10-15-2008

Direct Synthesis of Chrysosplenol D

George A. Kraus
Iowa State University, gakraus@iastate.edu

Sudipta Roy
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the Organic Chemistry Commons, Other Chemistry Commons, and the Polymer Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/366. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Direct Synthesis of Chrysosplenol D

Abstract
An aldol condensation and an Algar–Flynn–Oyamada oxidative cyclization were key steps in the direct synthesis of chrysosplenol D, an efflux pump inhibitor that can potentiate the activity of commercially important antibiotics and antimalarials.

Disciplines
Chemistry | Organic Chemistry | Other Chemistry | Polymer Chemistry

Comments
Reprinted (adapted) with permission from Journal of Natural Products, 71(11); 1961-1962. Doi: 10.1021/np800423j. Copyright 2008 American Chemical Society.
Direct Synthesis of Chrysosplenol D

George Kraus* and Sudipta Roy

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received July 11, 2008

An aldol condensation and an Algar–Flynn–Oyamada oxidative cyclization were key steps in the direct synthesis of chrysosplenol D, an efflux pump inhibitor that can potentiate the activity of commercially important antibiotics and antimalariais.

Chrysosplenol D (3′,4′,5-trihydroxy-3,6,7-trimethoxyflavone) (1) was initially isolated from the Chinese medicinal plant Artemisia annua L. (Asteraceae). Later, it was characterized both from Ehretia amoena, a plant traditionally used in Uganda to treat sleeping sickness, and from Vitex trifolia, another Chinese folk medicine plant used to treat cancer. It was also found in Plectranthus cylindeus and in the African medicinal plant Psidla trinervia. Chrysosplenol (2) and vitexcaprin (3) are also members of this class of naturally occurring 3-methoxyflavones.

The strong interest in chrysosplenol D stems from its ability to potentiate the already potent antimalarial activity of artemisinin and from its ability to potentiate the activity of norfloxacin. Presumably this activity is due to its inhibition of the multidrug resistance (MDR) efflux pumps in Plasmodium falciparum and in Staphylococcus aureus. One limitation to the further evaluation of 1 is its low natural abundance. As part of our program to enhance plant-derived natural products, we report herein a direct total synthesis of chrysosplenol D (1). Our strategy involved the synthesis of a chalcone intermediate, readily generated via an aldol condensation of ketone 4 with aldehyde 5, that would be subjected to oxidative cyclization, methylation, and deprotection.

Ketone 4 was synthesized by Friedel–Crafts acylation of commercially available 3,4,5-trimethoxyphenol. An aldol reaction between aldehyde 5 and ketone 4 gave the known chalcone 6 in 81% yield as shown in Scheme 2. Excess ketone was used for complete consumption of aldehyde in order to avoid purification problems due to the similar Rf values of 5 and 6 as well as the poor solubility of chalcone 6. Oxidative cyclization of chalcone 6 was challenging. Apparently, the Algar–Flynn–Oyamada (AFO) reaction does not work well for the synthesis of o-methoxyflavones. However, using excess hydrogen peroxide and sodium hydroxide and extending the reaction time, we were able to realize the cyclization of chalcone 6.

Although we expected to obtain a flavonol, the usual product in the AFO oxidation, dihydroflavonol 7, was formed in this reaction in 60% yield. Iodine oxidation of 7 produced 8, which was methylated to afford 3-methoxyflavone 9 in 77% yield. This compound had been previously prepared by Horie using the Allan–Robinson flavone synthesis. Aluminum tribromide-mediated selective demethylation of 9 and debenzylation of 10 using a catalytic amount of 10% Pd–C afforded chrysosplenol D (1) in 84% yield from 9. The 1H NMR spectrum matched the literature spectrum.

In summary, we have achieved a direct synthesis of the biologically important 3-methoxyflavone chrysosplenol D. The synthesis of 1 was achieved in six steps from 5 in 31% overall yield. This synthetic route will make possible extensive evaluation of the efflux pump inhibitor 1.

* Corresponding author. Phone: 515-294-7794. E-mail: gakraus@iastate.edu.

