
Computer Science Technical Reports Computer Science

2007

A Tool-supported Technique for Specification &
Management of Model-checking Properties for
Software Product Lines
Jing (Janet) Liu
Iowa State University

Miriam Hauptman

Robyn Lutz
Iowa State University, rlutz@iastate.edu

Birgit Geppert
Avaya Labs Research

Frank Rößler
Avaya Labs Research

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Liu, Jing (Janet); Hauptman, Miriam; Lutz, Robyn; Geppert, Birgit; and Rößler, Frank, "A Tool-supported Technique for Specification
& Management of Model-checking Properties for Software Product Lines" (2007). Computer Science Technical Reports. 344.
http://lib.dr.iastate.edu/cs_techreports/344

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/344?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A Tool-supported Technique for Specification &
Management of Model-checking Properties for Software

Product Lines
Jing (Janet) Liu1, Miriam Hauptman1 and

Robyn Lutz1, 2

1Department of Computer Science, Iowa State
University

2Jet Propulsion Laboratory/Caltech
1-515-294-2735

{janetlj, miriamh, rlutz}@cs.iastate.edu

Birgit Geppert, Frank Rößler
Avaya Labs Research
Software Technology

1-908-696-5116

{bgeppert, roessler}@avaya.com

ABSTRACT
Property specification in model checking is currently handled
without adequately taking software product lines into account.
This is largely due to the fact that the available model checkers
and property specification tools lack sufficient support for reusing
model-checking effort. The challenge is twofold: first, we need to
make the properties accurately trace to individual system
requirements and models even as they evolve; and second, we
need to make the property specification easy to share and reuse
among different systems of the same product line. The
contribution of this work is a tool-supported technique to guide
users in generating, selecting, managing, and reusing product-line
properties and patterns of properties. The technique is evaluated
in a product-line application. Results show that it improves the
reusability and traceability of property specifications for model
checking in a product line setting.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Tools; D.2.4
[Software/Program Verification]: Model Checking

General Terms
Management, Design, Verification.

Keywords
Model Checking, Property Specification, Software Product Lines,
Tool Support.

1. INTRODUCTION
Model checking is a powerful technique for enhancing the quality
of software systems [6], e.g., by identifying flaws that would not
have been caught otherwise ([14], [18]). However, there is
currently insufficient support for model checking in product lines,
most specifically, for property specification and management. A
software product line is a set of software systems developed by a
single company that share a common set of core requirements yet
differ amongst each other according to a set of allowable
variations [37].

In this paper we present a detailed technique, supported by a
property specification and management tool, FormulaEditor, for
helping with the model checking of software product lines. The
core of the technique is a product-line-oriented user interface to
guide users in generating, selecting, managing, and reusing useful
product line properties, and patterns of properties for model
checking. The tool also associates the properties with the
requirements, models and verification results of each product in
the product line so that any changes can be readily traced and the
properties updated accordingly. The technique is evaluated in
applications to telecommunication-protocol and cardiac-
pacemaker product lines.

In a product line, some requirements, called commonalities, are
shared by all the products. For example, a commonality for the
pacemaker product line described below is, “When a heartbeat is
detected during the SenseTime, the pacemaker shall not generate
a pulse.” This property is to keep the pacemaker from giving a
pulse when it is unneeded by the patient. The difficulty with reuse
across a product line is that the differences among the products,
called their variations, can complicate the implementation and
verification of the properties. For example, some pacemakers can
distinguish whether a patient is exercising or at rest, and adjust
the SenseTime accordingly. This variation means that the
specification of the common property described above, in fact,
varies slightly among products.

Verification that each new system built in a product line satisfies
the common properties takes many forms including inspection,
state-based simulation, and testing [2], [24], [37]. However, these
techniques do not provide the coverage or level of assurance
needed for products in some domains. For example, in our work
with both communication protocols and pacemakers, we found

The original FormulaEditor Tool was developed at Avaya
Labs Research, NJ, USA, as part of the SELEX project.

that more rigorous verification to show key properties held in
each new product was needed. Model checking, in particular, can
provide insights into rare and boundary cases. We thus wanted to
be able to model check these properties in the product lines.

Product-line verification, like product-line engineering in general,
tries to reuse whatever is common across the product line to
reduce the cost and increase the quality of each new product.
However, correctly specifying and keeping track of the properties
across a product line is a challenge. This is especially true in large
product lines where new features are added regularly in response
to market pressures. The many commonalities in a product line
urge reuse, but the variations among the products demand very
careful management of that reuse.

The challenge for model checking a product line is twofold. First,
we need to make properties precisely and accurately trace to
individual system requirements and models even as they evolve.
Second, we need to make the property specifications easy to share
and reuse among different systems of the same product line. For
example, how do we know if a property should still be satisfied in
the presence of some specific variations? For a new system in the
product line, how can we easily reuse properties from other
product-line members? In this paper we present a technique that is
able to associate properties with variations without compromising
the completeness or accurateness of properties for individual
products. The property specifications captured and maintained in
the tool thus become reusable assets of the product line. Thus,
verification of common patterns can be enforced in all products in
the product line. By making it easier to specify and manage the
properties, we hope to extend the use of model checking in
product lines. Moreover, this approach and tool can benefit not
only safety-critical product lines (e.g., pacemakers, mobile
communication devices for emergency workers, constellations of
satellites, and medical-imaging systems), but also single systems
that experience frequent maintenance or evolution.

The rest of this paper is organized as follows. Section 2 presents
needed background information and related work. Section 3
describes the method by presenting a motivating example
followed by design rationale and tool support. Section 4 evaluates
our technique in a pacemaker product line case study and
discusses the results. Finally, Section 5 offers some concluding
remarks and possible future work.

2. BACKGROUND & RELATED WORK
Formal verification, the application of rigorous mathematical
reasoning to prove that a system satisfies certain properties (or
formal specifications) [33], has gained increasing importance in
the software industry. This is particularly true for safety-critical
and mission-critical software systems.

