authentication protocol 
includes the authentication collaboration only, 2) the associate-
station protocol includes the associate-station collaboration only, 
and 3) the authentication-associate-station protocol includes the 
composition of the two collaborations. The complete protocol 

product line is much more complex due to a larger number of 
collaborations and compositions. 

Figure 1. Registration Protocol (Partial Overview). 

An example property (specified as a natural language description) 
for the authentication protocol is: “It is always the case that 
whenever the environment receives a REGISTER_CONFIRM 
message, the authentication role in the gatekeeper is in 
authenticated state”. An example property for the associate-
station protocol is “It is always the case that whenever the 
environment receives a REGISTER_CONFIRM message, the 
associate-station role in the gatekeeper is in bound state and the 
associate-station role in the station server is in stim state”. 

The motivation for this tool is the recognition that the properties 
for these two protocols have a lot in common. For example, the 
example properties in both protocols share the following 
parameterized property: It is always the case that whenever the 
environment receives a REGISTER_CONFIRM message, the A
role in the B agent is in C state. A, B, C are parameters to be 
instantiated by concrete role, agent, or state in that specific 
protocol. A similar pattern can apply to the other properties 
between the two protocols. This led us to provide parameterized 
properties that could be reused for different collaborations in 
different protocol variants. 

Since the authentication-associate-station protocol is the 
composition of the above two collaborations, not only properties 
from the two collaborations need to be verified again in this 
protocol, but also the properties regarding the compositional logic 
need to be verified. This includes making sure that the 
compositional mechanism is correctly enforced as well as that the 
composed protocol is behaving as expected. An example of the 
former is that any incoming composite message is always 
completely consumed, meaning that all of its inbound micro-
messages are always eventually consumed. An example of the 
latter is that in the authentication-associate-station protocol, the 
authentication collaboration has to be successful before the 
associate-station collaboration can be invoked. 

An example property for the authentication-associate-station 
protocol is: “It is always the case that whenever the environment
receives a REGISTER_CONFIRM message, the Associate-
Station role in the gatekeeper is in bound state, the Authentication



role in the gatekeeper is in authenticated state, and Associate-
Station role in the station server is in stim state”. 

Due to space limitations we cannot list all the properties of the 
authentication-associate-station protocol here. In fact, if more 
than one collaboration is involved in a protocol, the number of 
relationships among incoming/outgoing messages, 
inbound/outbound micro-messages, and the various states of 
different roles in the protocol agents, can be exponential.

The key to addressing this problem is to provide tool support to 
allow recurring patterns in the product line to be identified and 
instantiated so that a batch of properties can be created and 
reused. The use of recurring patterns not only contributes to the 
completeness of the properties, but also speeds up specification. 

The potential patterns include but are not limited to the following 
two categories: patterns of collaborations and patterns of 
compositional logic. An example of the former is that “It is 
always the case that whenever the environment receives a 
REGISTER_CONFIRM message, the A role in the B agent is in C
state”. An example of the latter is that “any incoming composite 
message is always completely consumed”. Those patterns, once 
identified, became an asset of the product line so that verification 
of common patterns can be enforced in all products. 

3.2 Design Rationale 
A straightforward way to check the properties for each of the 
three protocol variants of the protocol product line described 
above is to specify each of them one by one and invoke a model 
checker to verify them. However, for even a small-scale product 
line, e.g., of twenty collaborations and ten possible compositions, 
the work involved in tracking all the properties to be verified for 
each protocol variant became quite hard to manage. Gearing the 
product-line property specification process to reuse is therefore of 
great importance to model-checking industrial product lines. 

