




 92

the electronic exchange-correlation energy [3.31]. All structures were fully relaxed 

until the Hellman-Feynman forces acting on each ion became less than 10-3 eV/Å. To 

ensure accurate results during the structure optimization procedure, Kohn–Sham 

orbitals were expanded in a plane wave basis up to an energy cutoff 3/2 larger than 

the default energy cutoff provided by PAW potentials. We used Monkhorst-Pack 

[3.32] scheme to generate an automatic k-mesh  sampling of the Brillouin zone and 

the  integration in reciprocal space was carried out by using the Methfessel–Paxton 

[3.33] smearing  during the relaxation and the linear tetrahedron method with 

Blöchl corrections [3.34] for the relaxed structures. For all structures the convergence 

within 10-3eV/ion of the total energy with respect to the number of k-points was 

achieved. 

 

 

5.1.2. Prediction of stable crystal structures 

Figure 5.2 illustrates how to find the most stable structure of a hypothetical 

compound, AuBe2, by combining our classification-tree model and first principles 

calculations. First, the parameters affecting crystal structures (i.e. APPs) of AuBe2 are 

calculated from the atomic properties of the relevant constituent elements. Then the 

APPs of the test compound are compared with the criteria shown in the 

classification tree, which is tracked from the root node (“start” node in Figure 3.9) to 

the leaves. At the end of a leaf, a list of the crystal structure types, AlB2, CaF2, MgCu2, 

OsGe2, and PbCl2, is suggested as the possible stable structures of AuBe2. That is, one 

of these five structures is the answer we are looking for. This prediction procedure is 

completed through the confirmation by ab initio total energy calculations. The 

results of the calculation suggest that the structure type MgCu2, which has the 

lowest energy, is the most stable structure for AuBe2. In the same way, the crystal 
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structure of some compounds – experimentally known but the structure types are 

not yet ascertained – has been predicted and the results were summarized in Table 

5.1. Most of the cases, only two to seven structures are suggested as the candidates 

of possible stable structures, and density-functional theoretical (DFT) calculations 

are implemented only for the atomic configurations suggested by the if-then rules of 

the classification tree. 

 

 

Figure 5.2. Prediction of the crystal structure of AuBe2. As searching through a route 
which meets the values of the physical parameters of a test compound, one to ten 
structure types are nominated as the possible crystal structure candidates. (1) The 
parameters calculated from atomic and physical properties of the constituents of 
AuBe2 are used as the input variables for the structure prediction; (2) The 
classification tree suggests the possible structure-type candidates (the pathway 
along the red arrows); (3) A structure type with the lowest total energy, i.e. MgCu2, is 
confirmed as the most stable crystal structure by first principles calculations. 
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Table 5.1. Prediction of the crystal structure (prototype) of AB2 type compounds. 

Compound Structures estimated by classification tree Structure predicted by DFT 

AlRu2 

FeMn2 

FeB2 

Co2Na 

AuCa2 

Au2Cr 

CsGa2 

GdPd2 

RuGe2 

CuZr2, Cu2Sb 

CuZr2, CuAl2 

PbCl2, CaF2, HoSb2, LaSb2, NdAs2 

MgZn2, FeS2, MgCu2 

PbCl2, Co2P, CuAl2, CuZr2, Hg2U, MgCu2, MoSi2 

PbCl2, Co2P, CuAl2, CuZr2, La2Sb, MoSi2, Ti2Ni 

KHg2, AlB2, CaC2, CaF2, MgCu2, ThSi2 

Ni2In, AlB2, Co2Si-b, MgCu2, MgZn2 

OsGe2, AlB2, CaF2, MgCu2, PbCl2 

CuZr2 

CuZr2 

PbCl2 

MgZn2 

PbCl2 

PbCl2 

KHg2 

Ni2In 

OsGe2 

 

 

 

5.2. Phase-transition paths of metal-hydride alloys 

 

At present, most of the hydrogen storage alloys are based on ABm type (m=0.5, 1, 2, 3, 

and 5) intermetallic compounds as the host material; for instance, the host 

compounds have AB (e.g. TiFe), AB2 (e.g. TiCr2, ZrCr2, ZrFe2, ZrMn2,), A2B (e.g. 

