
 v 

Figure 21(k)-(o). The RMS errors in (f)-(j) are 0.019, 0.019, 0.021, 0.033, 0.109 

rad. 44 

Figure 23.  Phase errors for different defocusing levels of fringe images in Figure 21. 45 

Figure 24.  Measurement results of a complex sculpture for the DBP and the FSP 

methods at different defocusing levels. Level 1 is focused and level 4 is severely 

defocused. (a)-(d) show the results by the DBP method with defocusing levels from 

1 to 4, and (e)-(h) show the results by the FSP method with different levels. 46 

Figure 25.  Timing of the camera exposures. All exposure starts when the VSync signal 

comes, and stops at different timing. Exposure 1, 2, …, and 10 use exposure time 

of 2.50, 4.17, 5.83, 7.50, 9.17, 10.83, 12.50, 14.17, 15.80, 16.67 ms. 48 

Figure 26.  Fringe images and phase errors if the exposure time is 2.50 ms. (a) Fringe 

image for the FSP method; (b) Fringe image for the DBP method; (c) One cross 

section of the phase error map for the FSP method (RMS: 0.38 rad); (d) One cross 

section of   the phase error map for the DBP  method (RMS: 0.08 rad). 49 

Figure 27.  Fringe images and phase errors if the exposure time is 16.67ms. (a) Fringe 

image for the FSP method; (b) Fringe image for the DBP method; (c) One cross 

section of the phase error map for the FSP method (RMS: 0.02 rad); (d) One cross 

section of the phase error map for the DBP  method (RMS: 0.02 rad). 49 

Figure 28.  Phase error for different exposure times. 51 

Figure 29.  Measurement results of a complex sculpture for the DBP and the FSP 

methods with different exposures. (a)-(d) Results by the DBP method; (e)-(f) 

Results by the FSP method. From left to right, exposure times are: 3.33, 6.67, 

10.00, and 16.67 ms. 52 

Figure 30.  Phase error for different exposure times when the camera and the projector 

are not synchronized. (a) The DBP method with exposure time of 3.33 ms (RMS: 

0.08 rad); (b) The DBP method with exposure time of 6.67 ms (RMS: 0.04 rad); (c) 

The DBP method with exposure time of 10.00 ms (RMS: 0.03 rad); (d) The FSP 

method with exposure time of 6.67 ms (RMS: 0.14 rad);  (e) The FSP method with 

exposure time of 3.33 ms (RMS: 0.20 rad); (f) The FSP method with exposure time 

of 10.00 ms (RMS:  0.09 rad). 54 

Figure 31.  Examples for the 0.5 ms exposure time when the camera and the projector 

are not synchronized. (a)-(d) Examples of the DBP method, first row is the fringe 

patterns and second row is corresponding 100
th

 cross section; (e)-(h) Examples of 

the FSP method, first row is the fringe patterns and second row is the 

corresponding 100
th

  cross section. 55 

Figure 32.  Measurement results of a complex sculpture for the DBP and the FSP 

methods when the camera and the projector are not synchronized. (a) Result by the 

DBP method with an exposure time of 3.33 ms; (b) Result by the FSP method with 

an exposure time of 3.33 ms; (c) Result by the DBP method with an exposure time 

of 6.67 ms; (d) Result by the FSP method with an exposure time of 6.67 ms. 56 

Figure 33.  Phase errors (a) DBP method without projector gamma correction (RMS: 

0.02 rad); (b) FSP method without projector gamma correction (RMS: 0.09 rad); 

(c) FSP method with projector gamma correction (RMS: 0.02 rad). 58 
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(a)                       (b)                      (c)                       (d)                       (e) 

                                                

    (f)                                                                         (g)                                                   

Figure 5.  3-D shape measurement of the sinusoidal fringe generation by defocusing 

binary structured patterns. (a) 1I ; (b) 2I ; (c) 3I ; (d) Wrapped phase map; (e) 

Unwrapped phase map; (f)-(g) 3-D shapes viewed from different angles. 

The DBP technique has been verified by measuring a complex sculpture, as shown in 

Figure 5. Figures 5(a)-(c) show three phase shifted fringe images with a phase shift of 2� /3. 

The 2� /3 phase shifting is realized by spatially moving 1/3 period of the binary structured 

patterns. Figure 5(d) is the wrapped phase map obtained from Equation (9). A phase 

unwrapping algorithm is applied to detect the 2�  discontinuities and remove them by adding 
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or subtracting multiples of 2π [33], Figure 5(e) shows the continuous unwrapped phase. In 

this research, the unwrapped phase is converted to coordinates by applying a phase-to-height 

conversation algorithm, which will be explained in the following Section 2.6. The results 

show that the proposed DBP approach can be used for measuring 3-D objects with 

complicated features. 

2.6  Phase-to-height conversion algorithm 

The obtained unwrapped phase contains the depth (z) information of the measured 

object, 3-D shape can be extracted from the unwrapped phase if the system is calibrated. In 

this research, we use a simple phase to height conversion algorithm. 