Model checking gained favor among various formal verification
techniques because of its automated verification procedure and
the close resemblance between modeling language and high-level
programming languages [6]. A model checker accepts formal
models of system requirements and design [14], [27] or
sometimes implementation [7], as well as some desired or
undesired properties of the system [6], and then employs
systematic exploration of the execution paths (exhaustive
exploration if the model size is manageable) of the model to see if
those properties are satisfied or not [16]. Researchers have used

model checking to find flaws in software designs that are
otherwise hard to detect [14], e.g., by testing.

If a single product can be decomposed into a set of units that can
be designed and implemented separately, we call them
“individually-behaving units” (e.g., components in component-
based system [2] or collaborations in collaboration-based protocol
design [12]). A product line can also be viewed as different
compositions of such units [30]. No matter which form the
product line is taking, one obstacle to model checking product
lines is reuse management that accurately reflect the variations.
The commonalities (or common units) in product lines make it
possible to reuse some model checking effort (e.g., models
created, properties specified). However, the variations (or
different units) and the new dependencies (constraints between
commonalities and variations, or among variations) or different
composition of units they introduce can make it difficult to
identify the properties to verify for each variation introduced.
This currently limits the potential for reuse of model-checking
assets.
Thus, there is a need for property specification techniques that
can incorporate the concept of product-line variation and reuse.
When it comes to the product-line context, it is not sufficient to
simply tie those specifications into model checking in an ad-hoc
manner. The enumeration of all possible properties for a single
product can be overwhelming if no systematic reuse is applied.
Also, unless automatic traceability from requirements to
properties and from properties to models exists, the properties are
not likely to be maintained as the system evolves.
Existing work has indicated the possibility of successfully
conducting model checking for software product lines, e.g., Kishi
and Noda [19] proposed an approach that models product-line
variations in UML models and then translated them into SPIN
models; Li, Krishnamurthi, and Fisler [22] have exploited
compositional verification in the product-line context by
automatically checking interfaces of separate features using the
labeling algorithm in CTL model checking; and Robby, Dywer,
and Hatcliff [32] have constructed Bogor, an extensible model-
checking framework that can be customized to tailor to different
application domains, e.g., to be used as a back-end model checker
for Cadena [5]– an integrated environment for building and
modeling CORBA Component Model systems – that can be used
to develop model-driven component-based product lines.

A major issue remaining unaddressed in work to date is the
management of property specifications at the product-line scope.
Traditionally, the properties being verified are derived from
requirements [20] or subsystem/component/interface
specifications [21]. Several techniques have been developed to
ease the difficulty of translating informal (natural language)
specifications into formal ones (e.g., temporal logic formulas
[16]), such as the Property Specification Patterns [9] and various
work that helps select and adapt those patterns ([7], [17], [26],
[29], and [34]), a set of tools to help edit the LTL temporal logic
properties in a communication diagrams ([3], [35]), techniques
that translate a subset of natural language ([15], [20]) or
specification language (syntactic sugar) [4] into temporal logics,
and syntax-directed editing environment [31]. However, these
techniques, to the best of our knowledge, do not treat property
specification in a reusable setting.

3. METHOD
This section describes our property specification technique for
software product lines, including a motivating example, the
design rationale behind the work, and a description of the tool
support.

3.1 Motivating Example
The work was motivated by the need to model check a family of
communication protocols that resulted from an Avaya refactoring
project [11], [12]. In the following, we call the members of the
protocol family “protocol variants”. Each protocol variant is
composed of a set of smaller building blocks (called
collaborations) that encapsulate behavior across agent
boundaries. Agents are the distributed participants in the
communication the protocol regulates Common collaboration
examples are connection establishment, connection tear down,
and authentication.

There are two mechanisms for composing collaborations. The
first mechanism is message multiplexing. If we treat each
collaboration as a micro-protocol (in contrast to the composite
protocol after composition), the outbound messages sent by the
micro-protocols (we call them “micro-messages”) must be
multiplexed together to form a composite message and be
considered as one unit for transportation over the network.
Consequently, any incoming composite messages need to be
demultiplexed into micro-messages to be handled by micro-
protocols upon arrival.

The second mechanism is sequencing, which manages the causal
dependencies among the collaborations. We can divide a protocol
agent into several roles, one for each collaboration in which the
agent participates. The roles represent independent state
machines. Protocol sequencing takes care that the roles are
executed in the right order.

In contrast to traditional protocol design where a protocol is
viewed as the composition of protocol agents (each of which can
be represented by a state machine), the collaboration-based design
enables users to analyze, test, and change cross-cutting behavior
independently, thus allowing easier evolution and maintenance
([11], [12]).

Fig. 1 shows part of a protocol for registering IP phones at IP
telephony servers. There are four agents, namely the endpoint, the
station server, the gatekeeper, and the environment. (The
environment is not shown in Fig. 1 but is needed for modeling
user input and making the protocol state machine finite). The
environment and gatekeeper together with the endpoint
implement the authentication collaboration. It is a four-way
handshake to authenticate an endpoint. The environment,
endpoint, gatekeeper, and the station server collaborate to
implement the associate-station collaboration. It consists of one
two-way handshake between each of the two adjacent agents in
order to allocate necessary resources for an endpoint.
As a motivating example, a simplified protocol product line
consists of three protocol variants: 1) the authentication protocol
includes the authentication collaboration only, 2) the associate-
station protocol includes the associate-station collaboration only,
and 3) the authentication-associate-station protocol includes the
composition of the two collaborations. The complete protocol

product line is much more complex due to a larger number of
collaborations and compositions.

Figure 1. Registration Protocol (Partial Overview).

An example property (specified as a natural language description)
for the authentication protocol is: “It is always the case that
whenever the environment receives a REGISTER_CONFIRM
message, the authentication role in the gatekeeper is in
authenticated state”. An example property for the associate-
station protocol is “It is always the case that whenever the
environment receives a REGISTER_CONFIRM message, the
associate-station role in the gatekeeper is in bound state and the
associate-station role in the station server is in stim state”.

The motivation for this tool is the recognition that the properties
for these two protocols have a lot in common. For example, the
example properties in both protocols share the following
parameterized property: It is always the case that whenever the
environment receives a REGISTER_CONFIRM message, the A
role in the B agent is in C state. A, B, C are parameters to be
instantiated by concrete role, agent, or state in that specific
protocol. A similar pattern can apply to the other properties
between the two protocols. This led us to provide parameterized
properties that could be reused for different collaborations in
different protocol variants.

Since the authentication-associate-station protocol is the
composition of the above two collaborations, not only properties
from the two collaborations need to be verified again in this
protocol, but also the properties regarding the compositional logic
need to be verified. This includes making sure that the
compositional mechanism is correctly enforced as well as that the
composed protocol is behaving as expected. An example of the
former is that any incoming composite message is always
completely consumed, meaning that all of its inbound micro-
messages are always eventually consumed. An example of the
latter is that in the authentication-associate-station protocol, the
authentication collaboration has to be successful before the
associate-station collaboration can be invoked.

An example property for the authentication-associate-station
protocol is: “It is always the case that whenever the environment
receives a REGISTER_CONFIRM message, the Associate-
Station role in the gatekeeper is in bound state, the Authentication

role in the gatekeeper is in authenticated state, and Associate-
Station role in the station server is in stim state”.

Due to space limitations we cannot list all the properties of the
authentication-associate-station protocol here. In fact, if more
than one collaboration is involved in a protocol, the number of
relationships among incoming/outgoing messages,
inbound/outbound micro-messages, and the various states of
different roles in the protocol agents, can be exponential.

The key to addressing this problem is to provide tool support to
allow recurring patterns in the product line to be identified and
instantiated so that a batch of properties can be created and
reused. The use of recurring patterns not only contributes to the
completeness of the properties, but also speeds up specification.

The potential patterns include but are not limited to the following
two categories: patterns of collaborations and patterns of
compositional logic. An example of the former is that “It is
always the case that whenever the environment receives a
REGISTER_CONFIRM message, the A role in the B agent is in C
state”. An example of the latter is that “any incoming composite
message is always completely consumed”. Those patterns, once
identified, became an asset of the product line so that verification
of common patterns can be enforced in all products.

3.2 Design Rationale
A straightforward way to check the properties for each of the
three protocol variants of the protocol product line described
above is to specify each of them one by one and invoke a model
checker to verify them. However, for even a small-scale product
line, e.g., of twenty collaborations and ten possible compositions,
the work involved in tracking all the properties to be verified for
each protocol variant became quite hard to manage. Gearing the
product-line property specification process to reuse is therefore of
great importance to model-checking industrial product lines.

We identified the following needs for property specification and
management in a product-line scope. These needs provided the
design rationale behind the tool we developed:

1. The tool needs to keep track of which requirement(s) each
property specification is derived from and to make use of
common property patterns in the product line. This includes: 1)
associating properties with individual requirements. Note that the
satisfaction of one requirement may entail verification of several
properties, each targeting a different aspect of the requirement,
e.g., requirement on composition mechanism can turn out to be
properties regarding all the micro-messages being consumed
correctly; and 2) introducing product-line specific property
patterns that can be instantiated for individual members of the
product line. In contrast to the Property Specification Patterns [9],
the product-line specific patterns are intended as reusable assets
for the specific product line only. It is thus possible that two
different product-line patterns share the same Property
Specification Pattern while differing in the instantiation rules for
their parameters (e.g., some parameters may only be able to be
instantiated by messages from a certain agent) or their scope (e.g.,
some pattern can only be used in certain protocol variants).

2. The tool needs to keep track of which product-line member it is
targeting. This includes associating properties with their models,
as well as with the verification results. This is because the models

determine the validity of the properties being specified. If a
property is shown to be false, the requirement may need to be
modified (e.g., such a property may be an explanation for an
ambiguous requirement).

The next section will describe how the above design rationale is
supported by our tool.

3.3 Tool Support
The work presented in this section demonstrates a model checking
management tool, FormulaEditor, which we developed to support
the property specification and management for product lines.

The architecture overview of the tool is presented in Fig. 2. The
figure shows the tool being applied to a product line of three
members A, B, and C. The part enclosed in dotted lines is not part
of the tool but serves as input to it.

The tool has three main functions: project management, property
editing and model checking.

Project management. As mentioned before, property
specification is not an isolated process. Therefore, the tool helps
users manage the resources needed for linking the property
specification with the rest of the model checking and product line
development effort.

Each product line is managed as a project. The tool provides a
project configuration interface to let users create and specify
settings for resources that may be shared by the entire product
line (e.g., model checker location, common property file etc.).
Those common settings are loaded every time the project is
opened, e.g., the common-property pattern file will show up in
property-editing for all models in the project.

Figure 2. FormulaEditor Architecture Overview.

A property table contains all the properties specified for that
product (e.g., see Fig. 5). The importing-property-table and
import-project facility in the project management interface allow
a set of properties specified for one system or one product line to
be copied to another system or product line, leaving out the ones
that are no longer valid for the new system. This is accomplished
by automatically detecting atoms in the property that do not
belong to the system. Version control is enforced at single-system

granularity by detecting and clearing out-of-sync verification
results (i.e., a verification done before its model file changed is
out of sync).

Property editing. Property editing serves to generate product-line
specific patterns and product-specific properties. Fig. 3 shows the
interface for property editing. It is divided into three areas: the
upper area for selecting the building blocks of a property, the
middle area for composing a property in natural language, and the
lower area for composing or viewing a property as a temporal
logic formula. The preset patterns are shown in the pattern
selection part of the upper area. The default patterns are a
complete set of basic LTL and CTL patterns that can be used to
form any other LTL and CTL formulas [16].

