1974

Repair of Ruptured Anterior Cruciate Ligament in the Dog

William Hoefle
Iowa State University

David Eich
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/iowastate_veterinarian
Part of the Small or Companion Animal Medicine Commons, and the Surgery Commons

Recommended Citation
Available at: http://lib.dr.iastate.edu/iowastate_veterinarian/vol36/iss1/12

This Article is brought to you for free and open access by the Student Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Rupture of the anterior cruciate ligament is a relatively common problem. Degenerative change and/or trauma accompanied with over extension of the stifle may result in complete or partial tears of the stifle ligaments. A diagnosis of a ruptured anterior cruciate ligament can be made by eliciting abnormal movement in the joint. With the stifle flexed to about 15 degrees and one hand placed proximal to and one hand distal to the stifle, the tibia can be displaced cranially if the ligament is torn or severely stretched; this displacement is known as drawer movement. Excessive inward rotation of the tibia may also be seen when the stifle is slightly flexed. Radiographs are not necessary for diagnosis.

Secondary damage to the medial meniscus often accompanies a rupture of the anterior cruciate ligament. The medial and lateral menisci are fibrocartilaginous structures within the stifle joint which function to fill in the incongruity between the tibia and femur, aid in the gliding and rotating motions of the femur, and lubricate the intra-articular surfaces. Diagnosis of an injury to the menisci can occasionally be made by eliciting a snapping sound when flexing the stifle. If there is calcification of the menisci, radiographs are helpful, but usually surgical exploration is necessary. Damage to the menisci is most easily corrected when repairing the ruptured anterior cruciate ligament.

The anterior cruciate ligament, also referred to as the lateral cruciate ligament, runs between the caudomedial aspect of the lateral condyle of the femur, diagonally across the cranial intercondylar area of the tibia. The anterior cruciate ligament forms an X with the caudal cruciate ligament, which is responsible for the posterior stability of the stifle joint. When viewing the joint from the cranial aspect, the anterior cruciate extends distally from the lateral to medial surface of the intra-articular space and passes in front of the posterior cruciate ligament.

Numerous methods have been tried to correct rupture of the anterior cruciate ligament with variable results. The method presently employed at the Iowa State University Small Animal Teaching Hospital, the Lembert suture technique, has been used with a high degree of success and can be done with a minimal number of orthopedic instruments.

With some methods of repairing a ruptured anterior cruciate ligament, it is not necessary to perform an arthrotomy as will be described here, however, damaged ligaments and menisci in the joint may calcify in time if not removed.
Surgical Technique

With the animal anesthetized and the limb prepared for aseptic surgery, the dog is placed in dorsal recumbency with the legs extending over the edge of the table. Sterile drapes and an orthopedic stockinette are used to prevent contamination.

An anterior skin incision is made on the lateral side of the patella extending from 2–4 cm proximal to the patella, to just distal to the tibial tuberosity. The incision is extended through the fascia to expose the joint capsule. The joint capsule is opened by making a 1.5–2 cm incision just lateral to the straight patellar ligament near the tibial tuberosity. The incision is extended proximally by sliding a scissors through the joint capsule to about 2 cm proximal to the patella. The patella and straight patellar ligament are then reflected medially over the condyles of the femur. As the joint is then flexed, the femoral condyles and cruciate ligaments are exposed.

Any portions or remnants of the ruptured anterior cruciate ligament are then removed.

The menisci are examined next. Damaged menisci appear shredded, rough, fibrous, and may be calcified. After appraisal of the menisci, damaged portions are removed. If in doubt, it is advisable to remove the meniscus, however, complete excision can result in some instability of the joint.

Osteophytes, or exostosis on the femoral condyles are a common finding if the condition has persisted for a long period of time. A scalpel blade or bone rongeur is used to remove any exostosis.

After completing a thorough examination of the joint, flush it with warm sterile saline, return the patella to its original position and close the joint capsule with a row of Lembert sutures using a non-absorbable suture material.
Fig. 1. (P = Patella, TC = Tibial Crest) demonstrates method of eliciting a drawer movement. Displacement of the tibia anteriorly is diagnostic of a ruptured anterior cruciate ligament.

Fig. 2
A stab incision into the joint capsule is made with the scalpel. The incision is extended proximally by sliding the scissors, rather than by scissor action.
Fig. 3
Opened stifle joint. Exposure is greatly increased by flexing the stifle joint. Note osteophyte formation on the lateral aspect of the lateral condyle.

Fig. 4
Damaged meniscus removed from joint. Note rough appearance of the edge. Loose or rough edges or degeneration of the cartilage warrants removal of the meniscus. Presurgical diagnosis of a damaged meniscus can be made by eliciting a cracking or snapping sound when the stifle joint is flexed.
Fig. 5
Illustration of the placement of the first Lembert suture. Note the location in relation to the patella and the spacing of each portion of the suture. The hemostat is pointing to the straight patellar ligament.

Fig. 6
Note spacing of additional Lembert sutures. Placing all sutures before tying allows for a more even distribution both anteriorly-posteriorly and proximally-distally. Sutures should be pulled as tightly as possible. A surgeon's knot is used to decrease the amount of slippage when tying.