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Figure 6: The pattern Þnder. The calculated patterns across a time course experiment are 

shown in the “pattern...” column as arrows representing the direction of each transition. The 

pattern Þnder dialog selects rows that match the speciÞed pattern. Here, a constantly 

increasing pattern has been selected. The vertical slider on the left of the dialog speciÞes the 

number of entity transitions, centered on the median, that are considered to stay the “Same”. 

All transitions less than the assumed “Same” transitions are considered “Down” and the 

remaining transitions are considered “Up”.  
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Figure 7: Linear modeling dialogs. On the left is the interface to limma, and on the right is 

the temporal modeling interface. The user may select the factors and outputs of interest, as 

well as specify various other parameters.  

 

 

 
 

Figure 8: Simple subsetting GUI. The user may activate rules that filter entities based on 

their level, fold change, and replicate variance.  
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Table 1: Mapping from data type to filename extension per the explorase filenaming conven-

tion. explorase requires project files to be named using these file extensions. An example 

project with correctly formatted files is in the supplemental data and available from the 

explorase website (Lawrence 2007).  
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Figure 9: Di erence calculation between the biotin mutant with and without external biotin. 

The GGobi scatterplot (above) compares the two conditions; below is a histogram of the 

di erence calculation. The numbered red circles drawn on top of the screenshot illustrate the 

steps to calculate the di erences, as explained in the example.  
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Figure 10: The GGobi control panel, used for creating and configuring GGobi plots. The File 

menu supports loading and saving of GGobi datasets, but the explorase user is expected to 

load and save data through the explorase GUI. The Displays menu contains items for opening 

each type of display, such as scatterplots and parallel coordinate plots. The View menu 

allows toggling between display view modes, such as histogram vs. XY plot. The Interaction 

menu has an item for activating each interaction mode, such as the brush. The Tools menu 

contains various utilities. Below the menubar are two panes. The left contains options for the 

current interaction mode. The other lists the variables in the current dataset and has toggle 

buttons for specifying which variables are plotted in the current display. The numbered red 

circles drawn on top of the screenshot illustrate the steps to create the plots mentioned in the 

example 
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Figure 11: limma results for the biotin data. Only the entities with an F statistic > 95 for the 

interaction of genotype and biotin are displayed. The numbered red circles drawn on top of 

the screenshot illustrate the steps to filter the table. 
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APPENDIX B.  METNETDB: A PLANT BIOLOGICAL NETWORK DATABASE 

BASED ON A LABELED GRAPH MODEL 

A paper to be published in Plant Physiology. 
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ABSTRACT  

Capturing the features of biological networks provides a major challenge in part because of 

the complex interrelationships and the many uncertainties and incompleteness inherent in the 

data. MetNetDB is a metabolic and regulatory network database for Arabidopsis.  The data is 

stored as an integrated labeled graph model. This labeled graph model facilitates combining 

known and hypothetical interrelationships and annotation from multiple data sources. 

Aspects of biological networks stored in the MetNetDB labeled graph model include: 

biological entities (e.g., DNA, RNA, polypeptide, protein complex, or metabolite) annotated 

by subcellular localization, synonyms, literature citations, gene annotations, and/or 

metabolite formula; in addition, a hierarchy of interaction types (broad categories include 

catalysis, conversion, transcription, regulation) describe the relationships among the entities. 

To facilitate network analysis, biological entities and interactions are represented as nodes, 

and the associations between them are represented as edges. Properties of entities and 

interactions are stored as corresponding node labels. Stoichiometric and kinetic parameters 
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for interactions are captured as edge labels. A curator tool supports searching, visualizing and 

curating the network. The history of each change is retained. These novel features are crucial 

to enable both integration and storage of the network combined with graph-based search and 

analysis of the network structures. The network can be shared through Cytoscape-compatible 

XML files, SBML files, or via a dedicated API. MetNetDB serves as the primary data 

repository for the MetNet suite of visualization and analysis tools. 

Availability: http://www.metnetdb.org/MetNet_db.htm 

INTRODUCTION 

Predictive biology, one of the great challenges of the current century, requires the power of 

bioinformatics. Databases can provide a platform for integration and viewing of complex 

biological networks, as well as for combining high-throughput transcriptomic, proteomic and 

metabolomic data together with the networks they are associated with. In addition, databases 

can be designed to enable computational analysis of the biological networks, and for 

modeling experimental data in the context of known and/or hypothesized network(s). Such 

analyses facilitate the development of experimentally-testable hypotheses concerning the 

functions of biological molecules, metabolic or regulatory interactions, or network structures. 

Unlike sequence or molecular structure databases, databases for biological networks store 

data that contain complex internal relationships. For example, there are multiple types of 

biological entities; these include DNA, RNA, polypeptides, proteins, and metabolites as well 

as hybrids of these, such as acetylated histones, methylated DNA, proteoglycans, 

glycoproteins and glycolipoproteins. Furthermore, many types of interactions can occur 

between these entities (e.g., catalysis, transport, complex formation, allosteric inhibition, 

transcriptional regulation).  These interaction types have a wide range of kinetic and 
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stoichiometric parameters, thus significant implications for modeling the network. Adding to 

the inherent complexity in biological networks, there is a tremendous amount of uncertain 

data and missing data. Even in Arabidopsis, the precise functions of most genes are not yet 

understood (Swarbreck et al., 2008), regulatory interactions are even less comprehensively 

understood, and kinetic information is rare (Oliver et al., 2002).  

To best facilitate visualization and analysis, a biological network database needs to be able to 

capture and represent biological interrelationships in many ways. To accomplish this, the 

data storage model must be rich enough to describe both the complex relationships and the 

uncertainties inherent in the network. To take advantage of the continuously expanding 

battery of experimental technologies that give increasingly detailed information about 

molecular and spatial relationships (e.g., ChIP-hybrid interactions; Wu et al., 2006; Bindila 

and Peter-Katalini , 2009); protein localization (Sadowski et al., 2008); laser desorption-GC-

MS (Chen, 2008)), the model needs to be flexible enough to incorporate not only the current 

types of biological data, but also to accommodate future data types. The data model should 

also be able to store, manipulate and export biological network data easily, and to incorporate 

new information from existing data sources effortlessly.  

Biological network databases have been implemented as object, frame, or graph data 

models (Table I). The object data model is based on object-oriented programming principles, 

and stores data as a collection of objects (Booch, 1994). Biological concepts are described 

through class-definitions and individual instances are represented as objects (e.g., molecules, 

interactions, pathways, networks). The object data model suffers because there is minimal 

connectivity between objects, so the network cannot be easily modeled. The frame data 

model (Reimer and Hahn, 1983; Karp and Paley, 1996) is a collection of frames that 
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represent knowledge. Frames can be either a class (e.g., a concept like “polypeptide”) or an 

instance (e.g., a concrete biological entity like “acetyl-CoA”). The frame model uses slots to 

define the relationships among frames. However, the frame model, similar to the object data 

model, cannot be used easily for predictions about the behavior of the network. Graph 

models are based on nodes and their interconnecting edges (Cormen et al., 2003). Graph 

models have an inherent advantage over object and frame data models: a graph implicitly 

represents a network. (A network can be represented by object or frame data models 

artificially, at best). Thus, graph models provide a natural approach for representation and 

manipulation of biological networks.  

Graph-based approaches to represent complex data content have been studied for decades 

(Renzo and Claudio, 2008). Several graph models have been developed for computational 

analysis of biological and chemical phenomena, including graphs of chemical structures, 

chemical reaction graphs, bipartite graphs, and hypergraphs (Deville et al., 2003). Each of 

these graph models is designed for a specific type of computational analysis. The simple 

graph model is the basis of all other types of graph models. It contains nodes and edges that 

can carry limited information; the edges can be directed or undirected. Many existing graph 

algorithms are developed based on the simple graph model (Cormen et al., 2003). Chemical 

compound graphs, reaction graphs, bipartite graphs and hypergraphs provide a slightly richer 

structure to highlight specific information such as chemical strucutres, reactions or topology 

relationships for a specific analysis. However, these representations are either incomplete or 

ambiguous for complex network storage (Deville et al., 2003). The hypernode graph model 

used in PATIKA (Demir et al., 2002, 2004; Dogrusoz et al., 2006) allows the nodes to 

represent graphs, thus creating a nested graph. This model is designed to incorporate multiple 
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levels of abstraction for pathways and to represent state transitions of molecular complexes. 

Incomplete pathway knowledge can be stored in this model. However, the hypernode graph 

model in addition capabilities for checking data integrity are limited (Renzo and Claudio, 

2008). SAGA (Tian et al., 2007) uses an attribute graph model, in which the nodes contain 

attributes that can be used in an index-based graph alignment algorithm. Although this 

representation is powerful enough to be searched, it cannot store complete information on the 

stoichiometry or kinetic parameters of each interaction. While these existing graph models 

are good for different aspects of graph-based network analysis, none is designed to be able to 

store many different types of data. 

In this paper, we introduce the MetNetDB labeled graph model and present an overview 

of the MetNetDB system. The MetNetDB model is designed to store diverse information 

about the biological networks. It represents both molecular entities and interactions as nodes 

(subtypes are used to distinguish molecule and interaction types). It also defines the graph 

operations and rules for data integrity. Meanwhile, this model can be used flexibly for graph-

based analysis. For example, it supports the ad-hoc reconstruction of subnetworks of 

interconnecting entities through a p-neighborhood search. The labeled graph model has been 

implemented through MetNetDB, which is the central data repository of the MetNet project 

(Wurtele et al., 2003, 2007). MetNetDB stores biological networks and annotations for 

Arabidopsis and other species. There are four main contributions to this work. 

First, the labeled graph model enables many different types of data to be stored and 

retrieved, while maintaining the ability for graph-based analysis. The model provides 

flexibility for database expansion and internal or third-party tool implementation. 
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Second, MetNetDB collects and integrates biological interaction networks and 

annotations from various data sources. These include metabolic networks, regulatory 

networks, protein subcellular localizations, and annotations of genes, proteins and chemical 

compounds. 

Third, a curator tool is implemented on top of the labeled graph model. The curator tool 

allows the curator to create new networks, to modify and update existing data, and to 

compare pathways from different sources.  

Finally, MetNetDB database provides a rich source of integrated network data that can be 

used in a variety of applications, based on its labeled graph model. For instance, the MetNet 

tools (Dickerson et al., 2003; Wurtele et al., 2003, 2007; Lee et al., 2004; Ding et al., 2005; 

Yang et al., 2005; Lawrence et al., 2008; Mentzen et al., 2008; Mentzen and Wurtele, 2008) 

can access the network data based on the labeled graph model. The network data can also be 

exported as formatted data files, for example, XML or SBML (Hucka et al., 2003) files, 

depending on the needs of the biologists and/or tool developers. For Java and .NET 

application developers, a dedicated development library and an application programming 

interface (API) are available for download through http://metnet3.vrac.iastate.edu/api.  

RESULTS AND DISCUSSION 

To capture a complex regulatory and metabolic network requires a data model capable of 

storing large amounts of network and annotation data. The model also has to be rich enough 

to incorporate the multidimensional facets of the data. If external data sources are used, it 

must be able to interpret the varied data models employed by these online data sources, form 

a superset of interactions from the data in them, and integrate this data with the rest of the 

MetNetDB biological network (see supplemental data Table S1). In addition, to provide 
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support for the evolving requirements of systems biology research, the model must be easily 

extensible. Here, the MetNetDB labeled graph data model and its application to the 

MetNetDB database are described. 

The MetNetDB Labeled Graph Model 

A labeled graph model can combine the advantages of efficient network analysis, high 

capacity data storage, representation of multiple data types, and extensibility. Because it is a 

graph model, it can be analyzed directly by graph algorithms. In addition, the node and edge 

labels can be used to store large amounts of information on individual biological entities and 

reactions in tables as flexibly as either the object data model or the frame model, since any 

biological property can be described as part of a label (attribute, value). In each label, the 

attribute element indicates the property name, while the value element can hold any type of 

data. Many types of data can be represented and stored. For example, data for a label can 

even be a dynamic behavior (for example, MetNetDB could store data on changes in rates of 

the  activity of a protein complex in the presence of increasing levels of an allosteric 

activator); indeed, any behavior that can be described by SBML or MathML 

(http://www.w3.org/Math/) can be represented. Therefore, the labeled graph model provides 

a way to incorporate multiple types of static and dynamic information into the graph 

structure. The labeled graph model is easily extensible, for example, high throughput data 

sets from a new type of experimental protocol can be encoded as an XML format string and 

stored in a new label. Thus, the underlying database only needs to support string value 

storage. The database schema itself does not need to be changed to adapt to representing new 

types of data and models. 
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Technical Representation of MetNetDB 

MetNetDB labeled graph model is defined by a 7-tuple  in 

which  is the node set,  is the edge set and  is the set of node and edge labels. Labels 

have the form (attribute, value). The two functions,  and , are the node label assignment 

function ( ) and edge label assignment function ( ), respectively.  is the 

set of operations defined on the graph model. The edit operations can be node insertion, node 

deletion, label substitution of nodes and edges, edge insertion, and edge deletion. These five 

operations allow us to change the status of the graph.  is the set of rules that define data 

integrity. The rules are obtained from either biological knowledge or graph requirements. 

Rules are defined as a set of Boolean functions mapping from nodes, edges, and labels to a 

Boolean domain, e.g., . The rules determine which combination of nodes, 

edges and labels are allowed or prohibited. 

The motivation for this use of graph labels is to combine straightforward graph-based 

analysis of the network, to permit large amounts of data storage, and to provide a flexible 

framework that can be extended as needed. Existing forms were considered, but did not 

satisfy all these criteria. Hypergraphs, for example, can contain multiple types of 

information. However, they are inherently complex and require transformation to simple 

graphs to make use of most existing graph algorithms. To illustrate the model, we use the 

final reaction in the pathway “ethylene biosynthesis from methionine” (Figure 1) to shows an 

example of the labeled graph model instance for the pathway fragment. 
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Representing Biological Networks Using MetNetDB Labeled Graph Model 

Table II defines some of the terminology used in MetNetDB, and Table III summarizes how 

MetNetDB implements the model in the database. An “entitywithlocation”, which represents 

a biomolecule and its subcellular location, is mapped to a node in the labeled graph, and all 

of its properties are assigned to the label of that node. An interaction is also represented as a 

node in the model. Edges represent the relationship between an entitywithlocation and an 

interaction. In a case of catalysis in an enzymatic reaction, a catalysis interaction node is 

connected to the enzymatic reaction node. The biological properties of each interaction, for 

example reversibility or strength, are stored in the corresponding node label. The coefficients 

are stored in the label of the edge between the entitywithlocation and the interaction. The 

direction of each edge indicates the direction of that interaction. To illustrate the model, we 

use a metabolic reaction, ethylene biosynthesis from aminocyclopropane carboxylic acid 

(Figure 1). 

Data Content in MetNetDB 

MetNetDB provides a wide variety of data to support the study of systems biology in plants: 

such as metabolic pathways, transcriptional regulatory networks, gene annotations, protein 

localization information, and metabolite annotations. Figure 6 indicate which external 

databases are integrated into MetNet. The method of integration is discussed further in the 

“MetNetDB Implementation” section. 