Figure 3. Property Editing Overview.

To provide traceability between the properties and the
requirements, the tool also supports domain-customized natural
language descriptions for properties and allows users to tag
properties with the requirements from which they are derived.

In the product-line domain-engineering phase (i.e., generating
product-line reusable assets [37]), users can create parameterized
properties from the set of preset patterns (e.g., basic LTL and
CTL patterns or Property Specification Patterns [9] that recur in
the product line). Those new parameterized properties then can be
added to the preset patterns (stored in a common-pattern-file).
The patterns can be reused for property specification both within
the same system and across different systems in the product line.

In the product-line application-engineering phase (i.e., generating
product-specific assets [37]), users can instantiate the above-
mentioned patterns (both preset ones and the ones created by the
user on-the-fly) by replacing the parameters in the pattern with
concrete properties for the model file. They can also replace the
parameters with other patterns to customize a generic pattern.

The tool provides two mechanisms to ensure that the instantiation
process is done correctly. The first is to present users with a

selection of properties to instantiate the patterns. These include
the atomic properties (which we call “atoms”, e.g., a variable
defined in the model holding a value) extracted from the model as
well as past specified properties and patterns for this model. The
second mechanism is to provide a syntax-directed editing
environment to prevent ill-formed properties from being created
(e.g., mixing LTL with CTL properties) or saved (e.g., not-fully-
instantiated properties, bad syntax) into the property pool for a
specific product member.

Figure 4. Atom Selection Overview.

For example, “(ForAllPaths always ((
environment_sent_REGISTER) implies (ForAllPaths eventually
CTLproperty)))” is the natural language description of a
parameterized property derived from the Response Property
Pattern [9], yet partially instantiated with the
“environment_sent_REGISTER” message. The “LTLproperty”
and the “CTLproperty” are parameters to be filled with specific
properties in the application engineering phase. The
“environment_sent_REGISTER” message is selected from the
“atom selection overview” window, popped out by clicking the
“Atom Selections” in the upper area of Fig. 3. A screenshot of the
atom selection overview is shown in Fig. 4.

FormulaEditor recognizes variable declarations in SMV models
as atoms in a model. The tool then translates the atoms into its
corresponding basic event description, following a set of
translation rules approved by the domain engineers. In this way
the atoms presented to a user are domain-customized descriptions,
rather than their original forms in the model. For example, in the
SELEX project, the variable Authenticate_In denotes an inbound
micro-message, and we are only interested in whether the micro-
message is consumed or not (meaning that Authenticate_In is zero
or not). Therefore even though in the model Authenticate_In can
range from 0 to 9, only two atoms are extracted, i.e.,
“Authenticate_In _consumed” and “Authenticate_In _waiting”.
Model checking. For the model checking part of the tool, both
the property and the model are fed into a model checker. (In the
work described here, we used Cadence-SMV [27] as the backend
model checker, but we also have used CMU-SMV [28].) The tool
provides the following facilities to help manage the model
checking process in a product-line setting (as seen in Fig. 5)

1. Automatically formats a generic LTL or CTL property to the
form recognized by the back-end model checker; allows
verification of multiple properties at a time.

2. Provides easy access to all information associated with a
property (e.g., verification results, temporal logic type,
counterexample, requirement it comes from etc.) and can group
the properties according to different criteria (e.g., group by
verification results, or group by requirements).

3. Supports conditional verification when it is allowed by the
underlying model checker (Cadence-SMV in this case), i.e., users
can select some existing properties as assumptions for another
property. Those assumptions can be turned on or off before
checking, and the enabled assumptions are an integral part of the
verification result.

4. CASE STUDY
In the previous sections we introduced our tool-supported
technique based on the following two assumptions:

1) Property specification for model checking in an ad-hoc manner
(without automatic linkage from the requirements to the models)
is not likely to be reused as the system evolves.

2) Property specification for product lines without support for
reuse can be tedious and hard to manage.

The claim is that since our technique overcomes the above two
obstacles, it allows product-line property specification being
conducted in a more efficient and sustainable manner.

In this section we step through one case study that we used to test
the above claim. Since the focus of the technique is on property
specification and management, we do not address model
generation here.

Figure 5. Model Checking Management Overview.

4.1 Pacemaker Product Line
The second application of FormulaEditor was to a cardiac
pacemaker product line.

In previous work ([23], [24], [25]), we developed state machine
models for each of the products in this product line using UML
statecharts. We chose Cadence-SMV as our model checker
because of the existing knowledge on translating UML statecharts
to Cadence-SMV (e.g., [36]). The model translation is currently
done manually. We take the safety properties to check from the
systems’ safety requirements.
The reason for choosing this product line as our case study is that
it is an example of a safety-critical product line that would benefit
from the added assurance of formal verification. In addition, this
product line keeps growing, so being able to maintain traceability
among properties as the models evolve and manage the re-
verification process are essential if the project is to make a
smooth transition into model checking from model-based
development.

A pacemaker [10] is an embedded medical device designed to
monitor and regulate the beating of the heart when it is not
beating at a normal rate. It consists of a monitoring device
embedded in the chest as well as a set of pacing leads (wires)
from the monitoring device into the chambers of the heart. Here,
we only consider a single-chambered product line of pacemakers
that does pacing and sensing in the heart's ventricles.
The product line consists of the following four products:

BasePacemaker – This product has the basic functionality
shared by all pacemakers: generating a pulse whenever no heart
beat is sensed during the sensing interval.
ModeTransitivePacemaker – This product can switch
between InhibitedMode and TriggeredMode during runtime. In
the InhibitedMode, the pacemaker acts exactly like a
BasePacemaker. In the TriggeredMode, a pulse follows every
heartbeat to provide a different type of therapy.
RateResponsivePacemaker – This product acts similarly to
the BasePacemaker but contains an extra sensor allowing it to
adjust its sensing interval according to the patient’s current
activity level: LRLrate, for a patient’s normal activities and
URL rate, for when a patient is exercising.
ModeTransitive-RateResponsivePacemaker – This product
combines the features of the ModeTransitivePackemaker and
the RateResponsivePacemaker.

