Conclusion

Our results showed a difference in biofilm production between strains depending on the period, that represented different seasons in the year. Biofilm formation, whatever the temperature considered, was greater for strains picked up in winter. Such an association need to be confirmed.

The biofilm formation ability appears different depending on the slaughterhouse considered. But the strains didn’t show differences in ability for biofilm formation according to the sectors tested, despite the known different characteristics of these steps of the production (in terms of temperatures, intensity of cleaning and disinfection...)

For further studies: Different strains with different biofilm formation ability will be studied for their differential genetic expression of genes involved in biofilm formation.

Acknowledgements

Thanks to Dr Philippe Fravalo, supervisor of this project and to Dr. Guy Beauchamps for statistic analysis.
This work is supported by NSERC and industrial partners: Olymel and F. ménard

References

This work is supported by NSERC and industrial partners: Olymel and F. ménard


Acknowledgements

Thanks to Dr Philippe Fravalo, supervisor of this project and to Dr. Guy Beauchamps for statistic analysis.
This work is supported by NSERC and industrial partners: Olymel and F. ménard

References

This work is supported by NSERC and industrial partners: Olymel and F. ménard


Introduction

Yersinia enterocolitica are psychrotrophic enterobacteria responsible for enteric infections in humans, mainly young children’s. In 2013, yersiniosis was the third most frequently reported zoonosis in the EU. The confirmed human cases were 6,471 [1.92 cases per 100,000 individuals] (EFSA & ECDC, 2015). Y. enterocolitica is classified into six biotypes. Biotypes 1B, 2, 3, 4 and 5 are considered pathogenic to humans while biotype 1A is believed to be non-pathogenic. In Europe, most human-pathogenic strains belong to bioserotypes 1/O:4 and 3/O:9 and 2/O:5,27 to a lesser extent (EFSA & ECDC, 2015). Pigs are considered to be the main reservoir of pathogenic strains. Infection is most often acquired by eating contaminated food, particularly raw or undercooked pig meat. Pigs do not develop clinical signs but carry Y. enterocolitica in the oral cavity, on the tongue and tonsils, in lymph nodes and they excrete the bacteria in their feces (Thibodeau, 1999, Nesbakken et al., 2003). A higher prevalence is reported in tonsils, than in the other parts of the carcass (tongue, feces, intestinal content, lymph nodes, offal, or surface of the carcass). In France in 2010-2011, the individual prevalence on tonsils was estimated at 13.7% [10.1-17.3] whereas the inter-batches prevalence was of 74.3% [65-84] (Fondrez, 2011; 2014). The carcasses and offal may become contaminated during slaughtering process, particularly by fecal contamination from gastrointestinal content during evisceration operations, and more generally by cross contaminations through equipment, personnel and environment of the slaughterhouse (Frederiksson-Ahomaa et al., 2001, Nesbakken et al., 2003). According to the literature, some slaughtering practices and inspection procedures may increase the frequency of contamination of offal and carcasses. The aim of the study was to evaluate the impact of the tongue handling practice on the contamination of the carcasses by Y. enterocolitica: the tongue removed with the pluck set vs the intact tongue inside the head. This study has also allowed us to obtain data regarding the frequency of contamination of pig carcasses by Y. enterocolitica in France.
Material and Methods

Sampling was performed in six slaughterhouses. Three removed the tongue together with the pluck set on the slaughter line whereas the two intact tongue were placed inside the head until the end of the cutting process. A total of 1920 pigs from 120 different farms/batches (60 batches of 16 pigs per type of slaughtering practice) were sampled both on their tonsils and carcass surfaces over a one year period ranging from November 2012 to October 2013. The bottom part of the carcass (sternal region, belly, and throat) and the oral cavity including the tonsils were swabbed. Microbiological analysis were equally shared between iflp and Aerial laboratories. For each sampling type, the samples were pooled (pool of 4 pigs) and analyzed using an enrichment in ITC broth (Irgasan, Ticarcillin, Potassium chlorate) (48h, 25°C) and streaking on CIN (Cefsulodin, Irgasan, Novobiocin) agar plates (24h, 30°C). Typical colonies of Yersinia enterocolitica were confirmed by using Api 20E strips (Biomerieux). Pathogenic and non-pathogenic strains biotypes were determined by multiplex PCR. The PCR method combined the method of Thisted-Lambertz and Danielsson-Tham (2005) targeting the three virulence genes aii, virF and rfc, with the method of Arnold et al., (2004), which targets the Yersinia enterocolitica species specific 16s rRNA gene. The link between the contamination of tonsils and the contamination of the carcass and the link between the detection on carcasses/tonsils and the type of slaughtering process were assessed using Chi-2 tests. The individual prevalence was estimated using Epitools (Sergeant, 2014). A logistic regression using SAS (v9.2) was performed to analyze the contamination of the carcasses as a function of either (i) the contamination of tonsils, (ii) the slaughtering process, (iii) the slaughterhouse or (iv) the batch.