Scheme 1. Retrosynthetic Plan

Experimental Section

General Experimental Procedures. 1H and 13C NMR spectra were recorded on either a Varian 300 MHz or a Varian 400 MHz Fourier transform NMR spectrometer. HRMS were recorded on a Kratos model MS-50 spectrometer, and LRMS were performed with a Finnigan TSQ/700 mass spectrometer. All experiments were performed under an Ar atmosphere unless otherwise noted.

Compound 6. To a stirred solution of ketone 4 (1.09 g, 4.8 mmol) and aldehyde 5 (1.27 g, 4.00 mmol) in EtOH (40 mL) at 0 °C was added freshly powdered KOH (110%, 1.30 g, 20 mmol). The mixture was slowly allowed to warm to rt and stirred for 56 h. The solvent was evaporated to approximately one-fifth the original volume (~5~10 mL). Ic-cold H2O (~2 mL) was added, and the mixture was neutralized with 2 N HCl. It was then extracted with EtOAc (3 × 50 mL) and dried over Na2SO4. The solvent was evaporated, and the crude residue was purified by Si gel cc (hexanes/EtOAc, 3:1) to yield compound 6 (1.70 g, 81%) as a yellow oil: 1H NMR (CDCl3, 300 MHz) δ 7.78 (s, 2H), 7.52–7.31 (m, 10H), 7.25–7.19 (m, 2H), 6.96 (d, 1H, J = 8.4 Hz), 6.31 (s, 1H), 5.24 (s, 2H), 5.22 (s, 2H), 3.89 (s, 3H), 3.87 (s, 6H), 13C NMR (CDCl3, 75 MHz) δ 192.7, 167.2, 160.1, 155.0, 151.2, 148.9, 143.5, 137.0, 136.8, 135.3, 128.8, 128.7, 128.0, 127.3, 127.2, 124.5, 123.5, 114.2, 114.1, 108.8, 96.7, 71.4, 70.9, 61.9, 61.3, 56.1; LRMS (EI) m/z 526 (M+), 435, 318; HRMS (EI) calcd for C32H30O7 526.1992, found 526.2002.

Compound 7. To a stirred solution of chalcone 6 (527 mg, 1 mmol) in MeOH (45 mL) at 0 °C was added 10% aqueous NaOH (15 mL) followed by 30% aqueous H2O2 (10 mL). The mixture was stirred at 0 °C for 1 h, then slowly allowed to warm to rt and stirred for 16 h. Cold H2O (~1 mL) was added, and then the mixture was acidified with 2 N aqueous HCl. Solid NaCl was added to the solution, and the mixture was then filtered with CH2Cl2 (5 × 50 mL). The combined organic phase was dried over Na2SO4. The solvent was evaporated and the crude residue was purified by Si gel cc (hexanes/EtOAc, 1:1) to yield the dihydroflavonol 7 (325 mg, 60%) as a yellowish solid: mp 168–170 °C; 1H NMR (CDCl3, 300 MHz) δ 7.50–7.32 (m, 10H), 7.19–6.95 (m, 3H), 6.32 (s, 1H), 5.20 (s, 4H), 4.96 (d, 1H, J = 12.3 Hz), 4.45 (d, 1H, J = 12.0 Hz), 4.00 (s, 3H), 3.88 (s, 3H), 3.85 (s, 3H); LRMS (EI) m/z 542 (M+), 360, 334 (100%), 303, 269, 181; HRMS (EI) calcd for C32H30O7 [(C32H30O7)]+ 542.1949, found 542.1948.

Compound 8. To a stirred mixture of dihydroflavonol 7 (108 mg, 0.2 mmol) and anhydrous KOAc (884 mg, 9 mmol) in glacial acetic acid (7 mL) at 0 °C was added dropwise I2 (115 mg, 0.45 mmol) dissolved in HOAc (7 mL) over 20 min. The mixture was then boiled for 5 h. It was cooled to rt, and ice-cold H2O (~20 mL) was added. The excess I2 was removed by addition of solid Na2SO4. It was extracted with EtOAc (3 × 40 mL), and the combined organic phases were dried over Na2SO4. The solvent was evaporated and the crude residue was purified by Si gel cc (hexanes/EtOAc, 1:1) to yield flavonol 8 (84 mg, 78%) as a yellowish oil: 1H NMR (CDCl3, 300 MHz) δ
Figure 1. Structures of 1–3.

Scheme 2. Synthesis of Chrysosplenol D

References and Notes