We model the pacemaker as a component-based system [2] ,
meaning that components serve as the functional units that are
composed for each product. The following components were
modeled in Cadence-SMV: a sensing component (BaseSensor)
that senses heart beat, a stimulation component (PulseGenerator)
that generates pulses to the heart, a controlling component
(PacemakerController) that configures different pacing and
sensing algorithms and issues commands, MotionSimulator and
HeartSimulator components that simulate the patient’s motion and
heart beat activities respectively, and a ExtraSensor component
that senses a patient’s activity level.

4.2 Product Line Property Specification
In this section, we describe the entire model-checking process, but
focus on Steps 3-5 which use the FormulaEditor tool.

1. Obtain the set of safety critical requirements that need to be
model checked.

Sample Requirements for BasePacemaker:

R1. When PacemakerController is in Sensing state and it receives
a sensed event from BaseSensor, then PacemakerController shall
command the BaseSensor to turn off at the next time unit.
R2. Whenever PacemakerController is in Refactoring state,
PulseGenerator shall remain in idle state.
R3. When PacemakerController is in Sensing state and the
SenseTime is up, the PacemakerController shall command the
BaseSensor to turn off at the next time unit.
Sample Requirements for ModeTransitivePacemaker:

R1, R2: same as BasePacemaker
R3.1 In Inhibited mode, when PacemakerController is in Sensing
state and the SenseTime is up, the PacemakerController shall
command the BaseSensor to turn off at the next time unit.
R3.2 In Triggered mode, when PacemakerController is in Sensing
state and there is no heartbeat sensed by BaseSensor, the
PacemakerController remains in Sensing state the next time unit.
2. Conduct a commonality analysis [37] of the requirements to
find recurring requirements.

We show such requirements here with the same number in
different products (e.g., R1 in BasePacemaker and R1 in
ModeTransitivePacemaker) as common requirements and
requirements with associated numbering (e.g., R3.1 and R3.2 in
ModeTransitivePacemaker) as a variation.

3. Starting from the product that has the fewest variabilities, build
a core set of properties and patterns to be reused from its
requirements

We started from BasePacemaker, as all its requirements appeared
in whole (i.e., R1, R2, R5) or in part (R3, R4) in the other three
products. By adopting an incremental process, specifying the
product with fewer variabilitiees first can maximize the
reusability of any specified property set. Each time we add a new
property, we first scan through the list of properties already
specified or imported to see if we can reuse any existing ones by
minimal modification effort. If not, we scan through the patterns
to find one that we can instantiate with minimal instantiation
effort. If we compose a new pattern out of existing patterns for a
new property, we save that pattern to the common pattern file for
product line reuse.

For example, the following pattern set was built for
BasePacemaker (we use the natural language description here
rather than the temporal logic formula because that is the format
we view when we search for possibility of reuse):

Pattern 1:(always ((LTLproperty1 and LTLproperty2) implies (
next LTLproperty)))

Pattern 2: (always (LTLproperty1 implies LTLproperty2))

Pattern 1 was built while specifying the property for R1. Pattern 2
was built while specifying the property for R2. These patterns
were subsequently reused in the property specification for other
requirements. When we specified properties for R3 and R5, we
used Pattern 1 and Pattern 2 separately. When we specified
property for R4, we reused property for R3 with one replacement
of an atom in it.

4. For each product, build its own property set by importing likely
property sets previously specified. These are then reused and the
product’s own variations added (i.e., modifying properties and
instantiating patterns).

For example, both ModeTransitivePacemaker and
RateResponsivePacemaker share requirements R1, R2, and R5
with BasePacemaker. They differ only in R3 and R4 by
introducing their own variations: Inhibited and Triggered mode
for ModeTransitivePacemaker, LRLrate and URLrate for
RateResponsivePacemaker.

Thus, for each product, we imported the entire property table of
BasePacemaker and then modified the properties for R3 and R4
respectively. By doing this, we shared the property set built for
BasePacemaker. We also shared the pattern set because the
patterns identified while specifying properties for BasePacemaker
were saved to the common pattern file and became part of the
property editing interface.

For ModeTransitive-RateResponsivePacemaker, we first imported
the property tables for ModeTransitivePacemaker and then
appended the property table for RateResponsivePacemaker,
deleting any repeated properties and renaming different properties
that happened to have the same name (the deleting and renaming
process was manually done). In contrast with importing the
property table only from the BasePacemaker, or only from
ModeTransitivePacemaker or RateResponsivePacemaker, being
able to import multiple tables had the benefit of maximizing the
property pool for ModeTransitive-RateResponsivePacemaker. A
discussion of this is given in Section 4.3.

5. Invoke the underlying model checker to check all properties in
the property set for each product. This was done in both
incremental mode as the property set was being built and in batch
mode to verify or re-verify as commonalities were imported.

Step 5 interleaves with step 4 in that for each property set built,
we model check it with Cadence-SMV right away. This is very
important since we build the property set as the variabilities
accumulate, so that a flaw detected in the model or in the property
for one product will not propagate to other products that share its
requirements or designs.

4.3 Discussion
1. Effort saved by using this technique

At the beginning of the process (step 1 in the above section), we
identified 28 requirements to be model-checked. In
BasePacemaker, by the end of the process, 2 property patterns
were identified, 2 properties were specified by instantiating those
two patterns, and 1 property was specified by reusing another
property specified for BasePacemaker with some modifications.
In the other three products, 3 properties were specified by reusing
existing properties in BasePacemaker without any modification.