Mg2Ni, Ti2Ni), AB5 (e.g. LaNi5, CaNi5) type composition formulae. During the 

hydride formation, i.e. ABm → ABmHn, the lattice structure of the host material is 

whether expanded (the swelling of the lattice) or transformed to other crystal 

structures by the hydrogen uptake. Since the practical usage of the hydrogen-storage 

alloys involves the cycling of hydrogen uptake/release, it is expected that the 

repeated structural transitions of the materials would be accompanied with the 

hydrogenation ↔ dehydrogenation process. Developing new hydrogen storage 

materials, therefore it is necessary to investigate materials systems considering the 

structural outline. 
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At the Chapter 2, the similarity and relationships of the crystal structures of AB2 

binary compounds have been investigated using crystallographic group theory. In 

this section, we apply the structure-family tree (group-subgroup relations) in order 

to investigate structural change of intermetallic compounds during the 

hydrogenation and provide the guideline for the rational design of intermetallic 

compound hydrides. The design rules derived from the group-theoretical 

interpretation would ultimately offer the possible new directions for searching of 

new hydrogen-storage alloys. 

 

Hydrogen-storage materials should meet two objectives; that is, i) fast rates of 

absorption/desorption processes, and ii) high hydrogen content. The capacity of the 

hydride materials is presented in the stoichiometric ratio of the hydrogen to metal 

(H/M) and gravimetric capacity (wt.% = H/(H+M)×100). Most of the efforts to find 

the design rules for new hydrogen storage alloys in the crystal-structural aspect 

have not been satisfactory. Two empirical criteria suggested by D. G. Westlake [5.3], 

that is, the minimum vacancy size of 0.40 Å and minimum distance between 

hydrogen atoms of 2.1 Å in the host matrix, were not enough for the structural 

design of new hydrides for the practical purpose. Also, the phase stability of 

hydrogen-storage alloys should be optimized at the intermediate level, implying 

that both the hydrides either too stable or too unstable are not so suitable because 

most of the practical applications require the hydrogen absorption/desorption 

cycling under mild conditions of temperature and pressure. 

 

As briefly mentioned, insertion of hydrogen atoms into the intermetallic compounds 

causes the change of the crystal structure of host materials in their atomic level 

(Figure 5.3). The structural changes during the repeated sorption process are 
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therefore highly related to the sorption kinetics as well as the mechanical stability. 

The structural transformation is proceeded through one of the two pathways; 

reconstructive and displacive transformations. In reconstructive transformation, the 

chemical bonds are broken and atoms are rearranged forming a new structure. It 

implies that the structural change would require high activation energy. On the 

contrary, displacive transformation does not involve the breaking of bonds and thus 

usually is accompanied with a rapid kinetics of the displacement of atoms under 

moderate conditions. In terms of symmetry relations, reconstructive transformation 

does not involve crystallographic group-subgroup relations between the structures, 

but displacive transformation does. A pair of intermetallic compounds and the 

corresponding hydrides connected through the phase-transition paths with group-

subgroup relations are preferable for the practical application as a hydrogen-storage 

material which requires the absorption-desorption cycling. 

 

                  Metal + hydrogen                    Metal hydride 

                      (Structure 1)                       (Structure 2) 

Figure 5.3. A schematic description of the structural changes according to the 
hydrogenation-dehydrogenation cycling process (this figure was modified from the 
ref. 5.4). Green-color dots denote hydrogen atoms. As the structural transition 1 ↔ 2 
have the group-subgroup relations, the reversible displacive phase transition is 
undergone during the hydrogen absorption/desorption process. 
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In this study, the change of crystallographic structures between intermetallic 

compounds and the corresponding hydrides is investigated by means of the group-

subgroup relations. Although the rules based on these symmetry relations cannot 

suggest energetically more probable pathways of the structural change, they provide 

the guideline for finding more favorable structural transition paths which meet the 

practical cycling conditions. 

 

A magnesium-based intermetallic hydride, Mg2FeH6, has been attracted as a 

hydrogen-storage material due to its high hydrogen content (~5.6 wt.% hydrogen). 

