Mobility and Degradation of Pesticides and Their Degradates in Intact Soil Columns

Thumbnail Image
Supplemental Files
Date
1998
Authors
Arthur, Ellen
Rice, Patricia
Rice, Pamela
Anderson, Todd
Coats, Joel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Coats, Joel
Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

Laboratory studies were conducted to determine the mobility of parent pesticides and degradation products through the use of large undisturbed soil columns. The influence of vegetation on the mobility of pesticide adjuvants was also investigated. Modifications to the laboratory setup of soil columns for studying various pesticides, degradation products, and adjuvants were done to fit the needs of the particular compound being studied. To improve mass balances of volatile parent compounds, such as methyl bromide, as well as biodegradable (mineralizable) pesticide degradation products such as deethylatrazine, modifications of columns to accommodate isolation of volatile degradation products were accomplished by enclosure of the column head space and use of flow-through systems. Evidence of preferential flow of atrazine, deethylatrazine, metolachlor, and methyl bromide were indicated by the presence of either the 14C-compound or Br-(in the case of methyl bromideapplied soil columns) after the first leaching event. Diffusion through the soil matrix was also evident with a peak of14C in the leachate several weeks after pesticide (or degradate) application to the soil column. Deethylatrazine, a major degradate of atrazine, was more mobile than the parent compound. Vegetation had a significant positive effect on reducing the mobility of the adjuvants propylene glycol and ethylene glycol.

Comments

Reprinted (adapted) with permission from The Lysimeter Concept, 699(7); 88-114. Doi: 10.1021/bk-1998-0699.ch007. 1998 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 1998
Collections