In ModeTransitivePacemaker and RateResponsivePacemaker, an
additional 3 properties were specified by reusing BasePacemaker
properties with some modifications. In ModeTransitive-
RateResponsivePacemaker, 6 properties were specified by reusing
ModeTransitivePacemaker properties with some modifications.

Modifying previously specified properties is similar to changing
the instantiation of patterns as both the old and the new properties
share similar structures. Therefore, among the property
specification for the 28 requirements, 17 of them (about 61%)
actually benefited from the product-line specific pattern approach.

2. Pattern reuse and property reuse

There are two types of reuse that were useful in this case study:
pattern reuse and property reuse. Both can be used for specifying
properties for a single product or across a product line. However,
property reuse has the limitation that a property to be reused
cannot contain any variables not defined in the underlying model.
Thus, property reuse is more suitable for commonalities within a
product-line scope, and carries the assumption that models for
different products in the same product line adhere to a consistent
naming conventions. Pattern reuse, on the other hand, does not
have the above limitation and can be reused in any system.
However, pattern reuse usually requires more instantiation effort
than property reuse because it is more general.

A possible solution is to have partially instantiated patterns for
reuse, i.e., we can replace the variation part in a property by
generic parameters, or instantiate the common part in a pattern by
atoms shared by all products.

3. Utilization of verification results

Two types of verification results were found helpful in identifying
flaws:

1) Properties derived from requirements that were supposed to be
true but produced counterexamples. In this situation, the
counterexamples provided by the model checker were helpful in
locating the faults. For example, the property for R2 in the
ModeTransitive-RateResponsivePacemaker was initially shown to
be false. The counterexample showed that the PulseGenerator
stayed in Pulsing state after generating a pulse, indicating an error
in the state-transition logic for the PulseGenerator component. An
inspection of the model revealed an inconsistency when
translating from UML-statechart to Cadence-SMV code.

The counterexample itself sometimes revealed the problem
without going back to the model. For example, when we changed
“PacemakerController shall command the BaseSensor to turn off
at the next time unit” in R1 for BasePacemaker to “BaseSensor
shall be in the off state at the next time unit”, the property derived
from this modified requirement was shown to be false. The
counterexample showed that the state-change for BaseSensor
lagged two time units behind the command-issuing in
PacemakerController. Thus, either the requirement had to be
modified to be “When PacemakerController is in Sensing state
and it receives a sensed event from BaseSensor, then
PacemakerController shall command the BaseSensor to turn off at
the next three time unit” in order to be valid for the system, or the
system design (the model here) had to be changed.

The counterexamples showed the values that each involved
variable took in a trace leading to the false result. Currently,

variable names shown in counterexamples are the same as in the
model. Thus, good naming conventions helped locate faults in the
system design. We realize that there currently exists a gap
between variable names in the counterexample and variable
declaration in the atom-selection, as the latter is sugar-coated by
giving domain-customized descriptions. We plan to address this
issue by interpreting counterexample in terms of atoms.

2) Properties derived from variations of requirements that were
supposed to be false but verified true

Verifying variations of requirements helped identify several
vacuously true properties [1], i.e., properties that hold due to
undesired reasons. For example, if we were to change requirement
R4.1 for RateResponsivePacemaker from “when
PacemakerController is in LRL (normal rate) state and in Sensing
state, and the SenseTime is up, the PacemakerController shall
command the PulseGenerator to generate a pulse at the next time
unit” to “when PacemakerController is in LRL (normal rate) state
and in Sensing state, and the SenseTimeShort is up, the
PacemakerController shall command the PulseGenerator to
generate a pulse at the next time unit” and it still held for the
system, then we would need to check if the PacemakerController
always commanded the PulseGenerator to generate a pulse
disregard of SensTime up or not.
In this case study, we changed different atom instantiations when
reusing a pattern or property, to detect potentially vacuously true
properties. As we mentioned before, the benefit of maximizing
the property pool was for exactly this reason, since two similar
properties are not necessarily both true in the same model.

An added value of the tool-supported technique was in detecting
hidden requirements by testing different variations of one
requirement. The tool makes it convenient to instantiate different
property variations. Moreover, those variations specified for one
requirement in a product could be shared via property-table-
import by other products if they had a similar requirement, and be
quickly verified using batch-verification.

4. Support for evolution

1) Product-line change adaptation. Product lines evolve quickly,
so to be effective, a tool must readily accommodate frequent
changes. We categorize possible changes to a product line and
discuss how FormulaEditor handles each of them: (a) New
commonality: augment the core property/pattern set to include the
new commonality, and in each product in the product line, import
the property/pattern derived from this commonality and make
modifications when necessary. (b) New variability: augment the
property set for all affected products to include this new
variability, and augment the common pattern file if new patterns
are introduced during property-derivation for such a variability.
(c) Delete/modify existing commonality: update the core property
set, and update the property set for every product in the product
line. The common pattern file may be updated as well if new
patterns are introduced during modification. (d) Delete/modify
existing variability: update the property set for all affected
products. The common pattern file may be updated as well if new
patterns are introduced.

2) Model change adaptation using conditional verification. Note
that sometimes the property update is done ahead of the model
update, i.e., the model has not yet incorporated the new

requirement, since the update of the model usually takes more
time than updating the properties. The updated added properties
can then be set as conditional properties that are assumed to be
true for the incomplete model. Existing properties can continue be
verified given those conditional properties. Once the model is
completed, we restore those properties as normal properties and
verify them as before.

3) Property change adaptation. One restriction of the approach
mentioned in the paper is that while it is useful in incrementally
building a property set for each product in a product line, changes
in properties require manually updating each property set
affected. Importing property tables can speed this process, but can
still be labor-intensive given a large product line context.