However, the host Mg2Fe does not form a stable phase without the inclusion of 

hydrogen and this fact becomes a critical drawback which leads the slow kinetics of 

the reversible process of hydrogen uptake/release. Here, the classification tree 

(Figure 3.7) and structure family tree (Figure 2.9) will be used as the guideline to 

proceed towards the next step of Mg-Fe-H systems. 

 

Using the classification tree of AB2-type compounds of Figure 3.7, the possible 

crystal structure of Mg2Fe can be estimated as one of the following seven structure 

types; that is, CaF2 (Fm3m, 225), Co2P (Pnma, 62), Cu2Sb (P4/nmm, 129), CuAl2 

(I4/mcm, 140), CuZr2 (I4/mmm, 139), Ni2In (P63/mmc, 194), and Ti2Ni (Fd3m, 227). 

The pathway of the classification tree which provides the possible crystal structures 

of hypothetical Mg2Fe system is shown in Figure 5.4. Then, the next step is to find 

crystal structure types which have the group-subgroup relations with the CaF2 

structure. 



 98

 

Figure 5.4. A part of the classification tree for AB2 compounds. The if-then rules for 
the prediction of the crystal structure of Mg2Fe are shown based on the calculated 
APP values of the hypothetical compound, Mg2Fe. As the possible structure, seven 
crystal structure types are suggested from the classification tree. Among them, 
favorable structures for the hydrogen uptake/release process are selected by using 
group-subgroup relations shown from the structure family tree. 
 

 

Conclusively, according to the structure family tree of the group-subgroup relations 

for the structure type CaF2 (of the hydride, Mg2FeH6) in Figure 2.9, the most 

preferable structure types of Mg-Fe-based host materials for the reversible 

hydrogenation/dehydrogenation process correspond to CaF2 (Fm3m, 225) or CuZr2 

(I4/mmm, 139) among the seven candidate structures from the classification tree. 

The following is the part of the structure family tree of AB2 type structures, which 

shows four structure types related with CaF2 structure in terms of group-subgroup 

relations. Therefore, the intersection of the two sets, {CaF2, Co2P, Cu2Sb, CuAl2, CuZr2, 

Ni2In, and Ti2Ni} ∩ {CaC2, CuZr2, La2Sb, and MoSi2} = {CuZr2, (and CaF2 itself)} 
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The symmetrical relations for a possible structural transition during the hydrogen 

“absorption ↔ desorption” process are shown in the Figure 5.5, using CaF2 (Fm3m) 

↔ CuZr2 (I4/mmm) transformation. 

 

Figure 5.5. The symmetrical relations between the crystal structure of Mg2FeH6 and a 
hypothetical structure of the corresponding host Mg2Fe compound; during the 
hydrogen uptake/release cycle, the structural change undergoes through either no 
transition or group-subgroup transition. 
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CHAPTER 6 

CONCLUSIONS: CONTRIBUTIONS OF THIS STUDY 

 

 

 

Data mining has been developed for a long time as an instrumental methodology in 

diverse fields. However, its serious advent in the materials research has rather 

recently been brought in. To settle down the data mining as a main stream of 

computational materials science, the comprehensive understanding on the 

connections between data mining and materials science would be demanded along 

with more examples of its successful applications. In this regard, the major 

contributions of my research which have been shown in this thesis are as follows. 

 

First, in this study, data-driven approaches have been applied to the crystal 

chemistry study as a pragmatically effective tool of computational research.  

Integrated with quantum-mechanical calculations, the rules extracted from the 

crystal structure data have been built as a model for the prediction of crystal 

structures of inorganic crystalline compounds. The guideline provided by this 

experimental-data-driven model has extensively reduced the workload imposed 

upon ab initio calculations for the search of stable crystal structures of novel 

materials. 

 

Second, for the first time, the formation mechanism of different crystal structures of 

inorganic compounds has been investigated by using information-theoretic 

classification of materials data. The relative contribution of atomic, physical 
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parameters (APPs) of chemical constituents upon the structural stability of the 

corresponding compound materials has been quantitatively measured in terms of 

information entropy. 

 

Third, the similarity (or dissimilarity) and connections among the crystal structures 

of AB2 compounds were investigated by applying crystallographic-group theory. 

The network diagram which represents the symmetry (supergroup-subgroup) 

relations could be used for the materials design. 

 

Finally, this study provides a representative example, which is pragmatically 

valuable, of the application of data-driven approach for materials design. The 

methods shown in this thesis can be applied to a variety of material behaviors 

including structure-property relations. 
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APPENDIX I 

MATHEMATICS OF CLASSIFICATION RULE MINING 

 

 

A1.1. Introduction 

 

Recursive Partitioning divides the feature space into a set of rectangles based on the 

relationship between the attributes and the predefined classes. That is, attribute 

space is subdivided into smaller parts called bins in a way that similar members 

group together and those dissimilar are divided into separate bins. These splits 

recursively performed are represented as a tree structure. Through this partitioning-

based classification, one can achieve a series of rules, i.e. classification rules, from data 

for the prediction or learning, which enables one to readily understand the structure, 

characteristics, and the relationships of correlation and causation. The classification 

rules achieved from training datasets determine the class of any new system based 

upon its values of the attributes. It is not only conceptually simple for the 

interpretation of the result, but also is extremely a powerful technique for the 

handling of large data sets. 

The recursive partitioning method uses different statistical measures depending 

upon whether the type of variables is categorical or continuous. When the variables 

are categorical, the partitioning method is called “Classification Tree” since it is 

based on predicting classes in each of the sub-groups. Whereas, when the variables 

are continuous, it is called “Regression Tree” since we are trying to predict the 

numerical value for each of the sub-groups (Figure A1.1). 
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Figure A1.1. Recursive partitioning: the graphical representation of the results of 
recursive partitioning can be categorized into two kinds, i.e. classification and 
regression trees, depending on whether the data analyzed consist of discrete-valued 
(categorical or numerical) or continuous-valued (numerical) outputs. 
 

 

 

A1.2. Classification tree 

 

In the case of a classification tree, we are trying to identify subsets that 

predominantly belong to one particular class. In a node m, let, pmk represents the 

proportion of class k observations in a node m. We classify the observations in node 

m to the majority class k in a node m, given by 

))((maxarg)( im
x

i xpmx
i

=  

Where, xi(m) is a major class (i.e., structure type) in a node m and pm(xi) is a 

probability of the class xi in the node m, and “argmax” denotes the “argument of the 

maximum”; namely, as the classification tree grows, the homogeneity of each node is 

maximized. The general idea of recursive partitioning is to reduce the feature space 

into subsets of low impurity. The partitioning and the corresponding output values 

for each subset depend on the measure of impurity. Different Measures of impurity 
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is used depending upon whether it is a classification or a regression problem. 

 

A1.2.1. Solving for the best partitions: Impurity function 

In general, impurity function, H, has a concave shape and can be defined as:  

))|(()( tcpQtH m=  

Where, the function Qm has the properties (1) Qm ≥ 0 and (2) for any p∈(0,1), Qm (p) = 

Qm (1-p) and Qm (0) = Qm (1) < Qm (p). 

 

There is no single justification for the use of specific function. However, the function 

to measure the “purer” descendant nodes than the data in the ascendant set should 

have the following properties. 

 

(1) When defining the node proportions p(ci|t), where ci=c1, c2,…, cn, to be the 

proportion of the cases X∈t belong to class ci, so that 

121 =+++ )|(...)|()|( tnptptp
 

 (2) When defining a measure H(t) of the impurity of t as a nonnegative function Qm 

of the p(1|t), p(2|t), …, p(n|t) such that 

MaximumnnnQm =)/,...,/,/( 111
 

Qm (1, 0, 0, …, nth 0) = 0, Qm (0, 1, 0, …, nth 0) = 0,…, Qm (0, 0, 0, …, 1) = 0; 

 

That is, the impurity of a node should be largest when all classes are equally mixed 

together and smallest when each node includes only one class. 
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The functions commonly chosen include (in two-class problem): 

  (1)  Qm (p) = min(p, 1-p)                    Bayes error 

  (2)  Qm (p) = -plog(p) – (1-p)log(1-p)       Entropy function 

  (3)  Qm (p) = p(1-p)         Gini index 

These functions can be illustrated by the following Figure A1.2. 