To convert the phase to depth, the relationship between the depth and the phase must 

be established. Figure 6 shows the schematic diagram of the system. A reference plane with 

height 0 in the depth (z direction) is used as the reference for subsequent measurement. The 

arbitrary point M in the captured image corresponds to point N in the projected image, and 

point D on the object surface. From the projector’s point of view, phase D on the object 

surface has the same phase value as A on the reference plane, that is,  D A . While from 

the point of view of the CCD camera, point D on the object surface images is at the same 

pixel as point C on the reference plane. The phase difference between point C on the 

reference plane and point D on the object can be expressed as: 

                                                    
     CD CA C A .                                                (11) 

Assume the distance between point M and point N is d and the reference plane is parallel to 

the device with a distance s between them. By analyzing the similar relationship between 

△MND and △CAD, we can get: 
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1


  

d s BD s

CA BD BD
.                                                  (12)

 

Because for the real measurement, the distance s is much larger than BD , the equation can be 

simplified as: 

                                            
( , )

2
CA CA

s ps
z x y BD CA K

d d
 


    .                                   (13)                    

Here p is the distance per fringe on the reference plane. From Equation (13), the proportional 

relationship between the phase differences to height information (z coordinate) can be 

obtained. 

We use a step to calculate the phase-height conversion constant K. The height of the 

step from the reference plane is approximately 53 mm. Figure 7(a) shows the 409
th

 row cross 

section of the step height. The phase difference between the top and the bottom surface of the 

step is CA C A     = 6.4756 - 0.0838 = 6.3918 rad. The constant K is: 

 

53
8.2919( / )

6.3918 
K mm rad 

.    
            (14) 

Assuming the x and y coordinate is proportional to the real coordinates of the object. The 

measured area on the reference plane is 144 × 187 mm
2
, the conversion constant in x and y 

coordinates are: 

                                            

187
0.2922( / )

640
x yk k mm pixel  

.
                                       (15) 

Therefore, the 3-D coordinates of the object can be obtained by applying the conversion 

constant K, xk , 
yk  onto the unwrapped phase of the object.  

It should be noticed that this conventional reference-phase-based method still has 

some drawbacks, such as approximation errors, small range measurement, and inaccurate x  
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Figure 6.  Schematic diagram of the phase-to-height conversion. 

         

                          (a)                                           (b)                                            (c) 

Figure 7.  Measurement results of a flat board with a step. (a) 409
th

 row cross section 

ofthe step; (b) Cross section of the bottom surface; (d) Cross section of the top surface.  

and y coordinates [3]. At the current stage, all the existing techniques require the projector to 

be in focus, which is not the case for our system. We have not found a way to calibrate a 

defocused projector yet and we still use the standard simple calibration approach in our 

research. Currently, we are seeking a new method to accurately calibrate a defocused 

projector. 

2.7  Summary 

This chapter introduced the digital fringe projection technique, reviewed the three-

step phase-shifting algorithm and phase-to-height conversion algorithm, and described the 

defocusing technique.  
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CHAPTER 3.  THEORETICAL BACKGROUND  

In this chapter, we will introduce some optics background of the method used in this 

dissertation, including imaging system, Fourier optics, and Fraunhofer diffraction to better 

understand how defocusing works from the point of view of optics.  

3.1  Imaging system 

The lens system of a DLP projector can be modeled as a simple lens imaging system, 

as shown in Figure 8. All the rays, that are radiated by an object point are refracted by the 

convex lens, are converged to the corresponding points on the imaging plane. The irradiance 

and the position of the focused image of a point are uniquely determined, and the position of 

a point and its image are interchangeable. This means that the image of the image is the 

object itself. 

For the lens of negligible thickness, in air, the relationship between the position of the 

point in the scene and the position of its corresponding focused image point can be explained 

as [35]: 

                                                                
1 1 1
 

f u v
 .                                                            (16) 

Where f is the focal length, u is the distance between the object and the lens, and v is the 

distance between the focused image and the lens plane. This formula indicates that as long as  

an object is placed at distance u (u > f) along the axis in front of a positive lens with focal 

length of  f, a screen placed at a distance v behind the lens will have its corresponding image.  
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Figure 8.  Imaging system in focus. 

3.2  Fourier optics 

The light source is composed of infinite point sources, and Fourier optics describes 

light propagation in terms of rays. In this section, we will firstly introduce some 

mathematical equations of light propagation, and then focus on the spherical wave, which 

will be used for the analysis of the Airy disk in Section 3.5. 

Fourier optics is a branch of modern optics, which studies the classical optics using 

the Fourier analysis method in telecommunication theory. Telecommunication theory 

analyzes telecommunication signals, and only involves the Fourier transform of one-

dimensional (1-D) time function. In optics, optical signal is a 3-D space function, the 

propagation of light in different directions with a spatial frequency needs Fourier transform 

of 3-D space function. Fourier optics spectrum analysis gives a new interpretation about a 

wide range of optical phenomena, which mainly includes scalar diffraction theory, imaging 

lens law, using spectral analysis to analyze the nature of the optical system, etc [36]. 

The propagation of light can be described as a waveform propagating through a 

vacuum or a material medium such as air or glass. Mathematically, the amplitude of the wave 

is expressed by a scalar wave function u which only depends on both space and time: 


