Comment on “Kinetics of random sequential adsorption”

James W. Evans

Iowa State University, evans@ameslab.gov

Follow this and additional works at: http://lib.dr.iastate.edu/physastro_pubs

Part of the Physics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/physastro_pubs/418. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Comment on “Kinetics of random sequential adsorption”

Abstract

Disciplines
Physics

Comments
Comment on “Kinetics of Random Sequential Adsorption”

Recently Schauf and Talbot (ST)\(^1\) derived an exact expansion in coverage, \(\Theta\), for the rate of random sequential adsorption (RSA) of disks on the plane. Here we present a simpler derivation, analogous to that used for lattice RSA processes.\(^2\) We also show how to resum such expansions to provide remarkably accurate estimates of saturation or jamming coverages, \(\Theta_s\). We note that RSA problems can also be treated by approximation truncation of exact hierarchial rate equations.\(^3\)

Let \(N\) denote the number density of disks of radius \(R\) which have adsorbed at a rate of 1 per unit area. Then \(\frac{dN}{dt}\) equals the probability, \(\Theta\), that no disks have centers within the “exclusion disk” of radius \(\sigma = 2R\) centered on the point of adsorption. Now \(\frac{d\Theta}{dt}\) involves an integral over probabilities of larger empty configurations required for adsorption onto \(\Theta\). Continuing to derive rate equations for these larger configuration probabilities produces an infinite hierarchy (Fig. 1). Initial values of higher derivatives of \(N\) or \(dN/dt\) are simply given by (multiple) integrals over areas which appear on the right-hand side (RHS), and so

\[
\frac{dN}{dt} = -\pi \sigma^2 t + \frac{1}{2} \int_{| \mathbf{R} | < \sigma} d\mathbf{R} q_3(\mathbf{R}) \mathbf{r}^2 + \cdots ,
\]

using ST notation. Inverting the corresponding expansion for \(\Theta = \pi R^2/N\) and substituting into (1) nontrivially recovers the ST results.

From analogous hierarchies for lattice RSA processes (Fig. 1), initial values of higher derivatives of \(\Theta\) or \(d\Theta/dt\) are obtained by simply counting the number of terms appearing on the RHS.\(^2\) One can then eliminate \(t\) in favor of \(\Theta\) in the \(d\Theta/dt\) expansions, as above. For random filling of lattice sites with no filled nearest neighbors (NN) one has \(d\Theta/dt = P_2\), where \(P_2 = 1 + \sum_{\Theta^i \neq \Theta} \Theta^i\) is the probability of an empty site with all \(z\) NN empty. For hexagonal \((z=3)\), square \((z=4)\), and triangular \((z=6)\) lattices, we obtain \(a_1 = -1/4, -5, 7; a_2 = 5, 6, 9; a_3 = 1, 3/2, 2; a_4 = 1, 3/2, 5/2, 7/2, 8, 9, 11/2; a_5 = 31/30, -20/3, 17/3, ...\), respectively. These agree with the exact \(z\)-coordinated Bethe-lattice behavior,\(^4\)

\[
P_2 = [(z-1)(1-2\Theta)^{z/2} - (1-2\Theta)]/(z-2) ,
\]
to order \(\Theta^{l-2}\), where \(l\) is the length of a lattice loop.

One achieves consistent acceleration in convergence of these \(dN/dt\) and \(P_2\) expansions, and improvement in associated \(\Theta^i\) estimates, after resummation to incorporate exact near-\(\Theta\) behavior. For the ST RSA problem where\(^3\) \(dN/dt = c(\Theta_s - \Theta)^3\), we write \(dN/dt = (1+b_1 x + b_2 x^2) (1-x)^3\) with \(x = \Theta/\Theta_s\). Determining \(\Theta_s\) and \(b_1\) by matching to the ST cubic expansion yields \(\Theta_s = 0.553\) (cf. 0.547 from simulation). For the lattice RSA problems where\(^2\) \(P_2 \sim \Theta_s - \Theta\), we write \(P_2 = (1+b_1 x + b_2 x^2) / (1-x)^3\) with \(b_1 + \cdots + b_2 = \Theta_s\). Determining \(\Theta_s\), \(b_1\), \(b_2\) by matching to the quintic \(P_2\) expansions above yields \(\Theta_s = 0.7359, 0.3899, 0.2316\) for \(z = 3, 4, 6\), respectively (cf. 0.379, 0.3641, and 0.2314 from simulation). The procedures described here are general, applying to other RSA problems. For example, for the Palisti problem of random filling of nonoverlapping \(2 \times 2\) squares on a square lattice, analogous resummation of the quartic expansion for the adsorption rate yields \(\Theta_s = 0.7462\) [cf. 0.7476 \(\sim (1 - e^{-2})^2\) from simulation].\(^3\)

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. This work was supported by the Office of Basic Energy Sciences.

J. W. Evans
Ames Laboratory and Department of Physics
Iowa State University
Ames, Iowa 50011

Received 13 March 1989
PACS numbers: 68.10.Jy, 02.50.+s, 82.65.-i
