Mild preexercise hyperhydration with electrolyte-containing beverages: effect on thirst, water intake, and physiologic function

Thumbnail Image
Date
2007-01-01
Authors
Johannsen, Neil
Major Professor
Advisor
Rick L. Sharp
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Kinesiology
The Department of Kinesiology seeks to provide an ample knowledge of physical activity and active living to students both within and outside of the program; by providing knowledge of the role of movement and physical activity throughout the lifespan, it seeks to improve the lives of all members of the community. Its options for students enrolled in the department include: Athletic Training; Community and Public Health; Exercise Sciences; Pre-Health Professions; and Physical Education Teacher Licensure. The Department of Physical Education was founded in 1974 from the merger of the Department of Physical Education for Men and the Department of Physical Education for Women. In 1981 its name changed to the Department of Physical Education and Leisure Studies. In 1993 its name changed to the Department of Health and Human Performance. In 2007 its name changed to the Department of Kinesiology. Dates of Existence: 1974-present. Historical Names: Department of Physical Education (1974-1981), Department of Physical Education and Leisure Studies (1981-1993), Department of Health and Human Performance (1993-2007). Related Units: College of Human Sciences (parent college), College of Education (parent college, 1974 - 2005), Department of Physical Education for Women (predecessor) Department of Physical Education for Men
Journal Issue
Is Version Of
Versions
Series
Department
Kinesiology
Abstract

The American College of Sports Medicine's (ACSM) position stand on appropriate fluid intake for long duration exercise states that individuals should drink fluids containing sodium (0.5 - 0.7 g/l), potassium (0.08 - 0.2 g/l), and carbohydrate (5 - 10%) at a rate of 400 - 800 ml/h, depending on the individual's sweat rate and body size, in order to keep body water losses < 2%. The ACSM guidelines for preexercise hydration are unclear. Beverages containing significant amounts of sodium increase water intake and retention, subsequently improving fluid balance during and after exercise. However, whether sodium containing beverages ingested before exercise influence water intake and urine production during endurance exercise has not been studied. Two primary studies were conducted in order to test the efficacy of chicken noodle soup (167 mmol Na+/l) to improve fluid balance by increasing water intake and retention during exercise in thermoneutral (WBGT = 16°C) and hot, dry (WBGT = 26°C) environments. In both studies, fluid balance was improved during 90 min of moderate intensity exercise (∼55% VO2peak) 45 min after ingesting 355 ml of chicken noodle soup (CNS) compared with a similar quantity of water (WATER). The improvement in fluid balance was mainly because of an increase in ad libitum water intake that persisted throughout the 90 min of exercise. The increase in water intake was apparent in both the thermoneutral (801 +/- 415 vs. 594 +/- 391; CNS vs. WATER) and hot, dry (1434 +/- 592 vs. 1163 +/- 427; CNS vs. WATER) environments. Water retention was also improved after CNS in the thermoneutral environment, but not the hot, dry environment despite decreased calculated free water clearance in both studies. Although fluid balance was greater in both studies, no cardiovascular, temperature regulatory, or performance benefits were observed. Perceived thirst was also similar in all trials when water intake was allowed ad libitum. When water ingested at a similar rate to the CNS trial during a second water hyperhydration trial (WATER/R) in the hot, dry environment, ratings of perceived thirst decreased. Interestingly, when participants were forced to drink more water than normal in the hot, dry environment (WATER/R) without the additional preexercise sodium load (CNS), plasma sodium concentrations were consistently lower during exercise. From these studies we conclude that preexercise beverage composition can affect both dipsogenic drive and kidney function resulting in improved body water status during exercise. Also, these results indicate that it may not be necessary to replace sodium losses during exercise if anticipated losses are ingested before exercise.

Comments
Description
Keywords
Citation
Source
Copyright
Mon Jan 01 00:00:00 UTC 2007