Results

The prevalence results on tonsils are depicted in table 1. At the inter-batches level, the overall prevalence was of 48% [38-57]. The overall pooled-samples prevalence was of 21% [17-25], indicating that when a batch is positive, two pooled samples are in average. Nearly all slaughterhouses showed a slaughter ranging from 18 to 37.5% at the pooled-samples level. The difference between the tonsils prevalence of both type of slaughtering processes was not significant (p=10% and P=9% respectively) at the inter-batches (40% vs 55%) and pooled-samples (18% vs 24%) level. The overall individual prevalence estimated from the pooled-samples was of 5,7% [4,7-6,9].

Table 1: Prevalence results of Y. enterocolitica on tonsils according to the slaughtering process

<table>
<thead>
<tr>
<th>Batches (4 pools)</th>
<th>Pooled samples (4 pigs)</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of positive samples</td>
<td>Prevalence</td>
<td>Number of positive samples</td>
</tr>
<tr>
<td>Overall</td>
<td>57/120</td>
<td>48% [38-57]</td>
</tr>
<tr>
<td>Without tongue withdrawal</td>
<td>33/60</td>
<td>55% [42-68]</td>
</tr>
<tr>
<td>With tongue withdrawal</td>
<td>24/60</td>
<td>40% [28-54]</td>
</tr>
</tbody>
</table>

The prevalence results on carcasses are depicted in table 2. The overall inter-batches and pooled samples prevalence were of 7,5% [3,4-13,8] and 2,3% [1,1-4,1] respectively. The carcasses contamination was not statistically different between slaughterhouses removing the tongue on the slaughter line vs leaving the tongue intact inside the head, either at the inter-batches (p=12%) and pooled-samples level (p=9%). The overall individual prevalence estimated from the pooled-samples was of 0,6 % [0,3-1,0]. The presence of Y. enterocolitica on the carcasses was statistically linked to its presence on tonsils (p=1,8%). It was nearly five times higher on pigs with positive tonsils (5,9%), than on pigs with negative tonsils (1,3%). The number of pigs having positive carcasses and tonsils was close between slaughterhouses removing the tongue on the slaughter line (7%) vs leaving the tongue intact inside the head (5,2%). The number of pigs having positive carcasses and negative tonsils was nearly the same regardless of the type of slaughtering process (1,5% vs 1,1%).

The statistical analysis showed that the tonsils contamination was the only factor that significantly influenced the carcasses contamination (p=1,2%). The tongue withdrawal did not significantly impact the carcasses contamination (p=60%). By PCR, we showed that 93,2% and 6,5% of strains (352) isolated in this study belonged to the pathogenic biotype 4/O:3 and 2/O:9 or 3/O:5,27 respectively, while 0,3% belonged to the non-pathogenic biotype 1A.

Discussion

The overall inter-batches tonsils prevalence was lower than the 74,3% [65-84] observed in France in 2011 (Fondrez et al., 2014). The pooled-samples and individual tonsils prevalence were also lower than expected. These results could be explained by: (i) the detection method used, (ii) the impact of the pooling on the sensitivity of the detection method, and (iii) an under estimation of the prevalence for slaughterhouses removing the tongue on the slaughter line due to the partial withdrawal of the tonsils, thus reducing the surface to swab. Aerial and iflp analyses of the same samples by the same method but in two different labs showed a strong consistency of the results (kappa: 0,66).