Metabolic and Regulatory Interaction Networks  

MetNEtDB currently obtains interaction information from three sources. MetNetDB 

integrates each release of the metabolic pathway database AraCyc (Zhang et al., 2005), 



 185 

including metabolic pathways and unique genes assigned to these pathways, annotations and 

references for genes, metabolites, enzymes and reactions. Data from the transcriptional 

network database AGRIS (Palaniswamy et al., 2006) is integrated. AGRIS contains 

information on: binding site of promoters, loci of associated transcriptional factors, and 

corresponding references; these data are integrated into the MetNetDB network using the 

interaction types: direct transcriptional activation and direct transcriptional inhibition (Figure 

2).  Finally, the MetNetDB curator adds signal transduction networks based on the current 

literature (such networks are not otherwise available as a web resource for Arabidopsis). 

Annotation of Genes and Proteins 

MetNetDB contains gene annotation associated with the interactions and entities, such as 

function annotation and external database ID mapping. To expand the annotation, we 

integrate the full copy of Gene Ontology (Harris et al., 2004) and TAIR gene annotations 

(Swarbreck et al., 2008). The mapping between the locus name and probe sets of Affymetrix 

ATH1 and AG genome arrays is included. The UniProt IDs (The UniProt Consortium, 2009) 

of gene products are associated with the corresponding Arabidopsis loci. MetNetDB also 

integrates MapMan (Thimm et al., 2004; Usadel et al., 2005) bin annotations, which include 

gene annotations and functional categories for the gene products (see supplemental data 

Figure S1). The membership of each gene locus in a regulon (co-expression cluster) is also 

annotated (Mentzen and Wurtele, 2008). 
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Annotation of Metabolites 

Metabolite information uses the expert-curated annotation from Plant Metabolomics 

(plantmetabolomics.org)., which assigns annotation to metabolites that are detected in the 

metabolomics analysis by this National Science Foundation Arabidopsis 2010 consortium.  

For those metabolites not yet assigned by Plant Metabolomics, MetNetDB computationally 

maps metabolite names to data entries in PubChem (Wheeler et al., 2007).  PubChem 

contains comprehensive information including chemical structures, CAS registry numbers 

(Buntrock, 2001) from NCI chemical compound database linked to their literature references 

(Sitzmann et al., 2008), and information from ChEBI, an ontological classification for 

chemical compounds (de Matos et al., 2006).  There are several challenges inherent with this 

approach due to inconsistencies within some of these databases.   In the PubChem database, a 

CAS registry number often is listed as a synonym, but is not explicitly indicated to be a CAS 

registry number. In this case, the CAS registry verification rules (David, 1997) are used by 

MetNetDB to search PubChem, identify those synonyms that are similar to CAS registry 

numbers, and assign putative CAS numbers to the metabolites.  Because of the ambiguities 

associated with chemical names, MetNetDB provides possible mappings between 

metabolites in MetNetDB and those in ChEBI by using an exact name match approach. 

These mappings can then be used by a human curator. Figure S2 in supplemental data 

illustrates the annotation of the simple metabolite ethylene in MetNetDB, and Figure S3 

shows an example for this name mapping process. 
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Interaction Types 

To capture a wide variety of possible biological interactions, MetNetDB currently defines 39 

interaction types, including enzymatic reaction, catalysis, transportation (7 types), 

transcription, translation, positive and negative regulation (9 types for each), and composition 

relation. The interaction types are derived from GO with several modifications. A full list can 

be viewed in the MetNetDB curator tool (see supplemental data Table S3). To integrate 

metabolic regulatory networks, MetNetDB uses transcription/translation interactions, RNAs 

and polypeptides.  

AND-OR Relationships are a special group of interaction types dealing with the relationship 

among polypeptides and protein complexes.  The relationship between proteins, their 

constituent polypeptides, and the genes that encode them is crucial for modeling biological 

pathways. This is because the composition of a given protein complex determines its activity 

and function. Composition can vary in several ways. First, protein complexes often can 

contain products from one or more members of a multigene family. For example, 

Arabidopsis isoamylase contains one or more polypeptides encoded by the 4-member 

isoamylase family, and the function of this enzyme, depending on its constituents, is thought 

to include both starch synthesis and starch degradation (Li et al., 2007; Wattebled et al., 

2008). Second, polypeptide components of proteins may be modified covalently. For 

example, histones can be modified by acetylation, which affects gene expression.  

To efficiently represent the relationships among genes and an enzyme in MetNetDB, 

“AND” and “OR” are used as the operators of the composition relation (Figure 3). “AND” 

means each of the polypeptides or protein complexes that are needed to form a new protein 
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other databases, such as AraCyc updates, which often do not contain subcellular location 

information for biological molecules in pathways (see supplementary data Figure S4). 

Similar to other biological network databases, MetNetDB supports keyword-based 

querying of its database. In addition, MetNetDB supports querying based on a list of user-

specified molecules, or a partial-graph structure of a pathway (Figure 5). “Exact matches” 

and “approximate matches” are supported in these query types. Querying based on a list of 

user-specified biomolecules lets users map experimental data (e.g., “omics data”) onto the 

MetNetDB biological network. Such mapping can give scientists insight of their data in a 

systematic way and generate new hypotheses (Parley and Karp, 2006; Babur et al., 2008; 

Kincaid et al., 2008). Querying based on a partial structure allows a curator to identify 

whether part of a pathway to be integrated (the query pathway) is already in MetNetDB. If a 

portion of the new pathway exists in MetNetDB, the curator can add new interactions to the 

existing pathway. Figure 5 show an example of pathway querying based on a partial 

structure. In panel A of Figure 5, the curator draws a simple structure involving three 

metabolites (L-methionine, S-Adomethionene, and 5-methylthioribose). Panel B of Figure 5 

displays the best matching alignment found in MetNetDB. 

 Querying in MetNetDB is implemented via graph matching based on Messmer’s 

subgraph isomorphism algorithm (Messmer and Bunke, 1998) and MetNetDB’s subgraph 

extraction algorithm (Li, 2008). This subgraph extraction algorithm is designed to extract a 

subgraph from a network database based on a list of nodes such as genes, metabolites, as well 

as to extract common substructures from the Messmer’s isomorphism results. 
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Active Rule-checking During Curation 

MetNetDB implemented a set of constraints, or rules, that help guarantee data integrity. 

These rules are classified into two types: biological and graph. Biological rules are to make 

the biological network comply with conventional biological knowledge. For instance, “an 

enzyme is not a metabolite” is an example of a biological rule in MetNetDB. Graph rules 

guarantee the basic data integrity in the context of the graph. For example, a pathway should 

always be connected (i.e. there is no orphan nodes in the graph). Rules are automatically 

checked each time a curator submits data or edits a pathway. The rules are classified as 

mandatory or optional. Any violation of mandatory rules will block the data submission. 

Those violations will be highlighted with a red box in the curator tool. Conflicts with 

optional rules allow exceptional types of biological data to be saved and curated but provide 

a warning to the curator by placing a pink box around the expected errors. For example “an 

enzyme is a protein or protein complex” is an example of a rule that is designated optional. 

Usually, it is the case and the rule warns that the curator or external database may have input 

an error; however, there are important exceptions, for example RNA molecules can also be 

enzymes. The curator can make the decision. Rules can be easily added or removed. Table S4 

in supplemental data displays all rules currently implemented in the MetNetDB curator tool. 

Tracking Data Changes and Concurrency Control 

An important feature of MetNetDB is that it supports tracking of changes in the database. 

There is a record of each change that is made. Unlike Meta-All (Weise et al., 2006), which 

only stores version when users request it, MetNetDB automatically stores every type of 

change and all the history of these changes (Figure 6). For instance, if an entitywithlocation 
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is deleted from the database, MetNetDB saves this deletion and any resultant modifications 

to interactions and pathways. Also, if an interaction or a pathway is modified, the previous 

version can be retrieved and compared. Finally, removed data can be undeleted, if necessary. 

