8-13-2016

(Magneito)caloric refrigeration: is there light at the end of the tunnel?

Vitalij K. Pecharsky
Iowa State University and Ames Laboratory, vitkp@ameslab.gov

Jun Cui
Iowa State University, cuijun@iastate.edu

Duane D. Johnson
Iowa State University, ddj@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_pubs

🔗 Part of the Energy Systems Commons, Heat Transfer, Combustion Commons, and the Materials Science and Engineering Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ameslab_pubs/409. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
(Magneto)caloric refrigeration: is there light at the end of the tunnel?

Abstract
Caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by very small perturbations of the driving field(s).

Keywords
magnetocaloric effect, electrocaloric effect, elastocaloric effect, caloric materials, caloric cooling, caloric heat pumping

Disciplines
Energy Systems | Heat Transfer, Combustion | Materials Science and Engineering

Comments
This is a manuscripts of an article published as Pecharsky, Vitalij K., Jun Cui, and Duane D. Johnson. "(Magneto) caloric refrigeration: is there light at the end of the tunnel?." Phil. Trans. R. Soc. A 374, no. 2074 (2016): 20150305. DOI: 10.1098/rsta.2015.0305. Posted with permission.

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_pubs/409
As the publishing schedule is strict, please note that this might be the only stage at which you are able to thoroughly review your paper. Please pay special attention to author names, affiliations and contact details, and figures, tables and their captions. No changes can be made after publication.

The following queries have arisen during the typesetting of your manuscript. Please answer these queries by marking the required corrections at the appropriate point in the text.

<table>
<thead>
<tr>
<th>Q1</th>
<th>Reference [12] (in the author file) has been repeated and hence the repeated version has been deleted and then re-numbered. Please check.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>While the online version of figure 2 will be in colour, we have been instructed to print the figure in black and white. Please note that if you have explicitly referred to colour in the caption this may affect the legibility of the figure in print.</td>
</tr>
<tr>
<td>Q3</td>
<td>We have changed the variable ‘J’ to ‘j’ here and elsewhere. Please check and confirm whether our change made is appropriate.</td>
</tr>
</tbody>
</table>
Caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by very small perturbations of the driving field(s).

This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.

1. Introduction

Reversible thermal events in solids, aka caloric effects (the name ‘caloric’ derives from Latin calor, literally ‘heat’), have been known for over a century—they occur when a constant ‘control’ field acting upon a material is perturbed. Magnetocaloric, electrocaloric and elastocaloric effects are all observed as materials’ temperature (entropy) changes when the strength of magnetic, electrical or stress field, respectively, is altered adiabatically (isothermally). Underlying any and all caloric effects are specific components of the total entropy of a solid that can be most easily influenced by the perturbation of the corresponding control, or ‘driving’ field. Take a magnetic metal as an example, where three fundamental contributions to the total entropy can be recognized [1]: electronic (S_E), lattice (S_L) and magnetic (S_m). The magnetic entropy, which represents disorder of the
individual magnetic moments, either electronic (spin and orbital) or nuclear or both, is most probably to be affected when the strength of a magnetic field surrounding the material is changed. As the magnetic field rises (falls) isothermally by $\pm \Delta H$, magnetic disorder generally gets reduced (increased), thus bringing the magnetic part of the total entropy down (up) by $\pm \Delta S_m$. When ΔH is applied adiabatically, the total entropy ($S_e + S_L + S_m$) of a solid must remain constant, hence as one component of the total entropy goes up (down) others must equivalently fall (rise) so that in our example $\Delta S_e + \Delta S_L + \Delta S_m = 0$ as the result of the perturbation and, therefore, temperature of a solid must go down (up).

In the absence of losses, caloric effects can be exceptionally efficient forms of energy conversion. For example, magnetic moment–magnetic field coupling, being a quantum mechanical effect, approaches 100% efficiency when hysteresis and eddy currents are both negligible. The potential for producing reversible caloric effects with high efficiency in solids underpins a variety of cooling and/or heat pumping applications based on the magnetocaloric, elastocaloric and electrocaloric effects. Among the three, cooling using magnetocaloric effect is most mature. Following pioneering work by Debye & Giauque [2–4] in 1920s, adiabatic demagnetization refrigeration has become a well-established commercial technology routinely employed today to reach ultra-low temperatures in research environment. Some 50 years later, seminal work by Brown, Steyert and Barclay [5–9] demonstrated that magnetocaloric effect may be useful around room temperature, thus delineating a roadmap toward temperature spans much larger than the magnetocaloric effect itself, even if with zero cooling power at the time. Major breakthroughs occurred about 20 years later, when Pecharsky & Gschneidner [10–12] reported the discovery of the giant magnetocaloric effect in Gd$_5$Si$_2$Ge$_2$ and related compounds, and Zimm et al. [13] demonstrated a near-room-temperature magnetic refrigerator reliably producing cooling powers exceeding 500 W using elemental Gd while employing a 5 T driving field. These two developments opened a new chapter in magnetocaloric cooling, taking first steps toward the projected transformation of a laboratory curiosity into a line of commercial cooling devices using magnetocaloric effect [14].

Similar to magnetocaloric cooling, the feasibility of exploiting the electrocaloric effect has been demonstrated first at cryogenic temperatures by Radebaugh et al. [15,16], and later near-room temperature in several laboratory-scale devices by Sinyavsky & Brodyansky [17], Jia & Ju [18], Gu et al. [19,20] and Wang et al. [21]. Finally, elastocaloric cooling is getting some serious attention after Cui et al. [22,23] demonstrated a cooling device based on the principle suggested by Annaorazov et al. [24]. Despite a number of successful demonstrations, all three near-room temperature caloric cooling technologies remain in their infancy, mostly due to the facts that (i) caloric effects that can be produced in readily available driving fields without damaging a material are relatively weak; (ii) active regeneration is required to achieve the temperature span of a typical vapour-compression device and (iii) caloric material - caloric cooling/heat pumping device integration is, therefore, far from trivial.

Over the last 20 or so years various aspects of caloric materials and caloric refrigeration/heat pumping devices have been reviewed in a number of publications [25–41] and a few books [42,43]. Readers interested in details and the then-current state of the art are referred to all of these quality publications. As suggested by the title of this work, here we restrict ourselves to discussing materials-related issues that may lead to stronger caloric effects generated by driving fields that are easily produced and maintained, with the goal to support accelerated development of better caloric materials and, therefore, broad adoption of these solid-state caloric cooling technologies in the foreseeable future. Magnetocaloric materials will predominantly be employed as examples; however, most of the discussion below is expected to be applicable to all three categories of caloric solids.

2. Caloric effects: where are the limitations?

Rephrasing the key message from the last paragraph of the introduction, availability of materials with substantially enhanced caloric effects, achieved preferably in driving fields much reduced
compared with those that are customary today is expected to both brighten the light at the end of the tunnel and considerably shorten the road through it. The first question we, therefore, must address is: Where are we today with respect to the fundamental limits of the three kinds of caloric effects of interest?

With gas constant \(R \), total angular (spin) momentum \(J \) for 4f (3d) metals, molar magnetic entropy of a solid in which \(x \) is the molar fraction of identical magnetic moment-carrying species, the total available magnetic entropy, \(S_m \), is limited to

\[S_m = xR \ln(2J + 1) \text{ J mol}^{-1} \text{ K}^{-1}. \]

(2.1)

For purely magnetic phenomena, neglecting the electronic (\(C_e \)) and magnetic (\(C_m \)) specific heats, and assuming that the lattice molar specific heat, \(C_L \), is at its limit of 3R J mol\(^{-1} \) K\(^{-1} \) (the latter is a reasonable approximation around 300 K for many intermetallic compounds and metallic alloys), the fundamental limits for the conventional magnetocaloric effect are, therefore, easily established

\[\Delta S_m = \pm S_m \]