We identified the following needs for property specification and 
management in a product-line scope. These needs provided the 
design rationale behind the tool we developed: 

1. The tool needs to keep track of which requirement(s) each 
property specification is derived from and to make use of 
common property patterns in the product line. This includes: 1) 
associating properties with individual requirements. Note that the 
satisfaction of one requirement may entail verification of several 
properties, each targeting a different aspect of the requirement, 
e.g., requirement on composition mechanism can turn out to be 
properties regarding all the micro-messages being consumed 
correctly; and 2) introducing product-line specific property 
patterns that can be instantiated for individual members of the 
product line. In contrast to the Property Specification Patterns [9], 
the product-line specific patterns are intended as reusable assets 
for the specific product line only. It is thus possible that two 
different product-line patterns share the same Property 
Specification Pattern while differing in the instantiation rules for 
their parameters (e.g., some parameters may only be able to be 
instantiated by messages from a certain agent) or their scope (e.g., 
some pattern can only be used in certain protocol variants). 

2. The tool needs to keep track of which product-line member it is  
targeting. This includes associating properties with their models, 
as well as with the verification results. This is because the models 

determine the validity of the properties being specified. If a 
property is shown to be false, the requirement may need to be 
modified (e.g., such a property may be an explanation for an 
ambiguous requirement). 

The next section will describe how the above design rationale is 
supported by our tool. 

3.3 Tool Support 
The work presented in this section demonstrates a model checking 
management tool, FormulaEditor, which we developed to support 
the property specification and management for product lines.

The architecture overview of the tool is presented in Fig. 2. The 
figure shows the tool being applied to a product line of three 
members A, B, and C. The part enclosed in dotted lines is not part 
of the tool but serves as input to it. 

The tool has three main functions: project management, property 
editing and model checking. 

Project management. As mentioned before, property 
specification is not an isolated process. Therefore, the tool helps 
users manage the resources needed for linking the property 
specification with the rest of the model checking and product line 
development effort.

Each product line is managed as a project. The tool provides a 
project configuration interface to let users create and specify 
settings for resources that may be shared by the entire product 
line (e.g., model checker location, common property file etc.). 
Those common settings are loaded every time the project is 
opened, e.g., the common-property pattern file will show up in 
property-editing for all models in the project.  

Figure 2. FormulaEditor Architecture Overview. 

A property table contains all the properties specified for that 
product (e.g., see Fig. 5). The importing-property-table and 
import-project facility in the project management interface allow 
a set of properties specified for one system or one product line to 
be copied to another system or product line, leaving out the ones 
that are no longer valid for the new system. This is accomplished 
by automatically detecting atoms in the property that do not 
belong to the system. Version control is enforced at single-system 



granularity by detecting and clearing out-of-sync verification 
results (i.e., a verification done before its model file changed is 
out of sync).  

Property editing. Property editing serves to generate product-line 
specific patterns and product-specific properties. Fig. 3 shows the 
interface for property editing. It is divided into three areas: the 
upper area for selecting the building blocks of a property, the 
middle area for composing a property in natural language, and the 
lower area for composing or viewing a property as a temporal 
logic formula. The preset patterns are shown in the pattern 
selection part of the upper area. The default patterns are a 
complete set of basic LTL and CTL patterns that can be used to 
form any other LTL and CTL formulas [16].  

Figure 3. Property Editing Overview. 

To provide traceability between the properties and the 
requirements, the tool also supports domain-customized natural 
language descriptions for properties and allows users to tag 
properties with the requirements from which they are derived. 

In the product-line domain-engineering phase (i.e., generating 
product-line reusable assets [37]), users can create parameterized 
properties from the set of preset patterns (e.g., basic LTL and 
CTL patterns or Property Specification Patterns [9] that recur in 
the product line). Those new parameterized properties then can be 
added to the preset patterns (stored in a common-pattern-file). 
The patterns can be reused for property specification both within 
the same system and across different systems in the product line.  

In the product-line application-engineering phase (i.e., generating 
product-specific assets [37]), users can instantiate the above-
mentioned patterns (both preset ones and the ones created by the 
user on-the-fly) by replacing the parameters in the pattern with 
concrete properties for the model file. They can also replace the 
parameters with other patterns to customize a generic pattern.  

The tool provides two mechanisms to ensure that the instantiation 
process is done correctly. The first is to present users with a 

selection of properties to instantiate the patterns. These include 
the atomic properties (which we call “atoms”, e.g., a variable 
defined in the model holding a value) extracted from the model as 
well as past specified properties and patterns for this model. The 
second mechanism is to provide a syntax-directed editing 
environment to prevent ill-formed properties from being created 
(e.g., mixing LTL with CTL properties) or saved (e.g., not-fully-
instantiated properties, bad syntax) into the property pool for a 
specific product member. 

Figure 4. Atom Selection Overview. 

For example, “( ForAllPaths always ( ( 
environment_sent_REGISTER ) implies ( ForAllPaths eventually 
CTLproperty ) ) )” is the natural language description of a 
parameterized property derived from the Response Property 
Pattern [9], yet partially instantiated with the 
“environment_sent_REGISTER” message. The “LTLproperty” 
and the “CTLproperty” are parameters to be filled with specific 
properties in the application engineering phase. The 
“environment_sent_REGISTER” message is selected from the 
“atom selection overview” window, popped out by clicking the 
“Atom Selections” in the upper area of Fig. 3. A screenshot of the 
atom selection overview is shown in Fig. 4. 

FormulaEditor recognizes variable declarations in SMV models 
as atoms in a model. The tool then translates the atoms into its 
corresponding basic event description, following a set of 
translation rules approved by the domain engineers. In this way 
the atoms presented to a user are domain-customized descriptions, 
rather than their original forms in the model. For example, in the 
SELEX project, the variable Authenticate_In denotes an inbound 
micro-message, and we are only interested in whether the micro-
message is consumed or not (meaning that Authenticate_In is zero 
or not). Therefore even though in the model Authenticate_In can
range from 0 to 9, only two atoms are extracted, i.e., 
“Authenticate_In _consumed” and “Authenticate_In _waiting”. 
Model checking. For the model checking part of the tool, both 
the property and the model are fed into a model checker. (In the 
work described here, we used Cadence-SMV [27] as the backend 
model checker, but we also have used CMU-SMV [28].) The tool 
provides the following facilities to help manage the model 
checking process in a product-line setting (as seen in Fig. 5) 



1. Automatically formats a generic LTL or CTL property to the 
form recognized by the back-end model checker; allows 
verification of multiple properties at a time. 

2. Provides easy access to all information associated with a 
property (e.g., verification results, temporal logic type, 
counterexample, requirement it comes from etc.) and can group 
the properties according to different criteria (e.g., group by 
verification results, or group by requirements). 

3. Supports conditional verification when it is allowed by the 
underlying model checker (Cadence-SMV in this case), i.e., users 
can select some existing properties as assumptions for another 
property. Those assumptions can be turned on or off before 
checking, and the enabled assumptions are an integral part of the 
verification result. 

4. CASE STUDY 
In the previous sections we introduced our tool-supported 
technique based on the following two assumptions:

1) Property specification for model checking in an ad-hoc manner 
(without automatic linkage from the requirements to the models) 
is not likely to be reused as the system evolves. 

2) Property specification for product lines without support for 
reuse can be tedious and hard to manage.

The claim is that since our technique overcomes the above two 
obstacles, it allows product-line property specification being 
conducted in a more efficient and sustainable manner. 

In this section we step through one case study that we used to test 
the above claim. Since the focus of the technique is on property 
specification and management, we do not address model 
generation here. 

Figure 5. Model Checking Management Overview. 

4.1 Pacemaker Product Line 
The second application of FormulaEditor was to a cardiac 
pacemaker product line.  

In previous work ([23], [24], [25]), we developed state machine 
models for each of the products in this product line using UML 
statecharts. We chose Cadence-SMV as our model checker 
because of the existing knowledge on translating UML statecharts 
to Cadence-SMV (e.g., [36]). The model translation is currently 
done manually. We take the safety properties to check from the 
systems’ safety requirements. 
The reason for choosing this product line as our case study is that 
it is an example of a safety-critical product line that would benefit 
from the added assurance of formal verification. In addition, this 
product line keeps growing, so being able to maintain traceability 
among properties as the models evolve and manage the re-
verification process are essential if the project is to make a 
smooth transition into model checking from model-based 
development.

A pacemaker [10] is an embedded medical device designed to 
monitor and regulate the beating of the heart when it is not 
beating at a normal rate. It consists of a monitoring device 
embedded in the chest as well as a set of pacing leads (wires) 
from the monitoring device into the chambers of the heart. Here, 
we only consider a single-chambered product line of pacemakers 
that does pacing and sensing in the heart's ventricles. 
The product line consists of the following four products: 

BasePacemaker – This product has the basic functionality 
shared by all pacemakers: generating a pulse whenever no heart 
beat is sensed during the sensing interval. 
ModeTransitivePacemaker – This product can switch 
between InhibitedMode and TriggeredMode during runtime. In 
the InhibitedMode, the pacemaker acts exactly like a 
BasePacemaker. In the TriggeredMode, a pulse follows every 
heartbeat to provide a different type of therapy. 
RateResponsivePacemaker – This product acts similarly to 
the BasePacemaker but contains an extra sensor allowing it to 
adjust its sensing interval according to the patient’s current 
activity level: LRLrate, for a patient’s normal activities and 
URL rate, for when a patient is exercising. 
ModeTransitive-RateResponsivePacemaker – This product 
combines the features of the ModeTransitivePackemaker and 
the RateResponsivePacemaker.  

We model the pacemaker as a component-based system [2] , 
meaning that components serve as the functional units that are 
composed for each product. The following components were 
modeled in Cadence-SMV: a sensing component (BaseSensor) 
that senses heart beat, a stimulation component (PulseGenerator) 
that generates pulses to the heart, a controlling component 
(PacemakerController) that configures different pacing and 
sensing algorithms and issues commands, MotionSimulator and 
HeartSimulator components that simulate the patient’s motion and 
heart beat activities respectively, and a ExtraSensor component 
that senses a patient’s activity level. 



4.2 Product Line Property Specification 
In this section, we describe the entire model-checking process, but 
focus on Steps 3-5 which use the FormulaEditor tool. 

1. Obtain the set of safety critical requirements that need to be 
model checked.

Sample Requirements for BasePacemaker: 

R1. When PacemakerController is in Sensing state and it receives 
a sensed event from BaseSensor, then PacemakerController shall 
command the BaseSensor to turn off at the next time unit. 
R2. Whenever PacemakerController is in Refactoring state, 
PulseGenerator shall remain in idle state.
R3. When PacemakerController is in Sensing state and the 
SenseTime is up, the PacemakerController shall command the 
BaseSensor to turn off at the next time unit.
Sample Requirements for ModeTransitivePacemaker: 

R1, R2: same as BasePacemaker
R3.1 In Inhibited mode, when PacemakerController is in Sensing 
state and the SenseTime is up, the PacemakerController shall 
command the BaseSensor to turn off at the next time unit. 
R3.2 In Triggered mode, when PacemakerController is in Sensing 
state and there is no heartbeat sensed by BaseSensor, the 
PacemakerController remains in Sensing state the next time unit. 
2. Conduct a commonality analysis [37] of the requirements to 
find recurring requirements.

We show such requirements here with the same number in 
different products (e.g., R1 in BasePacemaker and R1 in 
ModeTransitivePacemaker) as common requirements and 
requirements with associated numbering (e.g., R3.1 and R3.2 in 
ModeTransitivePacemaker) as a variation. 

3. Starting from the product that has the fewest variabilities, build 
a core set of properties and patterns to be reused from its 
requirements 

We started from BasePacemaker, as all its requirements appeared 
in whole (i.e., R1, R2, R5) or in part (R3, R4) in the other three 
products. By adopting an incremental process, specifying the 
product with fewer variabilitiees first can maximize the 
reusability of any specified property set. Each time we add a new 
property, we first scan through the list of properties already 
specified or imported to see if we can reuse any existing ones by 
minimal modification effort. If not, we scan through the patterns
to find one that we can instantiate with minimal instantiation 
effort. If we compose a new pattern out of existing patterns for a 
new property, we save that pattern to the common pattern file for 
product line reuse.

For example, the following pattern set was built for 
BasePacemaker (we use the natural language description here 
rather than the temporal logic formula because that is the format 
we view when we search for possibility of reuse): 

Pattern 1:( always ( ( LTLproperty1 and LTLproperty2 ) implies ( 
next LTLproperty ) ) ) 

Pattern 2: ( always ( LTLproperty1 implies LTLproperty2 ) ) 

Pattern 1 was built while specifying the property for R1. Pattern 2 
was built while specifying the property for R2. These patterns 
were subsequently reused in the property specification for other 
requirements. When we specified properties for R3 and R5, we 
used Pattern 1 and Pattern 2 separately. When we specified 
property for R4, we reused property for R3 with one replacement 
of an atom in it. 

4. For each product, build its own property set by importing likely 
property sets previously specified. These are then reused and the 
product’s own variations added (i.e., modifying properties and 
instantiating  patterns).  

For example, both ModeTransitivePacemaker and 
RateResponsivePacemaker share requirements R1, R2, and R5 
with BasePacemaker. They differ only in R3 and R4 by 
introducing their own variations: Inhibited and Triggered mode 
for ModeTransitivePacemaker, LRLrate and URLrate for 
RateResponsivePacemaker.  

Thus, for each product, we imported the entire property table of 
BasePacemaker and then modified the properties for R3 and R4 
respectively. By doing this, we shared the property set built for 
BasePacemaker. We also shared the pattern set because the 
patterns identified while specifying properties for BasePacemaker 
were saved to the common pattern file and became part of the 
property editing interface. 

For ModeTransitive-RateResponsivePacemaker, we first imported 
the property tables for ModeTransitivePacemaker and then 
appended the property table for RateResponsivePacemaker, 
deleting any repeated properties and renaming different properties 
that happened to have the same name (the deleting and renaming 
process was manually done). In contrast with importing the 
property table only from the BasePacemaker, or only from 
ModeTransitivePacemaker or RateResponsivePacemaker, being 
able to import multiple tables had the benefit of maximizing the 
property pool for ModeTransitive-RateResponsivePacemaker. A 
discussion of this is given in Section 4.3. 

5. Invoke the underlying model checker to check all properties in 
the property set for each product. This was done in both 
incremental mode as the property set was being built and in batch 
mode to verify or re-verify as commonalities were imported.

Step 5 interleaves with step 4 in that for each property set built, 
we model check it with Cadence-SMV right away. This is very 
important since we build the property set as the variabilities 
accumulate, so that a flaw detected in the model or in the property 
for one product will not propagate to other products that share its 
requirements or designs. 

4.3 Discussion
1. Effort saved by using this technique

At the beginning of the process (step 1 in the above section), we 
identified 28 requirements to be model-checked. In 
BasePacemaker, by the end of the process, 2 property patterns 
were identified, 2 properties were specified by instantiating those 
two patterns, and 1 property was specified by reusing another 
property specified for BasePacemaker with some modifications. 
In the other three products, 3 properties were specified by reusing 
existing properties in BasePacemaker without any modification. 



In ModeTransitivePacemaker and RateResponsivePacemaker, an 
additional 3 properties were specified by reusing BasePacemaker 
properties with some modifications. In ModeTransitive-
RateResponsivePacemaker, 6 properties were specified by reusing 
ModeTransitivePacemaker properties with some modifications.  

Modifying previously specified properties is similar to changing 
the instantiation of patterns as both the old and the new properties 
share similar structures. Therefore, among the property 
specification for the 28 requirements, 17 of them (about 61%) 
actually benefited from the product-line specific pattern approach.  

2. Pattern reuse and  property reuse

There are two types of reuse that were useful in this case study: 
pattern reuse and property reuse. Both can be used for specifying 
properties for a single product or across a product line. However, 
property reuse has the limitation that a property to be reused 
cannot contain any variables not defined in the underlying model. 
Thus, property reuse is more suitable for commonalities within a 
product-line scope, and carries the assumption that models for 
different products in the same product line adhere to a consistent 
naming conventions. Pattern reuse, on the other hand, does not 
have the above limitation and can be reused in any system. 
However, pattern reuse usually requires more instantiation effort 
than property reuse because it is more general. 

A possible solution is to have partially instantiated patterns for 
reuse, i.e., we can replace the variation part in a property by 
generic parameters, or instantiate the common part in a pattern by 
atoms shared by all products.  

3. Utilization of verification results

Two types of verification results were found helpful in identifying 
flaws:

1) Properties derived from requirements that were supposed to be 
true but produced counterexamples. In this situation, the 
counterexamples provided by the model checker were helpful in 
locating the faults. For example, the property for R2 in the 
ModeTransitive-RateResponsivePacemaker was initially shown to 
be false. The counterexample showed that the PulseGenerator 
stayed in Pulsing state after generating a pulse, indicating an error 
in the state-transition logic for the PulseGenerator component. An 
inspection of the model revealed an inconsistency when 
translating from UML-statechart to Cadence-SMV code. 

The counterexample itself sometimes revealed the problem 
without going back to the model. For example, when we changed 
“PacemakerController shall command the BaseSensor to turn off 
at the next time unit” in R1 for BasePacemaker to “BaseSensor 
shall be in the off state at the next time unit”, the property derived 
from this modified requirement was shown to be false. The 
counterexample showed that the state-change for BaseSensor 
lagged two time units behind the command-issuing in 
PacemakerController. Thus, either the requirement had to be 
modified to be “When PacemakerController is in Sensing state 
and it receives a sensed event from BaseSensor, then 
PacemakerController shall command the BaseSensor to turn off at 
the next three time unit” in order to be valid for the system, or the 
system design (the model here) had to be changed. 

The counterexamples showed the values that each involved 
variable took in a trace leading to the false result. Currently, 

variable names shown in counterexamples are the same as in the 
model. Thus, good naming conventions helped locate faults in the 
system design. We realize that there currently exists a gap 
between variable names in the counterexample and variable 
declaration in the atom-selection, as the latter is sugar-coated by 
giving domain-customized descriptions. We plan to address this 
issue by interpreting counterexample in terms of atoms. 

2) Properties derived from variations of requirements that were 
supposed to be false but verified true 

Verifying variations of requirements helped identify several 
vacuously true properties [1], i.e., properties that hold due to 
undesired reasons. For example, if we were to change requirement 
R4.1 for RateResponsivePacemaker from “when 
PacemakerController is in LRL (normal rate) state and in Sensing 
state, and the SenseTime is up, the PacemakerController shall 
command the PulseGenerator to generate a pulse at the next time 
unit” to “when PacemakerController is in LRL (normal rate) state 
and in Sensing state, and the SenseTimeShort is up, the 
PacemakerController shall command the PulseGenerator to 
generate a pulse at the next time unit” and it still held for the 
system, then we would need to check if the PacemakerController 
always commanded the PulseGenerator to generate a pulse 
disregard of SensTime up or not. 
In this case study, we changed different atom instantiations when 
reusing a pattern or property, to detect potentially vacuously true 
properties. As we mentioned before, the benefit of maximizing 
the property pool was for exactly this reason, since two similar 
properties are not necessarily both true in the same model. 

An added value of the tool-supported technique was in detecting 
hidden requirements by testing different variations of one 
requirement. The tool makes it convenient to instantiate different 
property variations. Moreover, those variations specified for one 
requirement in a product could be shared via property-table-
import by other products if they had a similar requirement, and be 
quickly verified using batch-verification. 

4. Support for evolution 

1) Product-line change adaptation. Product lines evolve quickly, 
so to be effective, a tool must readily accommodate frequent 
changes. We categorize possible changes to a product line and 
discuss how FormulaEditor handles each of them: (a) New 
commonality: augment the core property/pattern set to include the 
new commonality, and in each product in the product line, import 
the property/pattern derived from this commonality and make 
modifications when necessary. (b) New variability: augment the 
property set for all affected products to include this new 
variability, and augment the common pattern file if new patterns 
are introduced during property-derivation for such a variability. 
(c) Delete/modify existing commonality: update the core property 
set, and update the property set for every product in the product 
line. The common pattern file may be updated as well if new 
patterns are introduced during modification. (d) Delete/modify 
existing variability: update the property set for all affected 
products. The common pattern file may be updated as well if new 
patterns are introduced. 

2) Model change adaptation using conditional verification. Note 
that sometimes the property update is done ahead of the model 
update, i.e., the model has not yet incorporated the new 



requirement, since the update of the model usually takes more 
time than updating the properties. The updated added properties 
can then be set as conditional properties that are assumed to be 
true for the incomplete model. Existing properties can continue be 
verified given those conditional properties. Once the model is 
completed, we restore those properties as normal properties and 
verify them as before. 

3) Property change adaptation. One restriction of the approach 
mentioned in the paper is that while it is useful in incrementally 
building a property set for each product in a product line, changes 
in properties require manually updating each property set 
affected. Importing property tables can speed this process, but can 
still be labor-intensive given a large product line context.

A better solution could be to specify just the composition of a 
property specification from parameterized building blocks and 
automatically instantiate the full property specification once we 
instantiate the decision model for the product line [37]. Geppert, 
Li, Rößler, and Weiss [13] have successfully applied the idea to 
test-case specification generation for product lines. 

5. Mapping from requirements to properties

One benefit of property-editing tools (see the Related Work 
section) is to help users develop formal, unambiguous 
requirements suitable for model checking.  This, when reflected in 
our technique, is detecting one-to-many mappings between 
requirements and atoms. For example, the initial requirement R1 
for BasePacemaker was “when PacemakerController is in Sensing 
state and it receives a sensed event from BaseSensor, then 
BaseSensor should be turned off immediately”. The requirement 
“BaseSensor should be turned off” is associated with a chain of 
events in the model, i.e., “PacemakerController sent evSensor 
off”, “BaseSensor received evSensor Off” and “BaseSensor is in 
off state”. Those events, although all mapping to the same 
requirement, do not happen within the same step. Thus, 
instantiating the same pattern with different atoms generated 
different verification results. Tying the property specification to 
the model helped us identify potential ambiguities (since the 
atoms for instantiating the patterns are all extracted from the 
model). With the backend model checker integrated into the tool, 
we were able to quickly verify a group of properties to get 
detailed information about how to dismiss the ambiguity, e.g., by 
changing “BaseSensor should be turned off immedately” to 
“PacemakerController shall command the BaseSensor to turn off 
at the next time unit”. 
The insight gained by inspecting one-to-many mappings can also 
help generate accurate properties for more complex component-
based systems or telecommunication protocols, where the delay in 
response-chain inside components or in network communication 
can significantly affect the validity of certain requirements.  

Another benefit is that by reusing properties and patterns in the 
product-line scope, users can significantly reduce the effort of 
deriving the right properties from requirements. In addition, if a 
pattern is found to be incorrect, then the properties instantiated 
from it need to be corrected accordingly.  

6. Possible applications

Although this technique starts from a product-line point of view, 
it is not confined to use in a product line setting. We have, e.g., 
applied our technique to NASA’s Simplified Aid for EVA Rescue 

(SAFER) system [8]. Initial results suggest that this technique can 
help re-engineer existing property specifications for legacy 
systems to support reuse in future system developments.  

5. CONCLUSION
The work described here provides a tool-supported technique that 
guides users in structured reuse of property specifications for 
model-checking the members of a product line. Properties 
specified via the tool are traceable to the underlying product-line 
requirements, the SMV models, and the verification results.  The 
tool enables reuse of shared product-line properties, as well as of 
product-line-specific patterns of properties, while carefully 
preserving any distinctions among the product-line members.  
Results from application to the two product lines show that the 
tool also can manage the changes and re-verification needed as 
the product line evolves (e.g., as new members or features are 
added).  By making it easier to specify, manage, and reuse 
properties, we hope to make model-checking of product-line 
systems more practical.  

In the future we plan to make the technique more flexible by: 1) 
making the atom-extraction rules easier to modify so that users 
can change them at the time of specification; 2) investigating the 
automatic instantiation of property patterns; and 3) allowing 
properties specified elsewhere to be managed more easily, by 
extending the property reuse management capability to allow 
clean interfaces with other tools.  
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