In addition to revealing data provenance, tracking the data history provide a method to 

ensure concurrency control. This feature is important because MetNetDB and its curator tool 

are designed as a distributed application, enabling multiple curators to operate on the 

database at the same time. As a safeguard, the curator tool prevents two curators from 

updating the same database record at the same time. The workflow shown in Figure 7 

illustrates how concurrent editing is eliminated. When a curator retrieves data from the 

database, the corresponding version information is saved at the client side. Before a curator 

can update the data, the most recent version information is retrieved from the database again 

to make sure that nothing has been modified since the curator initially retrieved the data. In 

this way, MetNetDB guarantees that curators always update the data that they are reviewing.  

Data Export 

Currently, MetNetDB can export biological network data to MetNet tools in several ways: 

XML formats, direct table dump, and developmental library. For instance, Cytoscape with 

MetNet plugins (evolved from FCModeler [Dickerson et al., 2003; Wurtele et al., 2007]) and 

MetNetVR (Yang et al., 2005) currently use XML files generated by MetNet XML Builder 

(http://www.metnetdb.org/CytoscapeXML/) for network visualization and analysis. A 

MetNet developmental library (http://metnet3.vrac.iastate.edu/api) is available for two 

popular software platforms: Java and .NET. In both environments, a set of classes that refer 
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to logical MetNetDB concepts are available. A tool for exporting to SBML format and 

BioPAX format (Luciano and Stevens, 2007) can be accessed at http://metnetdb.org/metnet3. 

CONCLUSION 

MetNetDB enables storage and analysis of combined metabolic and regulatory interaction 

networks.  It contains three components: a database, a curator tool and a set of data-sharing 

interfaces. These components are built on a labeled graph model. Capitalizing on this labeled 

graph model, the database can support import, integration, update, edit, and export of 

complicated networks and associated annotations from heterogeneous data sources.  In 

addition, the labeled graph model enabled us to implement features into the curator tool 

including tracking the history of data changes, validating data input, and comparing or 

querying different version of biological networks. The graph model also benefits other 

bioinformatics tools, since they do not need to handle a relational model of the underlying 

database system. In this context, MetNetDB provides a comprehensive repository supporting 

systems biology research. 

Furthermore, MetNetDB presents an approach to biological network integration. This 

approach includes data model transformation and integration, semantic mapping, data 

transformation, and conflict resolution. The inexact graph-matching implementation is based 

on the labeled graph model and can be used for network integration when these biological 

networks are represented as the labeled graph model. A similar approach can be used for 

diverse scientific applications which require the integration of data sources and to provide a 

single data view for pathway analysis tools. 
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Table I. Data models used in biological network databases 
Model Terminology Subtype:Examples Advantages Disadvantages 

Object 

oriented 

(Booch, 

1994); 

Collection 

of objects 

Classes, 

objects 

UM-BDD (Ellis et 

al., 2006) 

aMAZE (Lemer et 

al., 2004) 

Storage Minimal 

connectivity 

between objects; 

limited 

visualization and 

analysis 

Frame 

(Reimer 

and Hahn, 

1983); 

Collection 

of frames 

Frames, slots BioCyc (Karp et al., 

2005) Reactome 

(Matthews et al., 

2009) 

 

Storage; semantic 

restrictions; some simple 

relationship queries 

possible 

Limited 

visualization and 

analysis 

Chemical structure 

graph, reaction 

graph 

 (Deville et al., 2003) 

 

Simplified models to 

analyze topology 

relationships in chemical 

compounds or reactions 

Hard to integrate 

various types of 

networks; limited 

storage 

Attribute graph: 

SAGA (Tian et al., 

2007) 

Supporting storing 

attributes of biomolecues 

and interactions in the 

nodes for graph 

similarity computation 

Cannot store 

interaction 

properties; limited 

storage 

Bipartite graph, 

hypergraph (Deville 

et al., 2003) 

Can represent compound 

nodes and reaction nodes 

in same graph 

Cannot represent 

metabolic 

networks and 

regulatory 

networks at same 

time without 

extension of the 

model; lmited 

storage 

Hypernode graph   

PATIKA (Demir et 

al., 2002; Demir et 

al., 2004; Dogrusoz et 

al., 2006) 

Represents pathway 

knowledge in multiple 

abstract levels; storage 

Retrieval? 

Lack of data 

integrity facility; 

Intractable to 

validate all 

possible pathways. 

Retrieval? 

Graph  

Nodes, 

edges 

(Cormen 

et al., 

2003) 

Nodes, edges 

Labeled graph 

MetNet(this paper) 

Large-scale integration 

of networks; 

Computationally 

sophisticated graph-

based analysis; Graph-

Complex 

implementation. 

Currently lack of a 

formal definition 

of biological 
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Model Terminology Subtype:Examples Advantages Disadvantages 

  matching algorithms 

including inexact 

network matches; 

Semantic restrictions are 

possible; Kinetic and 

stoichiometric 

parameters can be 

incorporated into 

analysis; High network 

storage  and retrieval 

capacity 

 

network oriented 

graph query 

language 
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Figure 1. MetNetDB representation of ethylene biosynthesis from 1-

aminocyclopropane-1-carboxylic acid. A) ACC oxidase reaction. B) The MetNetDB 

labeled graph model representation. The reaction contains two interactions, EC 1.14.17.4 and 

the catalytic activity of ACC oxidase. There are eight entity nodes (n1-n8, ovals) and two 

types of interaction nodes (rectangles). The label of node n8 “ethylene” is shown in the table. 

The label “2” on the edge between node n4 and n7 is the stoichiometry of biological entity 

H2O in the interaction. In this model, the rule “a catalysis reaction must be connected with an 

enzyme and an enzymatic reaction” is enforced for the relationship among n4, n5 and n6. 
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Figure 2 Transcriptional regulatory network with metabolic network. This figure 

displays a part of the catalase ascorbate glutathione pathway combining data from multiple 

sources. In this Cytoscape (Shannon et al., 2003) graph using MetNet plugins (Dickerson et 

al., 2003; Wurtele et al., 2007), yellow nodes represent the biological entities located in the 

nucleus; light yellow nodes, cytosolic entities; grey nodes, microbody; blue lines, catalyses 

and enzymatic reactions; green lines, positive regulation; dashed lines, low confidence data. 

This example shows the integration of AGRIS regulatory networks and existing metabolic 

networks in MetNetDB. AT4G23810 encodes a transcription factor (TF). When adding this 

AGRIS derived information, we created a positive transcriptional regulation interaction 

between the gene product of AT4G23810 and its target loci (AT1G20630, AT4G35090, and 

AT1G20620). 
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Table II. Selected terminology used in MetNetDB 

Term Definition 

Entity Biological molecule (e.g., gene, RNA, polypeptide, protein complex, metabolite, 

cis-element) or environmental condition 

Entitywithlocation An entity in a particular subcellular location, such as an organelle or a 

membrane. This concept is especially important for computational analysis of 

experimental data that contains information about subcellular concentration of 

entities 

Location Subcellular location, subcellular compartment (Locations currently in use are 

given in supplemental data Table S2) 

Interaction Biochemical interaction, or the relationship among entitywithlocations 

(Interaction types are shown in supplemental data Table S3) 

Left, from The left part of an interaction when it is written down. (The reactants, for a 

chemical reaction.) 

Right, to The right part of an interaction when it is written down. (The products, for a 

chemical reaction.) 

Reversible An interaction that is kinetically bidirectional 

 

Table III. Organization of biological network data in MetNetDB labeled graph model 

Components of biological interaction network Representation in the 

labeled graph model 

Entitywithlocation Node 

Biological properties of entitywithlocation (Name, organism, subcellular 

location, data origin, entity type, synonyms, abbreviation, references, user 

comments, external database cross-reference, confidence; for gene loci: 

Affymetrix probe set IDs, Uniprot ID, AraCyc pathway names, regulon 

membership, GO terms, TAIR annotation, TAIR reference IDs, MapMan 

BIN ID, MapMan category, MapMan annotation, TargetP location, gene 

name and symbol, AGRIS regulation, and AGRIS reference; for 

metabolites: PubChem CID, CAS, PubChem synonyms, ChEBI ID, ChEBI 

name, formula, IUPAC ID, SMILES). (Currently, MetNetDB defines 7 

entity types and 74 subcellular locations, see Table S2) 

Node label 

Interaction (Currently, MetNetDB defines 39 interaction types, see Table 

S3) 

Node 

Biological properties of interaction (Organism, data origin, interaction 

type, EC number, confidence, reversibility, references and user comments).  

Node label 

Relationship between entitywithlocation and interaction Edge between 

entitywithlocation and 

interaction node 

Stoichiometric coefficient, kinetic data Edge label 

Relationship between interactions Edge between 

interaction nodes 
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Figure 3 Composition relationships of the ATP citrate lyase (ACL) protein complex 

visualized in Cytoscape with MetNet plugins. The ACL protein complex, located in the 

cytosol, contains two distinct types of subunits: ACL-A and ACL-B (Fatland et al., 2005); 

the complex formation between ACL-A and ACL-B is thus represented by a composition-

AND relation (orange edges). ACL-A can be formed from any of three polypeptides: ACL-

A1, ACL-A2, or ACL-A3. Thus, a composition-OR is used to connect these polypeptides 

with ACL-A (ochre edges). Similarly, a composition-OR is used to connect ACL-B1 and 

ACL-B2 polypeptides and ACL-B. Off-white nodes indicate entities in the cytosol. Yellow 

nodes indicate entities are in the nucleus. Node shapes indicate the types of entity: diamond 

nodes, polypeptides or protein complexes; rectangular nodes, RNAs; hexagonal nodes, genes. 

Edge colors indicate the interaction types: black edges, transcriptions; pink edges, 

translations. 
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Figure 4.  Subcellular localization information for the pyruvate dehydrogenase E1 

alpha encoded by AT1G01090 visualized in AtGeneSearch 

(http://metnet.vrac.iastate.edu/MetNet_atGeneSearch.htm). There are two data sources 

for localization: experimental data, in this case, the mitochondrial protein database PPDB 

(shown in comment field) and TargetP (shown in TargetP prediction field). 
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Figure 4 Data sources used in MetNetDB. MetNetDB collects and integrates biological 

network, protein annotation, gene annotation and metabolite annotation information from key 

online databases. 
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Figure 5. Visual pathway query displayed in MetNetDB curator tool window. A) An 

example of an input window when a curator has drawn a partial structure for a pathway 

query. B) This window displays a matching result from the structural query in panel A. The 

nodes of the input graph are designated by a red box. The dotted lines indicate the alignment 

between these nodes of the input graph and the pathway “ethylene biosynthesis and 

methionine cycle”. For instance, a dotted line indicates that S-Adomet node of the input 

graph is aligned to the S-Adomet in cytosol (light yellow background) of the pathway. In this 

pathway we can find a highlighted cycle that inexactly matches the input graph. 
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Figure 6 Data history browser. The data history browser window displays previous edit 

operations on biological network data. The curator can always retrieve, review and restore 

these history data from this window.  
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Figure 7. Tracking the history of changes is implemented to provide MetNetDB 

concurrency control during curation. MetNetDB uses version comparison to prevent 

multiple curators from editing different versions of same data. At any instance, only one 

curator can update the database. Before an update can be made, the most current version 

must be same as the one from which the curator initially retrieved the data, thus ensuring that 

the curator is updating the correct version of the data. 
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SUPPLEMENTAL DATA 

The following materials are available in the online version of this article. 

Table S1. Data sources of MetNetDB 

Table S2. The subcellular location hierarchy defined in MetNetDB (Locations are based 

as possible on GO categories) 

Table S3. The interaction types defined in MetNetDB 

Table S4. Rules of the labeled graph model used in MetNetDB 

Figure S1. Gene annotation from multiple sources 

Figure S2. The annotation for the metabolite ethylene 

Table S1. Data sources of MetNetDB 
Database Format Information retrieved 

AraCyc Plain text files organized 

according to frame data 

model 

Pathways, interactions and biomolecules 

participated in. Name, synonyms, references, 

comments. Majority metabolic pathways in 

MetNetDB come from AraCyc 

AGRIS Plain text files organized 

according to simple graph 

model 

Transcription network, references and binding 

sites of individual transcriptional factors 

GO MySQL dump files 

organized according to 

acyclic directed graph data 

model 

The whole copy of gene ontology database 

TAIR Plain text files (Tabular 

data) 

Affymetrix array elements and their 

corresponding LocusID mapping, Unitprot ID, 

TargetP location of polypeptides, loci of each 

AraCyc pathway 

MapMan Excel files (Tabular data) Gene annotation, MapMan BIN ID, gene function 

category 

BioCyc open 

chemical 

compound 

database 

Plain text files organized 

according to frame data 

model 

UNQUE-ID, synonyms 

ChEBI MySQL dump organized 

according to directed graph 

data model 

ChEBI ID, formula, molecular weight, IUPAC, 

SMILES 

PubChem XML files organized 

according to object data 

PubChem CID, synonyms 
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Database Format Information retrieved 

model 

NCI Structure data format 

according to object data 

model 

Synonyms, CAS registry number 

KEGG Plain text files (for 

compounds) organized 

according to object data 

model 

Synonyms 

SUBA Excel file Protein subcellular location including experiment 

verified and software predicted 

PPDB Tabular data Curated protein subcellular location, especially 

those in plastid 

AMPDB Tabular data Mitochondrion proteins, the subcellular location 

comes from computational prediction 

AtNoPDB Tabular data Nucleolar proteins, subcellular location comes 

from prediction and experiments 

AraPerox Plain text Putative proteins in peroxisomes. Subcellular 

location comes from literature and computational 

prediction 

plprot Plain text files organized 

according to object data 

model 

Subcellular location comes from TargetP 

prediction 

BRENDA Plain text files organized 

according to object data 

model 

Enzyme’s interaction, substrate, product, 

activator, inhibitor, synonyms, metal ions, 

references 

MetNet curator Manually curation All, with focus on signal transduction information 
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Table S2. The subcellular location hierarchy defined in MetNetDB (Locations are based as 

possible on GO categories) 
Subcellular location hierarchy 

plastid 

    plastid envelope 

        plastid outer envelope 

            integral to plastid outer envelope 

            peripheral to plastid outer envelope 

                peripheral to cytosolic side of plastid outer envelope 

        plastid intermembrane space 

        plastid inner envelope 

            integral to plastid inner envelope 

            peripheral to plastid inner envelope 

                peripheral to stromal side of plastid inner envelope 

    plastid stroma 

    plastid inner membrane 

    plastid outer membrane 

    thylakoid 

        thylakoid membrane 

            integral to plastid thylakoid membrane 

            peripheral to plastid thylakoid membrane 

                peripheral to stromal side of plastid thylakoid membrane 

                peripheral to luminal side of plastid thylakoid membrane 

        thylakoid lumen 

        thylakoid inner space 

    plastoglobules 

    plastid nucleoid 

    plastid ribosome 

cytosol 

mitochondrion 

    mitochondrial matrix 

    mitochondrial inner membrane 

    mitochondrial outer membrane 

    mitochondrial intermembrane space 

    mitochondrial crista 

apoplast 

autophagosome 

endoplasmic reticulum 

    plasmodesmatal endoplasmic reticulum 

    rough endoplasmic reticulum 

        rough endoplasmic reticulum cisterna 

        rough endoplasmic reticulum lumen 

    smooth endoplasmic reticulum 

        smooth endoplasmic reticulum cisterna 

        smooth endoplasmic reticulum lumen 

Golgi apparatus 

    GARP complex 

    Golgi lumen 

    Golgi membrane 
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Subcellular location hierarchy 