(2.2)

and

\[\Delta T_{ad} \cong \pm \left(\frac{x}{3} \right) T \ln(2J + 1), \]

(2.3)

where \(\Delta S_m \) is the isothermal magnetic entropy change, \(\Delta T_{ad} \) is the adiabatic temperature change and \(T \) is the absolute temperature. Hence, for elemental Gd (\(J = 7/2 \)) at approximately 300 K, \(\Delta S_m \) is limited to about \(\pm 17.3 \text{ J mol}^{-1} \text{ K}^{-1} \) (\(\pm 110 \text{ J kg}^{-1} \text{ K}^{-1} \) or \(\pm 0.87 \text{ J cm}^{-3} \text{ K}^{-1} \)) and \(\Delta T_{ad} \) is limited to about \(\pm 208 \text{ K} \). For a hypothetical M\(_2\)X compound (\(M \) is 3d element and \(X \) is non-magnetic) with the Curie temperature, \(T_C \) near 300 K, maximum \(\Delta S_m \) and \(\Delta T_{ad} \) are reduced to \(\pm 9.9 \text{ J mol}^{-1} \text{ K}^{-1} \) (\(\pm 3.9 \text{ J mol}^{-1} \text{ K}^{-1} \)) and \(\pm 120 \text{ K} \), respectively, when \(J = 5/2 \) (\(J = 1/2 \)). These simple estimates are in agreement with more rigorous calculations of Tishin [44]. In reality, \(S_m \) is removed over a large range of temperatures, i.e. equation (2.2) is transformed into

\[|\Delta S_m| \ll |\pm S_m|, \]

(2.2a)

and magnetocaloric effect peaks near \(T_C \), being proportional to \((\partial M/\partial T)dH \) (\(M \) is magnetization, \(H \) is magnetic field). The fields required to reach the fundamental limits of \(\Delta S_m \) and \(\Delta T_{ad} \) exceed 10000 kOe [44] and are, therefore, impractical. Readily available magnetic fields are always severely limited, and typically observed \(\Delta T_{ad} \) are about 1–4 K for magnetic field change of about 10–15 kOe [28]—a minuscule fraction of the nature-imposed limits.

Most-studied magnetocaloric materials order magnetically via second-order phase transitions. A handful of them [27–29,39] exhibit magnetoelastic first-order phase transitions where the magnetic ordering/disordering may be coupled with either simple volume discontinuities or substantial rearrangements of the crystal lattices [10,45–48]. This coupling leads to the giant magnetocaloric effect, where the conventional magnetic moment-only part given by equations (2.1)–(2.3) may become strongly enhanced by an elastic contribution, which is the difference of the entropies of the low- and high-field polymorphs of the material, \(\Delta S_{el} \) [48,49]. Obviously, the enhancement can only be expected when both \(\Delta S_{el} \) and \(\Delta S_m \) have identical signs because the total observed magnetic field-induced entropy change is \(\Delta S_M = \Delta S_m + \Delta S_{el} \). Although we note that the separation of magnetic and elastic contributions is only formal because they are inseparable during a first-order magnetostructural phase transition—\(\Delta S_m \) scales with \(\Delta H \) [5,50], but \(\Delta S_{el} \) necessarily becomes magnetic field-independent when \(\Delta H \) exceeds a certain critical value that is sufficient to complete the rearrangement in the crystal lattice [48,51]. The difference in behaviour of these two thermodynamic quantities with field, taken together with the difference in behaviours of the conventional and giant magnetocaloric effects [52] allows for each to be quantified from the analysis of behaviour of the magnetocaloric effect as a function of \(\Delta H \) [51,53,54]. Especially in low magnetic fields, \(\Delta S_{el} \) may substantially exceed \(\Delta S_m \), which identifies a promising path forward toward magnetocaloric materials exhibiting very strong magnetocaloric effects in relatively weak magnetic fields.
Electrocaloric effect originates from the entropy changes associated with the variation in dipole order in a polar dielectric induced by an electric field. Switching between non-polar and polar phases isothermally (adiabatically) produces an entropy (temperature) change, \(\pm \Delta S_d \) (\(\pm \Delta T_{ad} \)). The maximum dipolar entropy, \(S_d \), in a polar dielectric is [55,56]

\[
S_d = xR \ln(\Omega) \text{mol}^{-1} \text{K}^{-1},
\]

where \(\Omega \) is the number of discrete equilibrium orientations of identical dipolar entities, and \(x \) is the same as in equation (2.1) but with respect to electric dipoles. Given that the difference between the conventional magnetocaloric and conventional electrocaloric effects lies in the nature of the ordering species (magnetic moments versus electric dipoles), both effects have comparable upper bounds [55], i.e.

\[
\Delta T_{ad} \equiv \pm \left(\frac{x}{3} \right) T \ln(\Omega). \tag{2.5}
\]

When the electrocaloric effect is purely from dipolar ordering, \(\Delta S_d \) and \(\Delta T_{ad} \) are related to polarization, \(P \), as

\[
\Delta S_d \equiv \pm \frac{1}{2} \beta P^2 \left\{ \begin{array}{l}
\Delta T_{ad} \equiv \pm \frac{1}{2T} \frac{T \beta P^2}{C} \end{array} \right., \tag{2.6}
\]

where \(\beta = \ln(\Omega)/(\varepsilon_0 \Theta) \), \(C \) is specific heat, \(\varepsilon_0 \) is vacuum permittivity and \(\Theta \) is an effective Curie coefficient [55,57]. Hence, to realize a large electrocaloric effect, there must be a large \(|\Delta S_d| \) associated with the change of \(P \), and a dielectric material must support a large \(|\Delta P| \) induced by an external field. Ferroelectrics (FEs) just above an FE (dipole-ordered)–paraelectric (PE, dipole-disordered) phase transition are most useful because of the largest electric field-induced \(|\Delta P| \).

Several ferroelectrics exhibit \(\Delta T_{ad} \) in excess of 10 K and \(|\Delta S_d| \) over 50 J kg\(^{-1}\) K\(^{-1}\) [58–60] near FE transitions, even if in fields approaching dielectric breakdown. We note that while it is easy to generate very strong electric fields in small gaps, generation of magnetic fields in excess of approximately 2 T generally requires superconducting magnets or bulky Halbach-like arrays [61]. Like magnetocaloric, the electrocaloric effect may be strongly enhanced by \(\Delta S_{el,i} \), i.e. become giant electrocaloric effect due to accompanying structural changes that result from ferroelastic coupling.

Elastocaloric (aka thermoelastic) effect is related to reversible crystallographic phase transformations [62,63]. The latter are central to the enhancement of spin- (dipole)-order effects in materials with giant magnetocaloric (electrocaloric) effects. In a way, elastocaloric refrigeration is similar to vapour-cycle cooling: both use stress to induce a phase transformation and use the corresponding entropy change, but the refrigerant is liquid/vapour for vapour cycle, and solid/solid for elastocaloric cooling [22].

For example, when a thermoelastic shape memory material under stress switches between austenitic and martensitic phases releasing or absorbing latent heat, \(\Delta Q_{el} = \pm T \Delta S_{el} \), the entropy change can be experimentally determined from either direct calorimetric measurements [64] or indirectly from the Clausius–Clapeyron equation (\(p \) is pressure and \(\Delta V \) is phase volume change):

\[
\Delta S_{el} = \left(\frac{\partial p}{\partial T} \right) \Delta V \tag{2.7}
\]

and

\[
\Delta T_{ad} \equiv -\frac{T \Delta S_{el}}{C_L},
\]

assuming \(C_L \) remains nearly constant. Notably, simple thermodynamics-derived relationships similar to equations (2.1) and (2.4) are not applicable within the realm of elastocaloric materials, and density functional theory calculations of the electronic and phonon contributions to the total entropy based on the chemistry of a given material, as well as actual structures of both the austenitic and martensitic phases, are needed for ab initio predictions of \(\Delta S_{el} \).

For some NiTi-based alloys, \(\Delta Q_{el} \approx 20 \text{J g}^{-1} \) [65] has been reported, giving \(\Delta T_{ad} \approx 85 \text{K} \), assuming \(C_L \approx 3R \). The maximum observed \(\Delta T_{ad} \) is \(\approx \pm 20 \text{K} \) [22], i.e. elastocaloric effect reaches approximately 25% of the maximum given by equation (2.7), yet this relatively high value has
been achieved at tensile stress approaching stress at failure. Compared with magnetocaloric and
electrocaloric effects, elastocaloric effect remains least explored for its applicability to caloric
effect-based refrigeration and heat pumping applications.

To sum up, present day caloric materials realize only small fractions of their magnetic-to-
thermal, electric-to-thermal or stress-to-thermal energy conversion potentials. Fields that are easy
to produce, maintain and perturb, and certain not to damage a caloric material, are only resulting
in caloric effects that are in the range of a few per cent of the corresponding limiting values.
This is indeed quite encouraging for both basic and applied science of caloric materials and
caloric-based devices as all of the known and, predictably, hitherto undiscovered systems and
compounds are very far away from the respective performance plateaus, offering challenging
yet truly exciting materials development opportunities with a high probability to achieve quite
remarkable improvements in the future.

3. Non-equilibrium states: are they the light?

In addition to exhibiting best in each class caloric performance, first-order phase transitions
are notorious for the occurrence of non-equilibrium states manifested as history dependence,
kinetically arrested states, hysteresis and phase separation. These features are usually considered
detrimental to caloric performance and have been routinely dealt with by adjusting chemistry to
shift a promising system toward equilibrium behaviour, which often results in the suppression
or even complete destruction of the first-order nature of the phase transition and, therefore,
leads to much reduced, conventional caloric effects making thus modified materials rather
common [12,66]. On the other hand, non-equilibrium phenomena are unique because of the
potential for far greater changes of nearly all materials’ properties, including caloric effects.

Consider a hypothetical caloric material system in the vicinity of a first-order phase transition.
Two-dimensional phase diagrams drawn in driving field (Φ)–temperature (T) coordinates are
schematically illustrated in figure 1. The diagram in figure 1a only shows the phase transition
for the case when Φ increases at constant temperature, henceforth the ‘direct’ transformation.
The ‘reverse’ phase transition when Φ changes in the opposite directions at T = const. generally
occurs in a different region of the diagram as shown in figure 1b because of hysteresis. The
reverse transformation generally also involves phase separation. We note that Φfinish and Φstart
are identical in magnitude to the corresponding magnetic entropy and temperature changes when
a specific entropy change occurs. In the absence of energy losses, repeated cycling along either of
the two described pathways will continue to very efficiently produce identical ±ΔTad that are,
unfortunately, weak.

A much different response is expected when the same magnetic field increment +ΔΦ is
applied when the system is initially in point E and moves along the path E → F illustrated
in figure 1a. Large changes in the relative concentrations of the coexisting phases scale nearly linearly with field and can be determined using the lever rule: e.g. \(x_1 \) is the volume fraction of PM phase and \(1 - x_1 \) for FM phase at point E and \(x_2 \) for PM and \(1 - x_2 \) for FM at point F. When added to the conventional \(\Phi^2/3 \) contribution, this leads to disproportionally large change in magnetization and \(S_m \) as the system moves from being predominantly paramagnetic \((x_1 > x_2) \) in E to predominantly ferromagnetic \((x_1 < x_2) \) in F and, therefore, a large \(\Delta \Phi \) will follow. Note that at the beginning (point E), the system is inside the non-equilibrium phase-separated state, and the value of \(x_1 \) will depend on the history, i.e. how the system has reached point E. Dependent on the actual magnitude of \(\Delta \Phi \) the system may remain inside the non-equilibrium phase-separated state at the end (see figure 1a, point F), although it may also move into the equilibrium ferromagnetic state if the field increment is sufficiently large to cross \(\Phi_{\text{finish}} \) boundary. In either case, reducing the field by \(-\Delta \Phi\) will not return the system to point E because of hysteresis.