 

Figure A1.2. Impurity functions [A1.3]. 

 

The general form of the measures for the impurity of the node m, ( )mQ T  are: 

Bayes error:   )()( mppQ mkmkm −= 1  

Gini index:   ∑∑
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Information entropy and Gini index are more sensitive to changes in the node 

probabilities than the Bayes’ misclassification error and hence Gini index or 

information entropy are preferred over misclassification error for growing the 

classification trees. Gini index is also known that the size of the tree branches is often 

developed in unbalanced way [A1.3]. Note that both of these functions have their 

minimum, 0, when pi=1 for some t while the other pj, j≠t, are zeros, and that both of 

them have their maximum when all pi are equal. 
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A1.3. Algorithmic framework 

 

Building a classification tree follows the general procedure of the partitioning as 

shown below.  

 

 

A1.3.1. Recursive partitioning of a two-class problem 

The following Figures A1.3 show the distribution of data entries of AB2 type 

compounds with CuAl2 and KHg2 structure types according to two different APPs. 

In the case of the top figure which uses the electronegativity difference, ΔXMB, as the 

X-coordinate (for the separation of two structure types), it is clearly shown that the 

distributions of both crystal structures are overlapped in most of the range of the 

electronegativity difference, implying that this parameter is not suitable for the 

differentiation of these two structures. The bottom figure shows similarly the 

distributions of the two structures according to the atomic size (i.e. pseudopotential 

radius) difference, ΔRs+p; in this case, the distributions are rather well-separated 

although there is a partial overlapped region. Between the two parameters, ΔXMB and 

ΔRs+p, thus, ΔRs+p is a better classifier. To find the splitting value of classifier (i.e. ΔRs+p), 

the information gain by the classification can be calculated as follows. 

There are the entries of 50 AB2 compounds with CuAl2 structure and 51 compounds 

with KHg2 structure in the LPF database. Then, the information entropy, Hroot, before 

Pseudo Code: 
1. Start with Root node. 
2. Split with the attributes which lead the maximum information gain. 
3. Fully grow the tree by splitting best recursively. 
4. Prune worst nodes using impurity measures. 
5. Choose the optimal tree structure which makes the best predictability. 
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the partition is calculated by: 

HRoot = - ∑p(xi)log2p(xi) 

= - {p(CuAl2)log2p(CuAl2)+p(KHg2)log2p(KHg2)} 

     = - {(50/101)log2(50/101)+(51/101)log2(51/101)} 

    = 0.99993 bits 

 

To find a splitting value which maximize the information gain (IG) due to the first 

partitioning, the IGs are calculated for the respective ΔRs+p values at the range of 

overlapping region (see the bottom figure of Figure A1.3) of ΔRs+p from 0.22664 to 

0.54328. H1 is the entropy after the first partitioning which is calculated as follows: 

For instance, let ΔRs+p = 0.22664 for the partitioning. At the left side of the splitting 

line, i.e. ΔRs+p < 0.22664, there are 38 compounds with CuAl2 structure. At the right 

side of the line, i.e. ΔRs+p ≥ 0.22664, there are 12 CuAl2 and 51 KHg2 structure entries. 

Thus, the entropy after the first partitioning, H1, is: 

H1 = – (38/101)*(38/38)*log2(38/38) – (12/101)*(12/63)*log2(12/63)  

– (51/101)*(51/63)*log2(51/63) 

   = 0.17876 bits 

The information gain (IG) is then calculated: 

IG = Hroot – H1 

   = 0.99993 – 0.17876 = 0.82117 bits 

In the same way, all the possible splitting values between 0.22664 and 0.54328 are 

tested. The results summarized in the following table show the information gain by 

the partitioning at the ΔRs+p = 0.53328 would maximize the information gain, 

IG=0.90748. 
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Table A1.1. Determination of the partitioning position by information-entropy  
calculations; the splitting value of the maximum information gain was highlighted. 

