The Structure of the Si9H12 Cluster: A Coupled Cluster and Multi-Reference Perturbation Theory Study

Ryan M. Olson
Iowa State University

Mark S. Gordon
Iowa State University, mgordon@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/458. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
The Structure of the Si9H12 Cluster: A Coupled Cluster and Multi-Reference Perturbation Theory Study

Abstract
Full geometry optimizations using both singles and doubles coupled cluster theory with perturbative triple excitations, CCSD(T), and second order multi-reference perturbation theory, MRMP2, have been employed to predict the structure of Si9H12, a cluster commonly used in calculations to represent the Si(100) surface. Both levels of theory predict the structure of this cluster to be symmetric (not buckled), and no evidence for a buckled (asymmetric) structure is found at either level of theory.

Keywords
Density functional theory, Coupled cluster, Cluster geometric structure, Perturbation theory, Buckling

Disciplines
Chemistry

Comments

Rights
Copyright 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
The structure of the Si 9 H 12 cluster: A coupled cluster and multi-reference perturbation theory study

Ryan M. Olson and Mark S. Gordon

Citation: The Journal of Chemical Physics 124, 081105 (2006); doi: 10.1063/1.2176611
View online: http://dx.doi.org/10.1063/1.2176611
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/124/8?ver=pdftcov
Published by the AIP Publishing

Articles you may be interested in
A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: Theory, implementation, and examples

Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory

Perturbative triples corrections in state-specific multireference coupled cluster theory

New approach to the state-specific multireference coupled-cluster formalism
The structure of the Si$_9$H$_{12}$ cluster: A coupled cluster and multi-reference perturbation theory study

Ryan M. Olson and Mark S. Gordon

Department of Chemistry, Iowa State University, Ames, Iowa 50011

(Received 12 December 2005; accepted 23 January 2006; published online 28 February 2006)

Full geometry optimizations using both singles and doubles coupled cluster theory with perturbative triple excitations, CCSD(T), and second order multi-reference perturbation theory, MRMP2, have been employed to predict the structure of Si$_9$H$_{12}$, a cluster commonly used in calculations to represent the Si(100) surface. Both levels of theory predict the structure of this cluster to be symmetric (not buckled), and no evidence for a buckled (asymmetric) structure is found at either level of theory. © 2006 American Institute of Physics. [DOI: 10.1063/1.2176611]

The two most common approaches to computational studies of the Si(100) surface are to employ cluster or embedded cluster models or to use slab calculations with periodic boundary conditions. Both approaches have their advantages and disadvantages. Since the 100 surface after reconstruction is characterized by very reactive Si dimers, the simplest cluster that can properly represent this surface is the single dimer Si$_9$H$_{12}$ cluster. Many computational studies of reactions that occur on the Si(100) surface, including those that employ the simple Si$_9$H$_{12}$ cluster, rationalize the predicted or observed behavior in terms of buckling of the face, has itself been the subject of intense controversy. In

A recent investigation using those that employ the simple Si$_9$H$_{12}$ cluster, rationalize the symmetric equivalent surface. This means that the two Si dimer atoms are not predicted or observed behavior in terms of buckling of the face, has itself been the subject of intense controversy. In

The two most common approaches to computational studies of the Si(100) surface are to employ cluster or embedded cluster models or to use slab calculations with periodic boundary conditions. Both approaches have their advantages and disadvantages. Since the 100 surface after reconstruction is characterized by very reactive Si dimers, the simplest cluster that can properly represent this surface is the single dimer Si$_9$H$_{12}$ cluster. Many computational studies of reactions that occur on the Si(100) surface, including those that employ the simple Si$_9$H$_{12}$ cluster, rationalize the predicted or observed behavior in terms of buckling of the face, has itself been the subject of intense controversy. In

Although UB3LYP predicts the buckled structure to be the lower of the two in energy, MRMP2 calculations at the UB3LYP geometries predict the reverse order of stability. Similar trends are predicted by the same methods for larger clusters with up to five dimers.

Until now, the most sophisticated quantum chemistry methods have not been used to predict the structure(s) of Si$_9$H$_{12}$. Recently, an efficient, fully numerical gradient code has been designed and implemented into theGAMESS electronic structure code.

There have been many papers, both experimental and theoretical, that have debated whether the Si(100) surface is buckled or symmetric. The focus of the present paper is on the Si$_9$H$_{12}$ cluster, since the structure of this cluster, the most commonly used cluster for representing the Si(100) surface, has itself been the subject of intense controversy. In general, Hartree-Fock (HF) and density functional theory (DFT) calculations predict the Si$_9$H$_{12}$ cluster to be buckled, while second order perturbation theory (MP2) and multi-configurational self-consistent field (MCSCF) wave functions predict this cluster to be symmetric. Other, more sophisticated methods have been applied to this question at geometries determined at lower levels of theory, but for these methods there are not currently analytical gradients available. Multi-reference second order perturbation theory (MRMP2) calculations appear to support the symmetric structure, whereas quantum Monte Carlo studies appear to support the buckled structure. A recent investigation using unrestricted density functional theory (UDFT) and the B3LYP functional illustrated that this level of theory finds potential energy minima at both the buckled and symmetric structures. Although UB3LYP predicts the buckled structure to be the lower of the two in energy, MRMP2 calculations at the UB3LYP geometries predict the reverse order of stability. Similar trends are predicted by the same methods for larger clusters with up to five dimers.

The final MRMP2 and CCSD(T) geometries for the Si$_9$H$_{12}$ cluster are compared in Table I with those obtained using Hartree-Fock, B3LYP, and MP2. All calculations used the 6-31G(d) basis set. Because HF and DFT are unable to occupy the π^* orbital in the dimer, the dimer Si$_2$-Si$_2$ distance is predicted by these methods to be somewhat shorter than that predicted by MRMP2. This is especially true for the HF method which predicts a Si$_2$-Si$_2$ distance of 2.19 Å, about 0.04 Å shorter than the B3LYP distance and about 0.06 Å longer than the MRMP2 distance. The CCSD(T) method is able to recover most of this effect due to the inclusion of triple excitations, whereas MP2 predicts a bond distance that is very similar to the DFT value.

As has been illustrated previously, both HF and DFT predict the structure of Si$_9$H$_{12}$ to be buckled. The amount of
buckling predicted by DFT, as illustrated by both the Si$_8$-Si$_{12}$ bond angles and the Si$_8$-Si$_{12}$-Si$_8$ dihedral angle, is greater than that predicted by HF, where Si$_8$ and Si$_{12}$ refer to dimer and bulk Si atoms, respectively. For example, the HF and DFT dihedral angles are $\sim 1^\circ$ and $\sim 9^\circ$, respectively. In contrast, MP2, MRMP2 and CCSD(T) all predict symmetric Si$_8$H$_{12}$ structures. These three methods predict very similar geometry optimizations for multiple dimer structures using larger basis sets will qualitatively alter the results are not computationally practical. While it is unlikely that employing larger basis sets will qualitatively alter the results predicted here, such calculations should be done in order to fully validate these predictions.

The impact of this result on the predicted structure for bulk Si(100) is, of course, unclear. Arguments have been presented that adjacent dimers increase the likelihood of buckling in order to reduce the inter-dimer repulsion. On the other hand, an analysis of this repulsion suggests that it is rather small, and MRMP2 at MCSF geometries suggest that there is no buckling for up to five dimers. At present, geometry optimizations for multiple dimer structures using MRMP2 or CCSD(T) are not feasible.

This work was supported by a grant from the (U.S.) Air Force Office of Scientific Research.

TABLE I. Calculated geometries for Si$_8$H$_{12}$

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>HF</th>
<th>B3LYP</th>
<th>MP2</th>
<th>MRMP2</th>
<th>CCSD(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si$_8$-Si$_8$</td>
<td>2.187</td>
<td>2.213</td>
<td>2.234</td>
<td>2.248</td>
<td>2.241</td>
</tr>
<tr>
<td>Si$_8$-Si$_b$</td>
<td>2.355</td>
<td>2.345</td>
<td>2.335</td>
<td>2.340</td>
<td>2.347</td>
</tr>
<tr>
<td>Si$_8$-Si$_b$</td>
<td>2.355</td>
<td>2.362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si8-Si${12}$-Si$_8$</td>
<td>107.1 107.5</td>
<td>100.7 111.5</td>
<td>106.3 106.4</td>
<td>106.5</td>
<td></td>
</tr>
<tr>
<td>Si8-Si${12}$-Si$_b$</td>
<td>0.8 0.8</td>
<td>8.9 8.9</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td></td>
</tr>
</tbody>
</table>

*Bond lengths in Å, angles in degrees.

*a$_{\text{Si}}$ refers to dimer Si, a$_{\text{Si}}$ refers to bulk Si.