Figure 1b illustrates the same region of temperatures and fields as figure 1a, except it now details the reverse phase transition which occurs when either or both temperature and field are reduced. The reverse phase transition also involves a non-equilibrium, phase-separated state; however, due to hysteresis, it is shifted to the left compared with figure 1a. The region of the direct phase transformation is delineated with thin dashed-dotted lines and shown for reference. The original path E → F discussed in the previous paragraph is now illustrated by a thin dotted arrow and it is assumed to have already occurred. Hence, in point F, the system consists of \(1 - x_2 \) FM phase, and \(x_2 \) PM phase where, according to figure 1a, \(x_2 < 0.5 \). A simple adiabatic removal of the field will not change \(x_2 \) because the system is outside the reverse phase transformation region. Then, both the ferromagnetic and paramagnetic phases present in the system will exhibit conventional and small magnetocaloric effects, both being proportional to \(\Phi^2/3 \). In the proximity of the phase transition, magnetocaloric effects in the paramagnetic and ferromagnetic states are nearly identical [52] and, therefore, the result will be a weighted average of the two equilibrium paths (B → A and D → C in figure 1a), shown schematically in figure 1b as path F → E′ with \(\Delta \Phi \) (also being the weighted average), which is illustrated as a short horizontal arrow pointing at E′.

To realize the giant magnetocaloric effect upon field reduction, the system must be first moved into the point G; then \(-\Delta \Phi\) will reduce volume fraction of the PM phase from \(x_2 \) to \(x_1 \) and produce a large \(\Delta \Phi \), once again shown as a horizontal arrow pointing to H (figure 1b). Similar to field reduction starting from point F discussed in the previous paragraph, the positive field increment
applied at point H will only lead to a small, conventional ΔT_{ad} (the weighted average of those shown in A → B and C → D) and, in order to induce the giant magnetocaloric effect again, the system must be shifted into point E before the next field application. The question is—What, if any, can be done to move repeatedly along the EFGH loop and repeatedly trigger a giant magnetocaloric effect?

One possible scenario is illustrated in figure 2a, where the hysteresis is much smaller compared with figure 1, and therefore, phase-separated states corresponding to the direct and reversed transformations largely, but not completely overlap. We note that reduction of hysteresis can be achieved without sacrificing the first-order nature of the phase transformation by engineering an appropriate microstructure that promotes both the direct and reverse transition; one example has been discussed by Moore et al. [67].

Assume that the system has reached the initial point E in exactly the same way as shown in figure 1a. For the positive $\Delta \Phi$ the system follows path E → F as already discussed above. Assuming that the volume fractions of the paramagnetic phase are, respectively, x_1 and x_2 in points E and F, and considering that point F is inside the reverse phase transformation region, a negative $\Delta \Phi$ will effectively move the system along the G → H line, however, not without an irreversible loss. Because the field-up and field-down half-cycles are fully contained within the corresponding phase-separated regions, the resulting ΔT_{ad} are expected to be nearly identical in magnitude but different in signs as illustrated by the matching horizontal arrows. Unfortunately, the irreversibility present in the complete EFGH cycle will result in a different x_1' at the point H compared with the initial state of the system in point F and after a few cycles the system will move into a steady, yet largely different, state with reduced magnetocaloric effect when compared with the ‘virgin’ EFGH cycle. This conclusion is in good agreement with direct cyclic ΔT_{ad} measurements reported for Heusler alloys, even though the measurements have been performed using $\Delta \Phi$ that were large enough to, at least initially, drive the material completely from the low-field into the high-field phase [68,69].

The desired location of phase fields is illustrated in figure 2b, where the phase-separated regions coincide for both the direct and reverse transformations. Clearly, the system can be cycled along the E → F and F → E paths indefinitely, triggering identical in magnitude and large ΔT_{ad}. Unfortunately, the situation depicted in figure 2b is difficult to realize for first-order phase transition materials in a restrictive planar system of coordinates implied by figures 1 and 2, that is, when only two thermodynamic variables (temperature and field) are available. The solution, which changes the playing field dramatically, is to add a third dimension (variable), for example, stress. Phases that coexist in the phase-separated region by definition must have different volumes. Similar to reduction of hysteresis observed when magnetizing/demagnetizing
Ni–Mn–In–Co at different hydrostatic pressures [70], applying (relieving) stress before driving the direct transformation by $+\Delta \Phi$ and relieving (applying) stress before initiating the reverse phase transition by $-\Delta \Phi$ can easily move the system from being characterized by different locations of the corresponding phase-separated regions in the $T-\Phi$ plane in figures 1 and 2a to the state depicted in figure 2b. Indeed, if stress (σ) is used to achieve the full coincidence of the direct and reverse phase-separated states, figure 2h is simply a projection of two planar cross sections of the three-dimensional phase diagram $T-\Phi-\sigma$ coordinates taken at fixed σ_1 and σ_2. Using stress requires additional energy, yet this is expected to be a small price to pay as it allows one to realize repeatedly very large $|\partial \Delta T_{ad}/\partial \Delta \Phi|$.

4. Conclusion

There remains much to be learned about how to control the phase-separated states, and how to move efficiently a material along the paths that lead to repeatable caloric effects, even in the presence of hysteresis. Besides using extrinsic factors discussed here, i.e. by making use of a third dimension to solve an old two-dimensional hysteresis problem, there are numerous material design opportunities that remain worthy of exploration. The two most obvious possibilities include (i) incorporating both stress-inducing and stress-relieving microstructural features in a real material and (ii) designing real materials and transformation pathways without energy barriers. In the first, a specific set of microstructural features, such as stress-generating inclusions may seed and promote the transition from a high-volume to a low-volume phase, while stress-relieving voids may seed and promote the reverse, thus nearly closing the hysteresis gap. In the second, a promising path forward is establishing and reaching single-domain limits, where domains can switch without barriers, and seeking and following different pathways that are most energetically favourable individually for either the direct or reverse transformations. With this, we are ready to address the question that we asked in the title of this contribution: while there is more than one light at the end of the tunnel, non-equilibrium, phase-separated states are clearly one of the most important—promising to achieve a very large $|\partial \Delta T_{ad}/\partial \Delta \Phi|$ in small applied fields, potentially leading to breakthroughs in design of caloric cooling and heat pumping devices.

Competing interests. We declare no competing interests.

Funding. This work is supported by the United States Department of Energy, Office of Science, Basic Energy Sciences Programs, Materials Sciences and Engineering Division. Ames Laboratory is operated by Iowa State University under contract no. DE-AC02-07CH11358 with the United States Department of Energy.

References

4. Giauque WF, MacDougall DP. 1933 Attainment of temperatures below 1 degrees absolute by demagnetization of Gd$_2$(SO$_4$)$_3$·8H$_2$O. Phys. Rev. 43, 768. (doi:10.1103/PhysRev.43.768)

46. Dung NH, Zhang L, Qu ZQ, Bruck E. 2011 From first-order magneto-elastic to magneto-structural transition in (Mn$_{1.95}$Fe$_{0.05}$Si$_{0.5}$) compounds. *Appl. Phys. Lett.* **99**, 092511. (doi:10.1063/1.3634016)