The overall estimated individual carcasses prevalence (<1%) was low as we expected. Our results were consistent with those of Bonardi et al. (2013) who identified a pork carcasses prevalence at slaughterhouse of 2,4%. However, they were much lower than the 15% prevalence observed in Belgium (Van Damme et al., 2013). The overall inter-batches and pooled samples prevalence were of 7,5% [3,4-13,8] and 2,3% [1,1-4,1] respectively. The carcasses contamination was not statistically different between slaughterhouses removing the tongue on the slaughter line vs leaving the tongue intact inside the head, either at the inter-batches (p=12%) and pooled-samples level (p=9%). The overall individual prevalence estimated from the pooled-samples was of 0,6 % [0,3-1,0]. The presence of Y. enterocolitica on the carcasses was statistically linked to its presence on tonsils (p=1,8%). It was nearly five times higher on pigs with positive tonsils (5,9%), than on pigs with negative tonsils (1,3%). The number of pigs having positive carcasses and tonsils was close between slaughterhouses removing the tongue on the slaughter line (7%) vs leaving the tongue intact inside the head (5,2%). The number of pigs having positive carcasses and negative tonsils was nearly the same regardless of the type of slaughtering process (1,5% vs 1,1%).

Table 2: Prevalence results of Y. enterocolitica on carcasses according to the slaughtering process

<table>
<thead>
<tr>
<th>Batches (4 pools)</th>
<th>Pooled samples (4 pigs)</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of positive samples</td>
<td>Prevalence</td>
<td>Number of positive samples</td>
</tr>
<tr>
<td>Overall</td>
<td>9/120</td>
<td>7,5% [3,4-13,8]</td>
</tr>
<tr>
<td>Without tongue withdrawal</td>
<td>4/60</td>
<td>6,7% [1,1-4,1]</td>
</tr>
<tr>
<td>With tongue withdrawal</td>
<td>5/60</td>
<td>8,3% [2,7-18,4]</td>
</tr>
</tbody>
</table>

The prevalence of the bioserotypes identified was consistent with published data (Feuer et al., 2011, Bonardi et al., 2013, Laukkanen-Ninios, 2014).
Material and Methods

Sampling was performed in six slaughterhouses. Three removed the tongue together with the pluck set on the slaughter line whereas three took the tongue intact up to the end of the cutting process. A total of 1920 pigs from 120 different farms/batches (60 batches of 16 pigs per type of slaughtering practice) were sampled both on their tonsils and carcass surfaces over a one year period ranging from November 2012 to October 2013. The bottom part of the carcass (sternal region, belly, and throat) and the oral cavity including the tonsils were swabbed. Microbiological analysis were equally shared between Ifip and Aérial laboratories.

For each sampling type, the samples were pooled (pool of 4 pigs) and analyzed using an enrichment in ITC broth (Irgasan, Ticarcillin, Potassium chloride) (48h, 25°C) and streaking on CIN (Cefsulodin, Irgasan, Novobiocin) agar plates (24h, 30°C). Typical colonies of (Irgasan, Ticarcillin, Potassium chlorate) (48h, 25°C) and streaking on CIN (Cefsulodin, Irgasan, Novobiocin) agar plates (24h, 30°C). Typical colonies of Yersinia enterocolitica were confirmed by using Api 20E strips (Biomerieux). Pathogenic and non-pathogenic strains biotypes were determined by multiple PCR. The PCR method combined the method of Thisted-Lambertz and Danielsson-Tham (2005) targeting the three virulence genes ail, virF and rfb, with the method of Arnold et al., (2004), which targets the Yersinia enterocolitica species specific 16s rRNA gene. The link between the contamination of tonsils and the contamination of the carcass and the link between detection on carcasses/tonsils and the type of slaughtering process were assessed using Chi-2 tests. The individual prevalence was estimated using EpiTools (Sergeant, 2014). A logistic regression using SAS (v9.2) was performed to analyze the contamination of the carcasses as a function of either (i) the contamination of tonsils, (ii) the slaughtering process, (iii) the slaughterhouse or (iv) the batch.

Results

The prevalence results on tonsils are depicted in table 1. At the inter-batches level, the overall prevalence was of 48% (38-57). The overall pooled-samples prevalence was of 21% (17-25), indicating that when a batch is positive, two pooled samples are positive in average. Nearly all slaughterhouses showed a contamination ranging from 18 to 37.5% at the pooled-samples level. The difference between the tonsils prevalence of both type of slaughtering processes was not significant (p=10% and P=9% respectively) at the inter-batches (40% vs 55%) and pooled-samples (18% vs 24%) level. The overall individual prevalence estimated from the pooled-samples was of 5.7% (4.7-6.9).

