Large-Scale MP2 Calculations on the Blue Gene Architecture Using the Fragment Molecular Orbital Method

Thumbnail Image
Supplemental Files
Date
2012-01-01
Authors
Fedorov, Dmitri
Pruitt, Spencer
Gordon, Mark
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Windus, Theresa
Department Chair
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

Benchmark timings are presented for the fragment molecular orbital method on a Blue Gene/P computer. Algorithmic modifications that lead to enhanced performance on the Blue Gene/P architecture include strategies for the storage of fragment density matrices by process subgroups in the global address space. The computation of the atomic forces for a system with more than 3000 atoms and 44 000 basis functions, using second order perturbation theory and an augmented and polarized double-ζ basis set, takes ∼7 min on 131 072 cores.

Comments

Reprinted (adapted) with permission from J. Chem. Theory Comput., 2012, 8 (1), pp 75–79. Copyright 2012 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections