Analysis and design of metal-surface mounted radio frequency identification (RFID) transponders

Thumbnail Image
Date
2008-01-01
Authors
Zhan, Sanyi
Major Professor
Advisor
Robert J. Weber
Jiming Song
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

With the development of the radio frequency integrated circuit (RFIC), contactless radio frequency identification (RFID) technology, as one of the fastest growing sectors of automatic identification procedures (Auto-ID), gains broad application in tracking assets in supply chain management. However, one of the largest challenges for the RFID industry is that the ultra high frequency (UHF) RFID transponder doesn't function well when it is applied to any conductive surface. In this dissertation, the communication principle of wireless transceivers is illustrated. As one fast-growing application field of wireless communication, the distinct operating principle of the RFID is clarified. The factors that limit the reading/writing distance of UHF RFID transponders are discussed in detail. Some potential solutions are proposed and verified. One nondestructive solution is to apply a metamaterial such as a frequency selective surface (FSS) or a mushroom-like electromagnetic bandgap (EBG) surface to block the transmission of electromagnetic waves from the RFID antenna to the metal ground and thus boost the antenna radiation efficiency. For this solution, a new design approach suppressing the TM wave but supporting the TE wave is demonstrated. Another low-cost solution is to use an inexpensive substrate material and obtain the most power-efficient antenna structure. More than six potentially patentable planar RFID transponder antennas were invented, designed and tested. Their compact size, low profile, low cost and superior performance paves the way for the RFID industry to expand their market share in the near future.

Comments
Description
Keywords
Citation
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008