    Golgi stack 

    Golgi cis-face 

    Golgi trans face 

    Golgi vesicle 

        ER-Golgi transport vesicle 

        inter-Golgi transport vesicle 

        trans-Golgi network transport vesicle 

inner membrane 

lipid particle 

microbody 

    microbody space 

    microbody lumen 

    microbody membrane 

membrane 

nucleus 

    nuclear membrane 

        nuclear inner membrane 

        nuclear outer membrane 

    nuclear lumen 

        nucleolus 

        nuclear body 

    nucleoplasm 

plasma membrane 

vacuole 

    vacuolar lumen 

    vacuolar membrane 

not assigned 
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Table S3. The interaction types defined in MetNetDB 
Interaction types 

Enzymatic reaction 

Catalysis 

Translation 

Transcription 

Composition-AND 

Composition-OR 

Diffusion 

Transport 

    Channel-type facilitors 

    ATP-driven Transporters 

    PEP-dependent Transporters 

    Decarboxylation-driven Transporters 

    Electron-flow-driven Transporters 

    Light-driven Transporters 

    Mechanically-driven Transporters 

Positive regulation (indirect or unknown mechanism) 

    Allosteric activation 

    Competitive activation 

    Covalent modification  

    Complex formation(yielding active protein)  

    Transcriptional activation (unknown mechanism) 

        direct 

        coactivation 

    Translational activation 

    Indirect activation 

Negative regulation (indirect or unknown mechanism) 

    Allosteric inhibition 

    Competitive inhibition 

    Covalent modification  

    Complex formation(yielding inactive protein)  

    Transcriptional inhibition (unknown) mechanism) 

        direct  

        corepression 

    Translational inhibition 

    Indirect inhibition 

Degredation 

Two-component regulators 

Bind 

    Act as adaptor protein (specific case of binds) 

Others (user submitted, curator evaluated) 
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Table S4. Rules of the labeled graph model used in MetNetDB 
Rules of the MetNetDB labeled graph model 

A node must either be an biomolecule or an biochemical reaction 

Genes should be in nucleus, mitochondrion or plastid for plants 

An enzyme must be either a polypeptide or a protein complex 

The substrate and the product of a transportation must be the same biomolecule but in different 

subcellular locations 

A pathway graph should contain no duplicated nodes which represent same biomolecules in same 

subcellular location 

A pathway graph should contain no duplicated nodes which represents same biochemical 

reactions 

An interaction must have at least one substrate and one product 

There must be an interaction node between any two biomolecular nodes in a pathway graph 

No two interaction nodes can be adjacent except a catalysis node and an enzymatic reaction node 

A pathway graph should contain no orphan  nodes which do not connect to any other nodes 

A biomolecular node should have a single subcellular location value 
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Figure S1. Gene annotation from multiple sources.  For each locus and its gene product, 

the annotations from GO, TAIR, MapMan and AGRIS are displayed.  
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Figure S2. The annotation for the metabolite ethylene. The synonyms of ethylene come 

from KEGG, PubChem, AraCyc, ChEBI and NCI. The chemical formula, IUPAC ID, 

SMILES and external database cross-references are from ChEBI. MetNetDB curator tool is 

used for the visualization. 
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APPENDIX C.  ATP-CITRATE LYASE TARGETED TO PLASTIDS OF 

ARABIDOPSIS THALIANA IS UNDER COMPLEX POST-TRANSCRIPTIONAL 

CONTROL 

 

Heather L. Babka
1
 and Eve S. Wurtele

1 

 

ABSTRACT 

 

 Acetyl-coA is necessary for many biochemical reactions in living organisms, 

including the synthesis of fatty acids, sterols, and many secondary metabolites.  Acetyl-CoA 

is synthesized within the compartments in which it will be utilized, as CoA moieties cannot 

cross membranes.  ATP-citrate lyase (ACL) is responsible for synthesizing the cytosolic pool 

of acetyl-CoA.  Native ACL has been targeted to the plastids of Arabidopsis thaliana using 

the transit peptide from the small subunit of Rubisco.  While the introduced ACLA-1 and 

ACLB-2 genes are transcribed to a high level, this does not correspond to increased ACL 

protein or activity in planta.  The results shown here indicate that ACL protein accumulation 

and activity are subject to post transcriptional control.   

INTRODUCTION 

 Acetyl-CoA is a metabolite central to metabolism, juxtaposed between catabolism 

and anabolism.  As biomolecules containing the CoA moiety cannot cross cellular 

membranes, acetyl-CoA must be synthesized within the compartment it is to be utilized.  

ATP-citrate lyase (ACL) is responsible for synthesizing the cytosolic pool of acetyl-CoA, via 

the ATP dependent cleavage of citrate into acetyl-CoA and oxaloacetate.  The cytosolic pool 

of acetyl-CoA is utilized to elongate fatty acids and to produce a large number of specialized 

phytochemicals including flavonoids, sterols, and isoprenoids (Figure 1) [11, 25].  Until 

recently the plastidic pool of acetyl-CoA was thought to be provided by the combined action 

                                                
1
 Department of Genetics, Development, and Cell Biology; Iowa State University 
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of the pyruvate dehydrogenase complex and acetyl-CoA synthetase [13, 17].  Much evidence 

now suggests that pyruvate dehydrogenase complex provides the bulk of plastidic acetyl-

CoA, while acetyl-CoA synthetase (ACS) may be present as a bypass to prevent acetate 

toxicity or to shunt carbon into the glyoxylate cycle [18]. 

 ACL has been found in yeast, fungi, human, Achaea, algae, bacteria, and a number of  

plant species including  Arabidopsis thaliana, Pisum sativum, Glycine max, and Brassica 

napus [1, 2, 7, 9, 11, 12, 19, 22, 24, 27, 30].  In the Arabidopsis genome there are three genes 

that encode ACLA (ACLA-1, ACLA-2, and ACLA-3) and two that encode ACLB (ACLB-1 and 

ACLB-2) [9, 10].  ACLA protein from Arabidopsis is similar to the N-terminus of rat and 

human ACL, while the ACLB protein is similar to the C-terminus of ACL protein from rat 

and human [8].  The ACL protein is localized to the cytosol in all species yet studied and is 

an octoheteromer, likely in an A4B4 configuration [9].  The RNA of ACLA and ACLB have 

been shown to coaccumulate with homomeric acetyl-CoA carboxylase.   Arabidopsis plants 

expressing an anti-sense copy of ACLA-1 exhibit a severe phenotype, indicating that there is 

only one source of cytosolic acetyl-CoA.  Anti-sense ACLA-1 plants are dwarf in size, dark 

green, have increased accumulation of both starch and anthocyanins, and show altered 

culticular wax.  This phenotype can be reversed by the application of exogenous malonic 

acid [10].  

 ACL can be targeted for expression in other compartments of Arabidopsis to boost 

the pool of acetyl-CoA.  In particular, if plastids contain a pool of citrate, then increasing 

acetyl-CoA production via ACL could result in an increase of fatty acid biosysnthesis.  In 

Brassica napus developing seeds and Glycine max cotyledons the activity of ACL 

corresponds to the accumulation of fatty acids [23, 27].  De novo fatty acid biosysnthesis is 
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initiated within the plastid of Arabidopsis via the carboxylation of acetyl-CoA into malonyl-

CoA by the action of heteromeric acetyl-CoA carboxylase (htACCase).  When rat liver ACL 

was targeted to the plastids of tobacco an increase in ACL protein content and activity was 

observed as well as an increase in fatty acid biosysnthesis [26].  Acetyl-CoA production in 

Arabidopsis plastids could be boosted by targeted native ACLA and ACLB proteins to the 

plastid.     