ΔRs+p Hroot H1 Information gain (IG) 

0.22664 0.99993 0.17876 0.82117 

0.23998 0.99993 0.18001 0.81991 

0.24331 0.99993 0.16623 0.83370 

0.27997 0.99993 0.15210 0.84783 

0.28331 0.99993 0.16755 0.83238 

0.28664 0.99993 0.15314 0.84679 

0.30997 0.99993 0.13840 0.86152 

0.36663 0.99993 0.12336 0.87657 

0.37996 0.99993 0.12376 0.87617 

0.40663 0.99993 0.10823 0.89170 

0.41663 0.99993 0.09254 0.90738 

0.44329 0.99993 0.10822 0.89171 

0.46995 0.99993 0.09250 0.90743 

0.48329 0.99993 0.10802 0.89191 

0.53328 0.99993 0.09245 0.90748 

0.54328 0.99993 0.10775 0.89218 
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Figure A1.3. Histograms for two different parameters (ΔXMB and ΔRs+p) for the CuAl2 
(tetragonal, I4/mcm) and KHg2 (orthorhombic, Imma) structure types; the two 
structure types have almost same number of data entries in the LPF; where, ΔRs+p = 
0.53328 becomes the classifier (a vertical solid line) for the separation of the two 
structure types; the procedure to find the splitting value using information gain is 
described in the text. 
 

 

A1.3.2. Recursive partitioning of a multi-class problem 

Figure A1.4 shows the partitioning procedure of multi-dimensional parameter space 



 111

and the representation by classification tree. The collection of points denotes the 840 

AB2 compounds. To demonstrate how a structure domain is refined by the 

partitioning steps, the compounds with AlB2-type structure were highlighted with 

red color as the example. 

 

             

            

Figure A1.4. The partitioning of parameter space and the corresponding 
classification tree. The partitioning procedure (step a and b) is shown at the 
projection of ΔRs+p-VE plane. The blue lines in the plots (left) indicate the 
hyperplanes which divide the parameter space. Red dots indicate the compounds 
with AlB2 structure type. Tree structures (right) represent the position of the 
hyperplanes as the splitting condition. Red arrows indicate the conditions for the 
separation of AlB2 structure domain. The numbers under each node represent the 
number of corresponding compounds divided by the node condition. 
 

Out of 840 compounds, there are 45 AlB2, 16 CaC2, 21 CaF2, …, 15 ZrSi2 type 

structures. At the root node (i.e., before partitioning), the entropy of the data, HRoot, 

(a) 

(b) 
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is: 

 

HRoot = - ∑p(xi)log2p(xi) 

= - {p(AlB2)log2p(AlB2)+p(CaC2)log2p(CaC2)+p(CaF2)log2p(CaF2)+… 

+p(ZrSi2)log2p(ZrSi2)} 

    = - {(45/840)log2(45/840)+(16/840)log2(16/840)+(21/840)log2(21/840)+…  

+(15/840)log2(15/840)} 

    = 4.3751 bits 

 

At each step of the partitioning, one AP value which minimizes the entropy of the 

data set, i.e. for the maximum IG, is chosen as the splitting parameter by 

exhaustively calculating the IG for all the possible AP values. At the first partition 

step, for instance, maximum IG = 0.4468 bits for VE, 0.3591 bits for ΔXMB, 0.5867 bits 

for ΔRZs+p, 0.1821 bits for nav, 0.2805 bits for ΔXPauling, 0.2975 bits for ΔΦ*, and 0.2440 

bits for Δnws1/3 are achieved. Thus, ΔRZs+p is selected as the splitting parameter. In 

practice, the entropy of two sub-nodes (Ha) is minimized at ΔRZs+p = -0.03333 and it 

becomes the first partitioning condition. 

 

Ha = {P1(Hleft node) + P2(Hright node)} 

     = {(221/840)(3.4954) + (619/840)(3.893)} 

     = 3.7884 bits 

The information gain, IG = HR – Ha = 4.3751 – 3.7884 = 0.5867 bits 

 

In the same way, at the second partition, IG is maximized at VE=8.0002 

Hb = {(123/619)(2.6184) + (496/619)(3.5911)} 

     = 3.3978 bits 



 113

IG = Ha,right – Hb = (619/840)(3.893 – 3.3978) = 0.3649 bits 

In this way, the classification tree is grown and then is pruned by the stopping 

procedure as explained. The following Figure A1.5 shows the whole procedure of 

the classification of crystal structure data. 

