Response of tin whiskers to dynamic input: Mathematical modeling and experimental property measurement

Thumbnail Image
Date
2009-01-01
Authors
Spitzner, Matthew
Major Professor
Advisor
Pranav Shrotriya
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

The growing risk that tin whiskers pose to the reliability of electronic assemblies has driven the need for a risk assessment tool. In this paper a mathematical model has been developed to calculate the displacement and stress response of a tin whisker to a harmonic input. The model is based on Euler-Bernoulli beam theory and utilizes the method of eigenfunction expansion to calculate the forced response solution. The model was then coded into Matlab to calculate numerical solutions for a variety of parameters. To enhance the accuracy of the model tin whisker samples were prepared and measured with a microtribometer. The whiskers were loaded traversly with a rigid probe tip and the normal and tangential forces were measured. The whiskers appeared very rigid and did not grossely fracture remaining attached to the substrate. They deformed near the root or in the surrounding tin plating where the whisker grew. The mean deformation stress calculated was 505 MPa although there were not enough measurements for statistical significance. The range of values was quite large relative to the mean. The high variability was primarily attributed to the small sample size of 3 valid measurements, the small magnitude of the forces relative to the tolerance of the microtribometer and the crystal orientation of the whisker itself.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2009