MATERIALS AND METHODS 

Vector construction 

 The base vector used for plant transformation is pCB302-1 [31]  ACLA-1 was PCR 

amplified from pBS-ACLA from the Nikolau lab (Iowa State University, BBMB) with SmaI 

ends and ligated into pCB302-1, resulting in vector pCG-CB-ACLA.  ACLB-2 was removed 

from the vector pVBVYC01 using EcoRI, and ligated into pCB302-1, resulting in the vector 

pHJ210.  Both of the resultant constructs were electroporated into Agrobacterium. 

tumefaciens strain C58C1.  

Plant transformation and selection 

 Arabidopsis thaliana glabrous Columbia ecotype (Co0-gl1) (Lehle Seeds, Round 

Rock,TX) was transformed by dipping inflorescence stalks (approximately 40 days after 

planting) in infiltration medium containing Agrobacterium tumefaciens (strain C58C1) with 

either p35S:TP:anti-sense-ACLA-1 or p35S:TP:anti-sense-ACLB-2.  Infiltration media 

contained 0.22% MS [20] salt mixture (Sigma, St. Louis, MO), 1X B5 vitamins, 5 % sucrose, 

0.05 % MES-KOH,  pH7.0, 44 nM benzylaminopurine, and 0.02 % Silwet L-77 (OSI 

Specialties, South Charleston, WV).  Plants were placed at 22
o
C under continuous light (35 

mol m
-2

 sec
-1

) until seed harvest.   
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 Transgenic plants containing p35S:TP:anti-sense-ACL-A1 were designated TPACLA 

and those containing p35S:TP:anti-sense-ACLB-2 were designated TPACLB.  Selection was 

performed by sowing seeds on sterile LC1 Sunshine Mix soil (Sun Gro Horticulture, 

Bellevue, WA) and selected by applying 0.5% glufosinate (Agr-Evo, Marysville, CA) 10 

days later.  Twenty days after sowing individual transformants were transferred to individual 

2-inch pots.  Plants were watered continuously with 21-nitrogen: 8-phosphorous: 18-

potassium, fertilizer mix (“Nutriculture,” Plant Marvel Laboratories, Inc, Chicago Heights, 

IL). 

RNA extraction and Northern analysis 

 Total RNA for Northern blots was extracted using a modification of the methods 

described by Kirk and Kirk [15].  Harvested plant tissue was ground in mortar and pestle 

using liquid nitrogen.  Approximately 50 mg of tissue was placed in a microfuge tube and 1 

mL of E-buffer was added (50 mM Tris-HCl, pH=8.0; 300 mM NaCl; 5 mM EDTA, pH = 

8.0; 2 mM aurin tricarboxylic acid [ATA]; 2% SDS; 1% -mercaptoethanol) along with 150 

L of 3 M KCl.  The sample was first incubated on ice and then centrifuged to remove 

cellular debris and protein.  Half a volume of 8 M LiCl was added to the supernatant and 

RNA was precipitated overnight at 4
o
C.  The following day the RNA was centrifuged and 

resuspended in 0.1 mM ATA, and extracted once with phenol to remove any remaining 

protein.  A final ethanol precipitation was carried out using two volumes of 100% ethanol 

and 0.1 volumes of 3 M NaOAc, and following centrifugation a pellet of pure RNA was 

recovered.  The ATA protects the RNA from degradation, but because it irreversibly binds to 

the RNA any RNA purified in this manner is rendered useless for methods such as reverse 

transcription and microarray analysis. 
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 RNA was denatured at 65
o
C and separated on a gel containing 1% agarose, 3% 

formaldehyde, and 10 mM phosphate, pH = 6.8 [6].  RNA was transferred to a positively 

charged nylon membrane (Hybond-N+, Amersham, Piscataway, NJ) using 20X SSC 

buffer[21].  Prehybridization and hybridization were carried out using a solution containing 

7% SDS, 0.25 M sodium phosphate buffer, monobasic, 1 mM EDTA, and 1% casein [5].  

The blots were hybridized with 
32

P-labeled cDNA oligonucleotide probes corresponding to 

the full length ACLA-1 or ACLB-2 genes used for plant transformation.  Radiolabel signal 

was detected using a PhosphorImager Typhoon 8600 (Molecular Dynamics, Sunnyvale, CA).  

Protein extraction 

 Protein extraction was carried out on rosette leaf tissue homogenized in a liquid 

nitrogen cooled mortar and pestle containing extraction buffer (50 mM Tris-HCl, pH = 8.0; 1 

mM EDTA, pH = 8.0; 10 mM dithiothreitol [DTT]; 1.5% [w/v] pre-swollen PVPP; 1 mM 

phenylmethylsulfonylfluoride, and 1 mM paraminobenzamidine).  The resultant slurry was 

centrifuged at 4
o
C for 3 min at 12,000x g, and then for an additional 12-20 min at 4

o
C to 

further remove cellular debris.  Bradford assay was used to determine protein concentration, 

and the protein was diluted with 5X Laemmle buffer, boiled to denature, and stored at -20
o
C 

until needed for Western analysis [3].  Protein extracts for ACL activity assays were desalted 

through Sephadex G-25-150 columns (200 L extract on 1 mL Sephadex bed volume) with 

elution buffer (50 mM NaH2PO4, pH = 7.2; 1 mM MgCl2; 0.1 mM EDTA, pH = 8.0; 1 mM 

DTT).  Desalted extracts were diluted to 10% (v/v) using glycerol and stored in liquid 

nitrogen.   



 230 

Western analysis 

 Proteins were separated using denaturing conditions through 12.5 % acrylamide [16], 

and transferred to nitrocellulose (Nitropure, Osmonics, Minnetonka, MN) using 25 mM 

glycine, 20 % methanol [29].  Gels were transferred using a voltage of up to 125 V for 175 

volt-hours. 

 Western blots were incubated in TBST (10 mM Tris-HCl, pH = 8.0; 15 mM NaCl; 

0.1 % Tween-20) + 3 % BSA at room temperature overnight.  Anti-ACLA or Anti-ACLB 

serum [9] was added to the blots in new 3 % BSA supplemented TBST at a 1:500 dilution 

[14] and incubated 3-4 h at room temperature.  Any unbound antibody was removed by three 

10 min washes with TBST.  The blots were then incubated with 2 X 10
5
 cpm/mL 

125
I-Protein 

A (Amersham, Piscataway, NJ) in TBST supplemented with 3 % BSA for 2 h at room 

temperature.  Three 10-min washes with TBST were used to remove any excess protein A.  

Radiolabel signal was detected using a PhosphorImager Typhoon 8600 (Molecular 

Dynamics, Sunnyvale, CA).  

Spectrophotometric assay of ACL activity  

 ACL activity was determined by a coupled spectrophotometric assay [9, 28].  The 

ACL assay contained 100-150 L of desalted protein extract (50 – 500 g protein); 200 mM 

Tris, pH = 8.4; 20 mM MgCl2; 1 mM DTT; 10 mM ATP; 10 mM citrate; 6 units malate 

dehydrogenase; and 0.1 mM NADH.  Background oxidation of NADH was determined by 

monitoring the decrease in absorbance at 340 nm in the absence of CoA, and the ACL 

reaction was initiated by the addition of 0.2 mM CoA.  

 This assay measures the oxidation of NADH during a reaction coupled to the ACL 

reaction: the conversion of oxaloacetate (a product of the ACL reaction) to malate by malate 
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dehydrogenase.  ACL activity can then be calculated using the extinction coefficient of 

NADH (6.22 mM-1cm
-1

).  There is a 1:1 correspondence between the rate of NADH utilized 

and units of ACL activity.  