A better solution could be to specify just the composition of a
property specification from parameterized building blocks and
automatically instantiate the full property specification once we
instantiate the decision model for the product line [37]. Geppert,
Li, Rößler, and Weiss [13] have successfully applied the idea to
test-case specification generation for product lines.

5. Mapping from requirements to properties

One benefit of property-editing tools (see the Related Work
section) is to help users develop formal, unambiguous
requirements suitable for model checking. This, when reflected in
our technique, is detecting one-to-many mappings between
requirements and atoms. For example, the initial requirement R1
for BasePacemaker was “when PacemakerController is in Sensing
state and it receives a sensed event from BaseSensor, then
BaseSensor should be turned off immediately”. The requirement
“BaseSensor should be turned off” is associated with a chain of
events in the model, i.e., “PacemakerController sent evSensor
off”, “BaseSensor received evSensor Off” and “BaseSensor is in
off state”. Those events, although all mapping to the same
requirement, do not happen within the same step. Thus,
instantiating the same pattern with different atoms generated
different verification results. Tying the property specification to
the model helped us identify potential ambiguities (since the
atoms for instantiating the patterns are all extracted from the
model). With the backend model checker integrated into the tool,
we were able to quickly verify a group of properties to get
detailed information about how to dismiss the ambiguity, e.g., by
changing “BaseSensor should be turned off immedately” to
“PacemakerController shall command the BaseSensor to turn off
at the next time unit”.
The insight gained by inspecting one-to-many mappings can also
help generate accurate properties for more complex component-
based systems or telecommunication protocols, where the delay in
response-chain inside components or in network communication
can significantly affect the validity of certain requirements.

Another benefit is that by reusing properties and patterns in the
product-line scope, users can significantly reduce the effort of
deriving the right properties from requirements. In addition, if a
pattern is found to be incorrect, then the properties instantiated
from it need to be corrected accordingly.

6. Possible applications

Although this technique starts from a product-line point of view,
it is not confined to use in a product line setting. We have, e.g.,
applied our technique to NASA’s Simplified Aid for EVA Rescue

(SAFER) system [8]. Initial results suggest that this technique can
help re-engineer existing property specifications for legacy
systems to support reuse in future system developments.

5. CONCLUSION
The work described here provides a tool-supported technique that
guides users in structured reuse of property specifications for
model-checking the members of a product line. Properties
specified via the tool are traceable to the underlying product-line
requirements, the SMV models, and the verification results. The
tool enables reuse of shared product-line properties, as well as of
product-line-specific patterns of properties, while carefully
preserving any distinctions among the product-line members.
Results from application to the two product lines show that the
tool also can manage the changes and re-verification needed as
the product line evolves (e.g., as new members or features are
added). By making it easier to specify, manage, and reuse
properties, we hope to make model-checking of product-line
systems more practical.

In the future we plan to make the technique more flexible by: 1)
making the atom-extraction rules easier to modify so that users
can change them at the time of specification; 2) investigating the
automatic instantiation of property patterns; and 3) allowing
properties specified elsewhere to be managed more easily, by
extending the property reuse management capability to allow
clean interfaces with other tools.

6. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under grants 0204139, 0205588 and 0541163. We thank Dr. Ben
Di Vito for providing the CMU-SMV code and properties for the
SAFER case study; Dr. Jeffrey Thompson for feedback on the
models and properties in the pacemaker case study; and Josh
Dehlinger, Hongyu Sun and Wei Zhang for feedback on an earlier
version of the tool. Our gratitude is furthermore extended to Dr.
David M. Weiss for his support in conducting this research.

7. REFERENCES
[1] Armoni, R., Fix, L. et. al. Enhanced Vacuity Detection in

Linear Temporal Logic. In Proc. of CAV’03 (Boulder, USA,
July 8-12, 2003). Springer 2003, 368-380.

[2] Atkinson, C. et. al. Component-Based Product Line
Engineering with UML. Addison-Wesley, 2002.

[3] Autili, M., Inverardi, P., and Pelliccione, P. A scenario based
notation for specifying temporal properties. In Proc. of the
SCESM’06 (Shanghai, China, May 27, 2006). ACM Press,
21-28.

[4] Beer, I. et. al. The Temporal Logic Sugar. In Proc. of CAV’
01 (Pasadena, CA, June 20-23, 2001). Springer, 363-367.

[5] Childs, A. et. al. CALM and Cadena: Metamodeling for
Component-Based Product-Line Development. IEEE
Computer, 39, 2 (Feb. 2006), 42-50.

[6] Clarke, E. M., Grumberg, O., and Peled D. A. Model
Checking. The MIT Press, 2000.

[7] Corbett, J. et. al. Bandera: Extracting Finite-state Models
from Java Source code. In Proc. of ICSE’00 (Limerick,
Ireland, June 4-11, 2000). ACM Press, 439-448.

[8] Di Vito, B. High-automation proofs for properties of
requirements models. International Journal on software
Tools for Technology Transfer, 3, 1 (Sept. 2000), 20-31.

[9] Dwyer, M. B., Avrunin, G.S., and Corbett, J.C. Patterns in
property specifications for finite-state verification. In Proc.
of ICSE’99 (LA, USA, May 16-22, 1999). ACM Press, 1999,
411-420.

[10] Ellenbogen, K.A., and Wood, M.A. Cardiac Pacing and
ICDs. Blackwell Science, Inc. 2005.

[11] Geppert, B., Mockus, A., and Rößler, F. Refactoring for
Changeability: A way to go? In Proc. of METRICS 2005
(Como, Italy, Sept. 19-22, 2005). IEEE Computer Society
2005, 13.

[12] Geppert, B., and Rößler, F. Effects of Refactoring Legacy
Protocol Implementations: A Case Study. In Proc. of
METRICS 2004 (Chicago, USA, Sept. 14-16, 2004). IEEE
Computer Society 2004, 14-25.

