2005

Use of Organic Acid Salts to Control Listeria monocytogenes on Processed Meats

Z. Lu
Iowa State University

Joseph G. Sebranek
Iowa State University, sebranek@iastate.edu

James S. Dickson
Iowa State University, j dickson@iastate.edu

Aubrey F. Mendonca
Iowa State University, amendon@iastate.edu

Theodore B. Bailey
Iowa State University, tbbailey@iastate.edu

Recommended Citation

This Animal Products is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Use of Organic Acid Salts to Control
Listeria monocytogenes on Processed Meats

A.S. Leaflet R1990

Z. Lu, graduate research assistant,
J. G. Sebranek, university professor of animal science, and
food science and human nutrition,
J. S. Dickson, professor of animal science,
A. F. Mendonca, associate professor of food science and
human nutrition, and
T. B. Bailey, professor of statistics

Summary and Implications

Four organic acid salts including sodium lactate,
sodium diacetate, potassium benzoate and potassium sorbate
were evaluated, alone and in all combinations, for inhibitory
effectiveness against *Listeria monocytogenes* on ready-to-eat (RTE) meats.
Sodium diacetate alone, sodium diacetate + potassium benzoate and
sodium lactate + sodium diacetate + potassium benzoate were most effective for
inhibiting growth during storage.
These results indicate that sodium diacetate provides an effective means of
improved control of *L. monocytogenes* on RTE meats.

Introduction

Processed, RTE meat products such as frankfurters
have been the source of several *L. monocytogenes* illness outbreaks and the United States Department of Agriculture
Food Safety Inspection Service (USDA-FSIS) has established a zero tolerance policy for this organism on RTE products.
Consequently, new ingredients and processes for
improved control of *L. monocytogenes* on RTE products are critical to continued production of these products.
The salts of several organic acids including lactate, acetate, sorbate and
benzoate, have been reported to be significant antimicrobial agents.
These salts have been suggested as significant means to control *L. monocytogenes* on RTE meats.
More importantly, however, these salts, in combination, may offer synergistic effects that would allow use of lower concentrations than when used alone.
Therefore, a study of organic acid salts, alone and in
combination, was initiated to determine effectiveness for
control of *L. monocytogenes*.

Materials and Methods

Frankfurters were prepared for this study using
conventional processing.
Finished frankfurters were then dipped in 3% or 6% solutions of sodium lactate, sodium diacetate, potassium benzoate or potassium sorbate, alone and in all combinations.
Dipping for 3 minutes achieved 0.08% total pickup of the compounds.
Frankfurters were then placed in vacuum bags and inoculated with a 5-strain cocktail of *L. monocytogenes* before the packages were
sealed.

Storage of packaged frankfurters was at -2.2, 1.1, 4.4, 10.0 or 12.8°C for 90 days.
Packages were analyzed for *L. monocytogenes* survivors every 48 hours.
Three growth parameters, lag phase duration, generation time and
maximum population density were calculated from the
growth data to compare treatment effectiveness.

Results and Discussion

Preliminary results identified three treatments, sodium diacetate alone, sodium diacetate + potassium benzoate, and
sodium lactate + sodium diacetate + potassium benzoate that had the greatest initial impact on *L. monocytogenes*.
Consequently, these three were utilized for comparison of effectiveness during an extended storage period and at a
range of storage temperatures.
Of the growth parameters determined, maximum population density provided the best comparison of the treatments.
The results for maximum population density are shown in Table 1.
The treatment with 6% sodium diacetate alone resulted in the lowest
population density at -2.2, 1.1 and 4.4°C.
However, a high degree of variation in the means resulted in limited
statistical differences.
At the same time, coupled with the other measures of *L. monocytogenes* growth, sodium diacetate was consistently the most effective.
It should be noted that, regardless of the treatment, *L. monocytogenes* growth occurred, and temperature was the singly most
important determinant of growth.
Therefore, organic acid salts such as sodium diacetate offer some improvement in
control of *L. monocytogenes* on RTE meats but would be best coupled with additional inhibitors to achieve more
complete inhibition of this organism.

Acknowledgement

Support for this research from the USDA Cooperative
State Research, Education and Extension Service (CSREES) is gratefully acknowledged.
Table 1. Effects of inhibitors on the maximum population density (Log CFU/g) of *L. monocytogenes* on frankfurters

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Treatment</th>
<th>Mean1</th>
<th>Temperatures (°C)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-2.2</td>
<td>1.1</td>
<td>4.4</td>
<td>10.0</td>
<td>12.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5.30 ab</td>
<td>0.95 a A</td>
<td>4.52 b B</td>
<td>6.65 ab B</td>
<td>6.96 a B</td>
<td>7.00 a B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%SD</td>
<td>5.59 a</td>
<td>1.38 a A</td>
<td>5.75 b B</td>
<td>6.39 ab B</td>
<td>7.16 a B</td>
<td>7.30 a B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%SD</td>
<td>4.23 b</td>
<td>0.74 a A</td>
<td>0.82 a A</td>
<td>4.43 a B</td>
<td>7.75 a C</td>
<td>7.44 a C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%SL/SD/PB</td>
<td>4.69 ab</td>
<td>2.14 a A</td>
<td>4.19 ab AB</td>
<td>5.18 ab B</td>
<td>5.54 a B</td>
<td>6.41 a B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%SL/SD/PB</td>
<td>5.54 a</td>
<td>1.84 a A</td>
<td>3.10 ab A</td>
<td>7.42 b B</td>
<td>7.55 a B</td>
<td>7.82 a B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%SD/PB</td>
<td>5.13 ab</td>
<td>1.63 a A</td>
<td>3.17 ab A</td>
<td>6.30 ab B</td>
<td>7.62 a B</td>
<td>6.95 a B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%SD/PB</td>
<td>5.01 ab</td>
<td>1.22 a A</td>
<td>3.51 ab A</td>
<td>6.44 ab B</td>
<td>7.06 a B</td>
<td>6.83 a B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature mean2</td>
<td>1.41 A</td>
<td>3.64 B</td>
<td>6.12 C</td>
<td>7.09 C</td>
<td>7.11 C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Overall mean across all temperatures (−2.2, 1.1, 4.4, 10.0 and 12.8 °C) for each treatment

2Overall mean across all treatments at each temperature (−2.2, 1.1, 4.4, 10.0 and 12.8 °C)

Different letters A-C within each row indicate significant differences (*P* ≤ 0.05)

Different letters a-b within each column indicate significant differences (*P* < 0.05)