Plant crosses 

 Pollen was removed from TPACLA overexpressing plants (T4 plants) and TPACLB 

overexpressing plants (T3 plants), 2 d after flowering (DAF).  The pollen was placed on 

stigmas of TPACLB (0 DAF) overexpressing plants or on the stigmas of TPACLA (0 DAF) 

overexpressing plants, respectively.  Siliques were grown to maturity; the F1 seed was 

collected, and analyzed for the overexpression of both ACLA-1 and ACLB-2 transgenes.  

Resultant plants were designated TPACLAB F1 progeny. 

RESULTS 

Plastid targeted ACLA-1 and ACLB-2 RNA can be overexpressed in Arabidopsis 

thaliana 

 Arabidopsis transformed with pCG-CB-ACLA or pHJ210 were cultivated and 

analyzed for expression of ACLA-1 and ACLB-2 RNA respectively. Northern blot analysis 

confirms that ACLA-1 and ACLB-2 are overexpressed in plants that survived BAR selection 

(Figure 2).  Plants overexpressing ACLA-1 or ACLB-2 targeted to the plastid do not show any 

visually noticeable phenotype. 

 Crosses were made between Arabidopsis plants overexpressing plastid targeted 

ACLA-1 and ACLB-2.  The resultant progeny were screened for the overexpression of both 

RNAs (Figure 3).  Progeny that showed over expression of both ACLA-1 and ACLB-2 were 

further screened for ACL protein accumulation and activity.  
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Plastid targeted ACLA-1 and ACLB-2 RNA overexpressed in Arabidopsis thaliana does 

not correspond to increased levels of protein expression or ACL activity.  

 Arabidopsis plants overexpressing both ACLA-1 and ACLB-2 RNA were further 

analyzed at the protein level.  As seen in Figure 4, neither ACLA-1 nor ACLB-2 protein 

accumulates to higher levels in transgenic plants overexpressing both ACLA-1 + ACLB-2.  To 

further verify these results ACL activity assays were performed.  ACL activity assays show 

that ACL activity in transgenic Arabidopsis hyper-accumulating ACLA-1 and ACLB-2 

transcripts is not significantly different than wildtype ACL activity (p-value: 0.11) (Figure 5).  

The lack of ACL protein accumulation and the lack of ACL activity are consistent over many 

independent transgenic lines. 

DISCUSSION 

 The 35S promoter has been successful at increasing the expression of both ACLA-1 

and ACLB-2 RNA in Arabidopsis thaliana.  The overexpression of one subunit (ACLA-1 or 

ACLB-2) does not impact the expression of the other subunit.  In previous studies, it had been 

shown that reducing the RNA accumulation of one subunit of ACL, ACLA-1, causes 

reduction in the RNA accumulation of the other ACL subunit RNAs [10].  When ACLA-1 

expression is reduced, there is also a decrease in ACLA protein and a  proportionate decrease 

in ACLB protein [10].  In fact it is quite common to observe the subunits of multi-subunit 

enzymes being co-regulated.  This has been observed with two subunits of MCCase, MCC-A 

and MCC-B, showing similar regulation at the mRNA and protein levels under various 

environmental conditions [4].  The subunits of heteromeric ACCase are also coordinately 

expressed at the mRNA level in Arabidopsis [14]. 
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 The increase in ACLA-1 and ACLB-2 transcript accumulation does not correspond to 

any change in the amount of either protein found in extracts.  ACL activity in TPACLAB 

plant extracts does not show an increase in proportion to the increased RNA accumulation 

observed.  Therefore, ACL must be regulated downstream of RNA processing, likely at the 

translational or post-translational level.  This phenomenon should be further studied to better 

understand how post-transcriptional regulation can play a role in metabolic pathway 

regulation in planta.  Rangasamy and Ratledge [26] successfully introduced rat liver ACL 

into tobacco plastids.  Perhaps being a foreign gene, the human liver ACL was not subjected 

to the same regulation patterns as a native Arabidopsis gene.   

 Studies could be performed to determine if ribosomes are attaching onto introduced 

Arabidopsis ACLA-1 or ACLB-2 mRNA.  If ribosomes are not successfully attaching to the 

introduced RNAs, then there is no chance to use this RNA overexpression method to boost 

acetyl-CoA production in plastids without altering the ability of ribosomes to bind to the 

introduced RNAs. 
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Figure 1.  Subcellular compartmentalization of acetyl-CoA metabolism.  Reactions of 

acetyl-CoA metabolism in Arabidopsis.  The de novo ACL reaction is shown in orange in the 

cytosol, while the other natural reactions are shown in black.  The introduced ACL reaction 

in the plastid is shown in red. 
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Figure 2.  Northern blot of Arabidopsis overexpressing ACLA-1 or ACLB-2 RNA 

chosen for crossing.  Total RNA was extracted from Arabidopsis rosette leaves, run on a 

denaturing gel, transferred to a nylon membrane, and probed using cDNA for ACLA-1 or 

ACLB-2 labeled with 
32

P-dCTP.  Panel A: Northern blot from plants containing plastid 

targeted ACLA-1 visualized using a Phosphoimager.  Panel B: Northern blot from plants 

containing plastid targeted ACLB-2 visualized using a Phosphoimager.  The black stars 

indicate plants over-expressing either ACLA-1 or ACLB-2. W indicates lanes containing 

wildtype RNA.  Arrows indicate the location of the two subunits: ACLA-1 (A) and ACLB-2 

(B). 
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Figure 3. RNA blots detecting ACLA-1 and ACLB-2 RNA in transgenic F3 lines 

containing plastid targeted ACLA and ACLB transgenes.  Total RNA was extracted from 

Arabidopsis rosette leaves, run on a denaturing gel, transferred to a nylon membrane, and 

probed using cDNA for ACLA-1 and ACLB-2 labeled with 
32

P-dCTP.  Panels A and C: 

Northern blots from plants containing plastid targeted ACLA and plastid targeted ACLB 

transgenes, and visualized using a Phosphoimager.  The black stars indicate plants over-

expressing both subunits of ACL. W indicates lanes containing wildtype RNA. Panels B and 

D: rRNA visualized on the identical ethidium bromide stained, RNA gels prior to transfer.  

Arrows indicate the location of the two subunits: ACLA-1 (A) and ACLB-2 (B). 

A 

A 

B 

W W 

A 

W W 

C 

D 

B

B



 239 

Figure 4. 
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Figure 4. Western Blots detecting ACL-A1 and ACL-B2 polypeptides in transgenic F3 plants 

containing plastid targeted ACLA and ACLB transgenes. Total protein was extracted from 

whole Arabidopsis bolts 35 DAP and 200 ug of protein was loaded, and run on 12.5% denaturing 

polyacrylamide gels.  Protein was transferred to nitrocellulose.  Membranes were then exposed to 

anti-ACLA or anti-ACLB antibody followed by exposure to the secondary antibody, 125I-Protein 

A.  Panels A and D: Western blots of the ACLA polypeptide. Panels B and E: ACLB Western 

blots showing ACLB polypeptide. C and F. Coomassie Blue stained gel to show loading.  The 

black stars indicate plants over-expressing RNA for both subunits of ACL in northern blots.  (W) 

Protein from wildtype.  Arrowheads indicate protein of interest, ACLA (A) or ACLB (B).   
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Figure 5.  ACL activity of protein from wildtype and TPACLAB protein extracts 

determined via spectrophotometric assay.   The assay measures the oxidation of NADH 

during a reaction coupled to the ACL reaction: the conversion of oxaloacetate (a product of 

the ACL reaction) to malate by malate dehydrogenase.  There is a 1:1 correspondence 

between NADH utilized and units of ACL activity.  p-value from a student’s T-test 

probability of a difference is 0.11.   
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