[13] Geppert, B., Li, J., Rößler, F., and Weiss, D. Towards
Generating Acceptance Tests for Product Lines. In Proc. of
ICSR’04 (Madrid, Spain, July 5-9, 2004). Springer 2004, 35-
48.

[14] Havelund, K., Lowry, M., and Penix, J. Formal Analysis of a
Space-Craft Controller using SPIN. IEEE Trans. on Software
Engineering, 27, 8 (Aug. 2001), 749-765.

[15] Holt, A. Formal Verification with Natural Language
Specifications: Guidelines, Experiments and Lessons So Far.
South African Computer Journal, 24, (Nov. 1999) 253-257.

[16] Huth, M., and Ryan, M. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge
University Press, 2004.

[17] Jörges, S., Margaria, T., and Steffen, B. FormulaBuilder: a
tool for graph-based modeling and generation of formulae. In
Proc. of ICSE’06 (Shanghai, China, May 20-28, 2006).
ACM Press, 815-818.

[18] Kaivola, R. Formal Verification of Pentium Pentium® 4
Components with Symbolic Simulation and Inductive
Invariants. In Proc. of CAV 2005 (Edinburgh, UK, July 6-10,
2005). Springer 2005, 170-184.

[19] Kishi, T., and Noda, N. Formal Verification and Software
Product Lines. CACM, 49, 12 (Dec. 2006). 73-77.

[20] Konrad, S., and Cheng, B. H. C. Facilitating the
Construction of Specification Pattern-based Properties. In
Proc. of RE'05 (Paris, France, Aug. 29-Sept.2, 2005). IEEE
Computer Society, 329-338.

[21] Kurshan, R. P. Evolution of Model Checking into the EDA
Industry. In Proc. of the Second Int’l Conf. on Automated
Technology for Verification and Analysis (ATVA) (Taipei,
ROC, Oct.31-Nov.4, 2004). Springer, 2-6.

[22] Li, H., Krishnamurthi, S., and Fisler, K. Modular
Verification of Open Features Using Three-Valued Model
Checking. Automated SW Eng., 12, 3 (July 2005), 349-382.

[23] Liu, J., Dehlinger, J., and Lutz, R. R. Safety Analysis of
Software Product Lines Using State-Based Modeling. In
Proc. of ISSRE 2005 (Chicago, USA, Nov. 8-11, 2005).
IEEE Computer Society 2005, 21-30.

[24] Liu, J., Dehlinger, J., and Lutz, R. R. Safety Analysis of
Software Product Lines Using State-Based Modeling.
Journal of Systems and Software. To Appear.
http://dx.doi.org/10.1016/j.jss.2007.01.047.

[25] Liu, J., Dehlinger, J., Sun, H., and Lutz, R. State-Based
Modeling to Support the Evolution and Maintenance of
Safety-Critical Software Product Lines. In Proc. of the 5th
Workshop on Model-Based Development for Computer-
Based Systems (MBD’07) (Tucson, USA, March 29, 2007).
IEEE Computer Society, to appear.

[26] Loer, K., and Harrison, M. D. An integrated framework for
the analysis of dependable interactive systems (IFADIS): Its
tool support and evaluation. Automated Software
Engineering, 13, 4 (Oct. 2006), 469-496.

[27] McMillan, K. Symbolic Model Checking. Kluwer Academic
Publishers, Boston, MA, 1993.

[28] Model Checking Group at CMU, 2006. The SMV System.
http://www.cs.cmu.edu/~modelcheck/smv.html.

[29] Mondragon, O., Gates, A. Q., and Roach, S. Prospec:
Support for Elicitation and Formal Specification of Software
Properties. In Proc. of the 3rd Workshop on Runtime
Verification (RV’2003) (Boulder, Colorado, July 14, 2003).
Elsevier, 1-22.

[30] Northrop, L., and Mcgregor, J. Components As Products.
News at SEI, 6, 1 (First Quarter 2003),
www.sei.cmu.edu/news-at-sei/columns/software-product-
line/2003/1q03/software-product-lines-1q03.htm.

[31] Reps, T. W., and Teitelbaum, T. The Synthesizer Generator:
a system for constructing language-based editors. Springer-
Verlag, 1989.

[32] Robby, Dywer, M. B., and Hatcliff, J. Bogor: A Flexible
Framework for Creating Software Model Checkers. In Proc.
of Testing: Academia & Industry Conf. – Practice And
Research Techniques (TAIC PART) (Windsor, United
Kingdom, Aug. 29-31, 2006), 3-22.

[33] Rushby, J. Formal Methods and their Role in the
Certification of Critical Systems. Technical Report SRI-
CSL-95-1, Computer Science Laboratory, SRI International,
Menlo Park, CA, 1995.

[34] Smith, R. L. , Avrunin, G. S., Clarke, L. A., and Osterweil,
L. J. Propel: an approach supporting property elucidation. In
Proc. of ICSE 2002 (Orlando, USA, May 19-25, 2002).
ACM Press, 11-21.

[35] Smith, M. H., Holzmann, G.J., and Etessami, K. Events and
Constraints a graphical editor for capturing logic properties
of programs. In Proc. of RE’01 (Toronto, Canada, Aug.21-
31, 2001). IEEE Computer Society, 14-22.

[36] Van Langenhove, S., and Hoogewijs, S. Integrating Cadence
SMV in the Verification of UML Software. In Proc. of the
8th Dutch Proof Tools Day (Nijmegen, The Netherlands,
July 2004), 15-29.

[37] Weiss, D. M., and Lai, C. T. R. Software Product Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

	2007
	A Tool-supported Technique for Specification & Management of Model-checking Properties for Software Product Lines
	Jing (Janet) Liu
	Miriam Hauptman
	Robyn Lutz
	Birgit Geppert
	Frank Rößler
	Recommended Citation

	FSE(LiuHauLutGepRo).pdf