<table>
<thead>
<tr>
<th>Batches (4 pools)</th>
<th>Pooled samples (4 pigs)</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of positive samples</td>
<td>Prevalence</td>
<td>Number of positive samples</td>
</tr>
<tr>
<td>Overall</td>
<td>57/120</td>
<td>48% [38-57]</td>
</tr>
<tr>
<td>With tongue withdrawal</td>
<td>24/60</td>
<td>40% [28-54]</td>
</tr>
</tbody>
</table>

The prevalence results on carcasses are depicted in table 2. The overall inter-batches and pooled samples prevalence were of 7.5% [3.4-13,8] and 2.3% [1.1-4.1] respectively. The carcasses contamination was not statistically different between slaughtermen removing the tongue on the slaughter line vs leaving the tongue intact inside the head, either at the inter-batches (p=12%) and pooled-samples level (p=9%). The overall individual prevalence estimated from the pooled-samples was of 0.6 % [0.3-1.0]. The presence of Y. enterocolitica on the carcasses was statistically linked to its presence on tonsils (p=1.8%). It was nearly five times higher on pigs with positive tonsils (5.9%), than on pigs with negative tonsils (1.3%). The number of pigs having positive carcasses and tonsils was close between slaughterhouses removing the tongue on the slaughter line (7%) vs leaving the tongue intact inside the head (5.2%). The number of pigs having positive carcasses and negative tonsils was nearly the same regardless of the type of slaughtering process (1.5% vs 1.1%).

<table>
<thead>
<tr>
<th>Batches (4 pools)</th>
<th>Pooled samples (4 pigs)</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of positive samples</td>
<td>Prevalence</td>
<td>Number of positive samples</td>
</tr>
<tr>
<td>Overall</td>
<td>9/120</td>
<td>7.5% [3,4-13.8]</td>
</tr>
<tr>
<td>Without tongue withdrawal</td>
<td>4/60</td>
<td>6.7% [1.8-16.4]</td>
</tr>
<tr>
<td>With tongue withdrawal</td>
<td>5/60</td>
<td>8.3% [2.7-18.4]</td>
</tr>
</tbody>
</table>

The statistical analysis showed that the tonsils contamination was the only factor that significantly influenced the carcasses contamination (p=1.2%). The tongue withdrawal did not significantly impact the carcasses contamination (p=60%). By PCR, we showed that 93.2% and 6.5% of strains (352) isolated in this study belonged to the pathogenic biotype 4/0;3 and 2/0;9 or 3/0;5,27 respectively, while 0.3% belonged to the non-pathogenic biotype 1A.

Discussion

The overall inter-batches tonsils prevalence was lower than the 74.3% [65-84] observed in France in 2011 (Fondrevez et al., 2014). The pooled-samples and individual tonsils prevalence were also lower than expected. These results could be explained by: (i) the detection method used, (ii) the impact of the pooling on the sensitivity of the detection method, and (iii) an under estimation of the prevalence for slaughterhouses removing the tongue on the slaughter line due to the partial withdrawal of the tonsils, thus reducing the surface to swab. Aerial and Ifip analyses of the same samples by the same method but in two different labs showed a strong consistency of the results (kappa: 0.66).

The overall estimated individual carcasses prevalence (<1%) was low as we expected. Our results were consistent with those of Bonardi et al. (2013) who identified a pork carcasses prevalence at slaughterhouse of 2.4%. However, they were much lower than the 15% prevalence observed in Belgium (Van Damme et al., 2013).

The aim of the project was to evaluate whether the withdrawal of the tongue on the slaughter line had an impact on the carcasses contamination. The sampling protocol was designed to highlight differences in prevalence higher to 4% at the pooled samples level. However, the low tonsils and carcasses prevalence observed did not allow us to evaluate the impact of the tongue handling practice on the contamination of the carcasses by Y. enterocolitica, even when taking into account the initial contamination of the tonsils. In our study, the tonsils contamination was the only factor that influenced significantly the carcasses contamination of the corresponding pig.

The prevalence of the bioserotypes identified was consistent with published data (Feuer et al., 2011, Bonardi et al., 2013, Laukkanen-Ninios, 2014).
Conclusion

The carcasses contamination was not statistically different between slaughterhouses removing the tongue on the slaughter line compared to the ones leaving the tongue intact inside the head.

Thus, despite the experimental design, we were not able to confirm that the removal of the tongue on the slaughter line had a significant impact on the carcass contamination with Yersinia enterocolitica. However, these results confirmed that the carcasses contamination is linked to the initial contamination of the corresponding tonsils. Cross contaminations appeared to be low but existed and good hygiene practices remain necessary to limit the transfer of Y. enterocolitica from the tonsils, or the feces, to the carcasses.

Acknowledgements

This study received financial support from FranceAgrimer.

References