 

 

Figure A1.5. The schematic procedure of the data classification by using recursive 
partitioning for the application to the crystal chemistry research. 
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APPENDIX II 

CRYSTALLOGRAPHIC GROUP-SUBGROUP RELATIONS 

 

 

A2.1. Space group symbols 

Hermann-Mauguin symbol is the notation of the symmetry elements in the point 

groups, plane groups, and space groups. The symbol consists of four character parts 

as follows: 

 

 

The first character indicates the crystal lattice centering, that is, 

• P = primitive 

• A, B, and C = base-centered 

• F = face-centered 

• I = body-centered 

• R = rhombohedral 

Seven crystal systems with the lattice centering of the five different types consist of 

14 Bravais lattices (Table A2.1.) 

 

From the second to fourth parts denote the symmetry elements along certain 

directions. Symmetry operations are categorized into the basic and combined 

symmetry operations: 

• Basic symmetry operations 

- Rotation axis : 1, 2, 3, 4, and 6-fold 

- Reflection : m, /m 

1 2 3 4 
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- Inversion : i 

- Translation : t (translation vector) 

• Combined symmetry operations 

- Roto-inversion (= rotation + inversion) : 1, 2 ,3, 4 , and 6  

- Roto-reflection (= rotation + reflection) : 1m, 2m, 1/m, 2/m, etc. 

- Screw axis (= rotation + translation) : 21, 32, 41, 63, etc. 

- Glide plane (= reflection + translation) : a, b, c, n, d 

 

Table A2.1. Crystallographic space groups. 

 

 

For example, a hexagonal space group symbol, P6/m2/m2/m, denotes a set of 

symmetry operations which includes the following symmetry information. 
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A2.2. Symmetry reduction between space groups 

Space group is a set of symmetry operations. A space group G2 becomes a subgroup 

of another space group G1, if the set of symmetry operations of G2 is the subset of 

those of G1. In the same way, G3 is a subgroup of G2 when its symmetry-operations 

set is the subset for G2. 

 

In such a case, it is said that the symmetry is reduced, and the symmetry relation of 

G1 and G2 is described using an arrow pointing from higher symmetry space group 

to the lower one. Here, G1 becomes a supergroup of G2, and G2 becomes a subgroup 

of G1. If there is no intermediate space group between G1 and G2, G2 is called as a 

maximal subgroup of G1. 
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For three space groups with group-subgroup relations, the symmetry reduction can 

be described as follows. 

 

 

There are two types of subgroups (=topologically equivalent) of a space group, 

which are called as t-type and k-type subgroups. 

(i) t-subgroups: “lattice-equivalent” subgroups with the same translations. In 

this case, a subgroup G2 contains all the translations of the super group G1. 

(ii) k-subgroups: “class-equivalent” subgroups of the same class. In this case, 

G1 and G2 have the same crystal class (=point group) but belong to 

different space-group types. G2 has lost translational symmetry; that is, 

the primitive cell corresponding to G2 is larger than that of G1. 

 

One more thing should be mentioned is that the transformations of the coordinate 

system. When the unit cells of two crystal structures are transformed, the relations of 

the coordinate systems are defined by a transformation matrix which consists of the 

rotation and origin shift of the coordinates. The basis vectors of a new coordinate, a’, 

b’, c’ have the relations with those of the current coordinate, a, b, c by a 
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transformation matrix P; that is, 

(a’, b’, c’) = (a, b, c)P 

                                = (a, b, c)
















333231

232221

131211

PPP

PPP

PPP

 

For instance, suppose c → 1/2c, the transformation matrix, P is then 

P = 
















2100

010

001

/

 

The origin shift is denoted by a triplet of numbers, e.g. 0, 1/4, 1/4. This means that 

the origin is shifted by 0, 1/4b, 1/4c from the original coordinates. 
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