Effects of Deterioration Parameters on Storage of Maize: A Review

Thumbnail Image
Date
2013-01-01
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bern, Carl
University Professor Emeritus
Person
Rosentrater, Kurt
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Maize (Zea mays L), commonly known as corn in the United States, is the third most important cereal grain worldwide, after wheat and rice. It is a basic staple grain for large groups of people in Africa, Latin America, and Asia. In tropical countries, a large proportion of the maize is harvested and stored under humid and warm climatic conditions, which subsequently results in rapid deterioration of the grains, mainly because of growth of molds and pests. This study reviewed the main factors that lead to deterioration of maize in tropical countries and suggests ways of preventing the identified causes. This paper also reviews world production, varieties, climatic and storage conditions of maize. Deterioration of maize is mainly affected by moisture content, temperature (grain and air), relative humidity, storage conditions, fungal growth, and insect pests. Fungal growth, especially Aspergillus flavus and Fusarium sp in maize, facilitated by hot and humid conditions, poses a major risk through production of mycotoxins. In order to maintain high quality maize for both short- and long-term storage, maize must be protected from weather, growth of microorganisms, and pests.

Comments

This article is from Journal of Natural Sciences Research 3 (2013): 147–165.

Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections