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CHAPTER I.  GENERAL INTRODUCTION 

 

 Population monitoring is crucial to the effective conservation and management of a 

species because it identifies declining population trends before the species is at risk of 

extinction (Hagan 1992).  In addition, knowing how different populations respond to changes 

in habitat is an important aspect of species conservation (Soulé 1985). 

 According to the Breeding Bird Survey (BBS; Sauer et al. 2008), populations of 

marsh-birds are declining across North America.  As a result, several species are of 

heightened conservation status at the regional and local levels.  For example, the American 

bittern (Botaurus lentiginosis), king rail (Rallus elegans), Virginia rail (Rallus limicola), and 

sora (Porzana carolina) are listed as priority species in one of the two Bird Conservation 

Regions (BCR) in Iowa (NABCI 2011).  The American bittern and king rail are also listed as 

species of conservation concern by the U.S. Fish and Wildlife Service and the National 

Audubon Society, respectively.  In Iowa, four species of marsh-birds (American bittern, least 

bittern [Ixobrychus exilis], king rail, and common moorhen [Gallinula chloropus] are 

currently listed as species of greatest conservation need (SGCN) by the Iowa Wildlife Action 

Plan (Zohrer 2006).  The overall population decline of marsh-birds illustrates the need for 

regular monitoring and future research. 

 Little is known about the population status and distribution of marsh-birds in Iowa.  

This is due largely to lack of an effective monitoring program for these birds.  Marsh-birds 

are secretive in nature, occupy habitats with dense emergent vegetation, and vocalize 

infrequently, making them difficult to detect using conventional survey techniques (Lor and 
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Malecki 2002).  The concern about declining populations and the lack of effective survey 

methodology prompted the development of the North American Marsh Bird Monitoring 

Program (see < 

http://ag.arizona.edu/research/azfwru/NationalMarshBird/azfwru/NationalMarshBird/>).  The 

main goal of this program was to evaluate the efficacy of call-broadcast surveys for 

monitoring secretive marsh-birds.  Call-broadcast surveys are effective at increasing 

detection probability of marsh-birds (Conway and Nadeau 2006); however, other factors 

should also be considered when implementing this methodology.  For instance, response 

rates of marsh-birds to call-broadcasts can vary temporally, both by season and time of day 

(Rehm and Baldassarre 2007, Nadeau et al. 2008).  Therefore, further research is needed to 

establish optimal times for conducting marsh-bird surveys at different locations. 

 Evaluating habitat associations of secretive marsh-birds in conjunction with 

continuous population monitoring allows researchers and managers to assess the impacts of 

habitat restoration and management activities on populations.  Habitat associations of 

secretive marsh-birds relative to wetland characteristics have been well studied (Brown and 

Dinsmore 1986, Craig and Beal 1992, Lor and Malecki 2006).  However, few studies have 

examined the probability of marsh-birds to occupy a particular wetland based on habitat 

characteristics (Darrah and Krementz 2010).  Site occupancy provides valuable information 

on species occurrence and can be used as an index of abundance for territorial species such as 

rails (Mackenzie et al. 2002, 2003, 2005).  Knowing habitat associations of secretive marsh-

birds in Iowa will allow us to provide guidance on wetland restoration and management 

decisions that will aid in the conservation of these birds. 
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 The overall goal of our project was to understand distribution, abundance, and habitat 

associations of secretive marsh-birds, as well as refine national protocols for future 

monitoring in Iowa.  To assess distribution and abundance, we modeled detection probability 

and obtained density estimates of four species of marsh-birds (pied-billed grebe [Podilymbus 

podiceps], least bittern, Virginia rail, and sora) in three different regions of Iowa (Chapter 2).  

We evaluated wetland occupancy of the same four species of marsh-birds relative to wetland 

characteristics (Chapter 3) to investigate habitat associations.  Lastly, to refine survey 

protocols, we compared response rates to call-broadcasts of secretive marsh-birds between 

morning and evening survey periods and between early and late in the survey season 

(Chapter 4).  We hope that this study will provide information on the population status and 

habitat requirements of secretive marsh-birds in Iowa to guide conservation and management 

efforts.  
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CHAPTER II.  DENSITY AND ABUNDANCE OF SECRETIVE MARSH-BIRDS IN 
IOWA 

 

A paper to be submitted to Waterbirds 

 

Tyler M. Harms and Stephen J. Dinsmore 

 

ABSTRACT:  Populations of marsh-birds are believed to be declining throughout North 

America in response to a decrease in wetland habitats.  As a result, several species of marsh-

birds are of heightened conservation status at the local and regional levels and the need to 

monitor populations of these birds is critical to effective conservation and management.  Our 

objective was to estimate population densities and abundances of secretive marsh-birds in 

Iowa.  We conducted call-broadcast surveys in conjunction with distance sampling for eight 

species of marsh-birds at wetlands in Iowa during 2009 and 2010.  We divided Iowa into 

three regions based on our observations of microhabitat differences and to improve precision 

of our density estimates.  We used Program Distance to model detection probability and 

obtain region-specific density estimates for four species of marsh-birds for which we had 

sufficient detections (pied-billed grebe, least bittern, Virginia rail, and sora).  Density 

estimates ranged from 0.019 birds/ha (95% CI = 0.014-0.024) for least bittern to 0.12 

birds/ha (95% CI = 0.11-0.14) for pied-billed grebe.  Density estimates were different in all 

regions for three of the four species (pied-billed grebe, Virginia rail, and sora).  Least bittern 

density was not different between regions 1 and 2, but was lower in region 3.  Estimates of 

density are a reliable metric of population status because they consider the amount of suitable 



7 

 

 

habitat in the study area rather than all available habitats, thus allowing researchers to 

consider the effects of suitable habitat on bird populations.     

KEY WORDS:  bittern, call-broadcast, density, distance sampling, grebe, marsh-bird, point 

count, rail  

INTRODUCTION 

The evaluation of population status and trends is a common theme in avian research.  

Ongoing projects such as the Breeding Bird Survey (BBS; Sauer et al. 2008) and Audubon 

Christmas Bird Count (CBC; National Audubon Society 2011) have been in place for 

decades and are intended to measure long-term population trends of North American birds.  

In recent years, studies have evolved to using estimates such as population density and 

abundance as indicators of overall population size (Rosenstock et al. 2002).   Researchers 

have used such estimates to establish baseline information on the population status of birds, 

evaluate the response of bird populations to both habitat characteristics and environmental 

change, and aid in the conservation and management of species of conservation concern 

(Rosenstock et al. 2002).  The increasing importance of population monitoring (Bart 2005) 

makes it critical for researchers and managers to understand population sizes and those 

estimates that can be used as indicators of population status. 

Populations of marsh birds are believed to be declining throughout North America 

since the 1970s and several species are of heightened conservation status at the local and 

regional levels (Eddleman et al. 1988, Gibbs et al. 1991, Conway and Gibbs 2005).  Data 

from the BBS showed declining trends for American bittern (Botaurus lentiginosis) and king 

rail (Rallus elegans) from 1966 – 2007 (Sauer et al. 2008).  Trends for other species such as 
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Virginia rail (Rallus limicola) and least bittern (Ixobrychus exilis) were also possibly 

declining during this period but were poorly estimated due to small sample sizes (Bystrak 

1981, Robbins et al. 1986).  According to the North American Bird Conservation Initiative 

(NABCI 2011), the American bittern, Virginia rail (Rallus limicola), and sora (Porzana 

carolina) are priority species for Bird Conservation Region (BCR) 11 (Prairie Pothole 

Region), which encompasses the portion of Iowa containing a majority of the wetland 

habitats (Miller et al. 2009).  The king rail is a priority species for BCR 23 (Prairie 

Hardwood Transition Region; NABCI 2011) and is listed on the National Audubon Society 

Yellow WatchList (National Audubon Society 2007).    In Iowa, four species (American 

bittern, least bittern [Ixobrychus exilis], king rail, and common moorhen [Gallinula 

chloropus]) are listed as species of greatest conservation need (SGCN) by the Iowa Wildlife 

Action Plan (Zohrer 2006) and the king rail is also an Endangered Species in Iowa (Cooper 

2008).  In contrast, three species (Virginia rail, sora, and American coot [Fulica americana] 

are game species in Iowa.  This wide range of conservation and management statuses 

indicates a need for population monitoring at both the state and regional levels. 

The need for monitoring marsh-bird populations is amplified by the decline in 

wetland habitats across the U.S.  Since the late 1800s, >90% of wetlands have been lost 

(Dahl 1990).  This decline was almost exclusively related to agricultural development and the 

majority of these losses occurred in the Midwest and in California (Dahl 1990).  By 1980, 

<1% of the historical wetland habitat in Iowa remained (Bishop et al. 1998).  Many of the 

aforementioned declines in marsh-bird populations can be attributed to loss of suitable 

habitat (Eddleman et al. 1988, Conway et al. 1994, and Conway 2008).  As wetland habitats 
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continue to be threatened by agricultural expansion and climate change (Zedler and Kercher 

2005), it is crucial that researchers and managers evaluate population trends of marsh-birds to 

understand their resilience to habitat change and loss.  

Marsh-birds are secretive, typically occupy habitats with dense emergent vegetation, 

and vocalize infrequently (Lor and Malecki 2002).  This makes them difficult to detect using 

conventional survey techniques (Gibbs and Melvin 1993, 1997, Lor and Malecki 2002).  

Marsh-birds are frequently undersampled by large-scale monitoring programs such as the 

BBS, which can lead to biased population trends (Gibbs and Melvin 1993).  Other limitations 

of BBS data exist because surveys are conducted from roadways, which are typically located 

away from suitable marsh-bird habitat (Bystrak 1981, Robbins et al. 1986, Conway and 

Gibbs 2001).  In addition, the BBS does not permit the use of methods to elicit responses 

from secretive birds (marsh-birds, owls, nightjars), so detections of these birds are mostly 

opportunistic (Bystrak 1981, Conway et al. 1994).  The uncertainty about the population 

status of these birds and lack of an effective survey methodology prompted the creation of 

the North American Marsh Bird Monitoring Program (see 

<http://ag.arizona.edu/research/azfwru/NationalMarshBird/index.htm>).  The primary goal of 

this program is to develop and field-test the use of call-broadcast surveys for monitoring 

secretive marsh-birds.  A central database was also established through this program to 

collect count data from researchers across the U.S. to establish nation-wide population trends 

of these species. 

Population monitoring is crucial to the effective conservation and management of a 

species because it identifies declining population trends before the species is at risk of 
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extinction (Hagan 1992).  Our objective was to estimate population densities and abundances 

of secretive marsh-birds in Iowa.  To do this, we utilized distance sampling in conjunction 

with call-broadcast surveys at wetlands across Iowa.  Findings from this study will form 

baseline population estimates of secretive marsh-birds in Iowa that can be combined with 

future studies to establish long-term population trends. 

STUDY AREA 

We surveyed marsh-birds at wetlands throughout Iowa in 2009 and 2010.  We used 

the National Wetlands Inventory (NWI; USFWS 2009) as a base from which to select our 

sites.  Wetlands in the NWI are located using aerial photointerpretation and are subsequently 

classified into systems, subsystems, and classes based on wetland characteristics (USFWS 

2009).   We considered wetlands from the Aquatic Bed (AB), Emergent (EM), and 

Unconsolidated Bottom (UB) classes of the Palustrine system (Wilen and Bates 1995).  

Wetlands within these classes fit one or more of the following general habitat criteria 

required by our target species: 1) shallow water (less than 1m deep), 2) closed basins (no 

inflow or outflow), 3) surrounded by few or no trees, and 4) the presence of emergent 

vegetation. We considered both natural and constructed wetlands for selection.  Most 

wetlands were permanent or semi-permanent, although some temporary or seasonal wetlands 

were also selected (Stewart and Kantrud 1971).  Wetlands contained a mix of emergent 

vegetation that included cattail (Typha spp.), sedge (Carus spp.), river bulrush (Scirpus 

fluviatilis), soft-stem bulrush (Schoenoplectus tabernaemontani), and reed canary grass 

(Phalaris arundinacea).  Mean water depth at survey points within wetlands was 30 cm (± 1 

cm) ranging from 0 to 115 cm. 
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METHODS 

Site selection 

Using Hawth’s Analysis Tools for ArcGIS (Beyer 2004), we randomly selected 

wetlands from the NWI database.  We stratified wetlands into six size classes based on area 

(ha) (≤5 ha, >5 to 10 ha, >10 to 20 ha, >20 to 30 ha, >30 to 40 ha, and >40 ha) to facilitate 

an equal representation of wetlands of different sizes and to ensure that potential area-

dependent species were sampled.  We randomly selected 10 wetlands from each size class 

(Brown and Dinsmore 1986) except that only 6 wetlands of 30-40 ha were selected due to the 

small number of wetlands within that class.  To facilitate access for surveys, we selected only 

wetlands that were on public lands.  We randomly assigned a fixed number of survey points 

400 m apart to wetlands within each size class to allow for maximum coverage of each 

wetland and to minimize double-counting birds (Conway 2008).  We assigned 1 point to both 

the <5 ha and >5 to 10 ha size classes, 2 points to the >10 to 20 ha size class, 3 points to the 

>20 to 30 ha size class, 4 points to the >30 to 40 ha size class, and 5 points to the >40 ha size 

class.   

 To improve precision of our density estimates, we divided Iowa into three post hoc 

regions based on our observations of microhabitat differences in wetlands (Figure 1).  We 

defined region 1 as the Des Moines Lobe (Prior 1991).  This region contained the majority of 

surveyed wetlands (n = 247) and consisted of those wetlands characterized as shallow 

potholes with shallow-marsh emergents (sedges [Carex spp.] and cattail [Typha spp.]) 

surrounded by upland prairie (Stewart and Kantrud 1971).  We defined region 2 as western 

Iowa and it consisted mainly of wetlands in the Missouri River floodplain plus some 
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wetlands in northwest Iowa that were outside the boundaries of the Des Moines Lobe.  These 

wetlands typically consisted of deeper water (>40 cm) and deep-water emergents (cattail and 

bulrush [Scirpus fluviatilis or Schoenoplectus tabernaemontani]; T.M. Harms, personal 

observation).  Region 3 contained widely scattered wetlands in eastern and southern Iowa 

that included a variety of wetland types.  Many of these wetlands were either isolated, man-

made, or surrounded by forested uplands, all of which set them apart from most wetlands in 

the first two regions. The boundary between regions 2 and 3 is arbitrary, although we 

attempted to draw the line to best reflect differences in wetland characteristics as described 

above.  Based on species-specific microhabitat preferences, we presumed that density 

estimates would differ between regions.  For example, we expected Virginia rail density to be 

greatest in region 1 because these wetlands are natural potholes with requisite emergent 

vegetation, whereas we expected the density of least bitterns to be greatest in region 2 

because those wetlands contain deeper water (>40cm) and taller (>1m) over-water emergent 

vegetation (cattail and river bulrush). 

Bird surveys 

We conducted unlimited-radius point counts with call-broadcast surveys from 16 May 

to 15 July 2009 and from 20 April to 10 July 2010.  We conducted surveys for eight focal 

species of marsh-birds in accordance with the North American Marsh Bird Monitoring 

Protocol (Conway 2008).  The eight focal species included pied-billed grebe (Podilymbus 

podiceps), American bittern, least bittern, king rail, Virginia rail, sora, common moorhen, 

and American coot (Fulica americana).  Using an MP3 player (SanDisk Sansa Clip 1GB, 

SanDisk Corporation, Milpitas, CA, USA) attached to a pair of amplified speakers 
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(Panasonic Model RPSPT70, Panasonic Corporation, Secaucus, NJ, USA), we broadcast the 

call sequence at 90 dB 1 m from the source (Conway 2008).  We placed the speakers 0.5 m 

from the substrate (ground or water surface) and pointed them towards the interior of the 

wetland.  The call-broadcast sequence was obtained from the North American Marsh Bird 

Monitoring Program coordinator (Conway 2008) and consisted of a 5-minute passive 

listening period followed by 8 minutes of vocalizations.  Each minute of the 8-minute call-

broadcast period corresponded to one species and consisted of 30 seconds of vocalizations 

and 30 seconds of silence.  Vocalizations were ordered by species dominance to minimize 

scaring birds prior to their respective sequence (Conway 2008).  We recorded all visual and 

aural detections of all species at each survey point.  Using a laser rangefinder (Nikon Prostaff 

550, Nikon Incorporated, Melville, NY, USA), we measured the radial distance (m) to each 

bird detected.  We recorded the distance to an individual bird only once regardless of any 

subsequent detections because distance sampling assumes that birds were detected at the 

location of first detection.  Prior to conducting surveys, we measured wind speed (Beaufort; 

bft) and temperature (˚C) using a Weather Kestrel 4000 handheld weather meter (Nielsen 

Kellerman, Boothwyn, PA, USA).  We also visually estimated the amount of cloud cover and 

assigned in to one of four classes (0 – few or no clouds, 1 – partly cloudy, 2 – cloudy or 

overcast, 4 – fog).   We refrained from conducting surveys during periods of rain or when 

wind speeds exceeded 12 km/hr. Most survey points were accessed by foot, although we used 

a canoe to reach points on some larger wetlands. 
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Distance analyses 

We used Program Distance (ver 6.2; Thomas et al. 2010) to model detection 

probability and obtain region-specific density estimates for four species of marsh-birds for 

which we had sufficient detections.  These species were pied-billed grebe, least bittern, 

Virginia rail, and sora.  Our densities are of breeding birds for three species (pied-billed 

grebe, least bittern, and Virginia rail) and spring migrants for the sora only.  Our survey 

protocol nicely spanned the breeding season for two species (least bittern and Virginia rail), 

included the breeding season and perhaps some spring migrants for pied-billed grebe, and 

was truncated on 31 May to include only spring migrants for sora.  Most of the migrant pied-

billed grebes had already passed through by the start of our survey season.  In addition, 

Darrah and Krementz (2010) started surveys for pied-billed grebes in mid-April and assumed 

that no individuals were immigrating or emigrating from a wetland.  We included three 

covariates in models, all of which we believed could have affected detection probability.  

Those covariates were cloud cover (CLOUD), wind speed (WIND), and temperature 

(TEMP).  We did not include observer as an effect because observers were familiar with 

vocalizations of target species and highly trained at detecting birds at varying distances.  We 

assumed that detection of birds did not differ by year because we surveyed the same habitat 

types during both seasons and because the length of our survey seasons accounted for any 

seasonal variation in detectability.  Subsequently, we pooled data from both years for 

analysis.  For models without covariates, we estimated the detection function using the 

conventional distance sampling (CDS) engine (Thomas et al. 2010).  We utilized four models 

suggested by Buckland et al. (2001:155) that are best suited for detection functions and meet 
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the distance sampling assumption that detection probability decreases as distance from the 

observer increases.  These models were 1) uniform key function with a cosine expansion, 2) 

uniform key function with a simple polynomial expansion, 3) half-normal key function with 

a Hermite polynomial expansion, and 4) hazard-rate key function with a cosine expansion.  

For models that included covariates, we modeled the detection function using the multiple 

covariate distance sampling (MCDS) engine (Marques and Buckland 2003, 2004).  This 

engine limits the choices of models for the detection function, so we utilized only the half-

normal key function with Hermite polynomial expansion and hazard-rate key function with 

cosine expansion.  We assigned the raw distances for three species (pied-billed grebe, 

Virginia rail, and sora) into distance bins to minimize variation in distance measures 

(Buckland et al. 2001:15) and to reduce effects of potential movement of birds prior to 

detection.  We assessed the raw distances recorded for each species and assigned them to 

bins to meet assumptions about the detection function for each analysis.  We did not bin the 

raw distances for least bittern because this species does not move in response to call-

broadcasts (Conway and Gibbs 2001).  We compared models using Akaike’s Information 

Criterion corrected for small sample sizes (AICc) and considered models with ∆AICc≤ 2 to 

have strong support (Burnham and Anderson 2002).  

 Using the number of detections from each year and a detection probability estimated 

from all detections, we calculated year-specific density estimates using the density equation 

for point transects (Buckland et al. 2001:39).  We also calculated the variance of the year-

specific density estimates, and then subsequently calculated the standard error of the year-

specific density estimates (Buckland et al. 2001:76). 
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 Using density estimates from the best-supported model for each species, we 

extrapolated breeding numbers of each species for each year by multiplying the overall 

density estimate for each year by total area of wetlands in Iowa, except that we estimated the 

number of migrants for Sora only.  Using ArcGIS (ver. 10; ESRI 2010), we calculated the 

total area of wetlands in the NWI database from which we drew our sample by taking the 

sum of the area of all wetland polygons.  We used the wetlands from which we drew our 

sample because these wetlands consist of habitat characteristics suitable for marsh-birds.  We 

report total abundance (SE) for each species.  

RESULTS 

We surveyed 326 points at 130 wetlands during 2009 and 429 points at 177 wetlands 

during 2010 (Table 1).  Of the species used in the analyses, we detected 406 birds during 

2009 and 704 birds during 2010.  The total area of wetlands in Iowa from which we drew our 

sample was 29,783 ha. 

 For pied-billed grebe, we assigned raw distances to bins of 0 – 100 m, 101 – 300 m, 

and 301 – 400 m.  The best-supported model for pied-billed grebe was the uniform key 

function with a simple polynomial expansion and included no covariates on detection (Table 

2).  The single competitive model (∆AICc = 0.92) was the half-normal key function with 

Hermite polynomial expansion and included the covariate TEMP on detection (Table 3).  

However, temperature had no effect on detection probability because the confidence interval 

for this effect overlapped zero.  According to the best-supported model, the density of pied-

billed grebes was greatest in region 2 (0.16 birds/ha, 95% CI = 0.14 - 0.18, 6.10% CV) and 

we surmised that density was different in each region because the respective 95% confidence 
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intervals did not overlap.  We estimated there was a total of 3,724 (± 232) breeding pied-

billed grebes in Iowa in 2009 and 2,839 (± 172) in 2010. 

 For least bittern, we used the raw distances to estimate density and detection 

probability.  The best-supported model for least bittern was the half-normal key function with 

Hermite polynomial expansion and included the covariate WIND on detection (Table 3).  

The best-supported model estimated that density of least bitterns was greatest in region 2 

(0.030 birds/ha, 95% CI = 0.019 – 0.045, 19.55% CV).  There was no difference in least 

bittern density between region 1 and region 2 (95% confidence intervals overlapped), but 

region 3 had a lower density than the other two regions (0.003 birds/ha, 95% CI = 0.001 – 

0.008, 38.10% CV).  For least bitterns, we estimated a total of 512 (± 122) and 474 (± 67) 

breeding birds in Iowa in 2009 and 2010, respectively. 

 We assigned raw distances of Virginia rails to bins of 0 – 40 m, 40 – 125 m, 125 – 

300 m, and 300 – 500 m.  The best-supported model for Virginia rail was the half-normal key 

function with no expansion and included the covariate CLOUD on detection (Table 3).  The 

single competitive model (∆AICc = 1.67) was the half-normal key function with no 

expansion and no covariates on detection (Table 3).  The best-supported model estimated that 

density of Virginia rail was greatest in region 1 (0.10 birds/ha, 95% CI = 0.088 – 0.11, 5.81% 

CV).  All regions were different in terms of the density estimates because none of the 95% 

confidence intervals overlapped.  We estimated total number of breeding Virginia rails to be 

1,656 birds (± 147) in 2009 and 2,073 birds (± 135) in 2010. 

 For sora, we assigned raw distances to bins of 0 – 100 m, 100 – 300 m, and 300 – 400 

m.  The best-supported model for this species was the uniform key function with simple 
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polynomial expansion and included no covariates on detection (Table 3).  The single 

competitive model (∆AICc = 1.83) was the half-normal key function with no expansion and 

included the covariate TEMP on detection (Table 3).  The best-supported model estimated 

sora density to be greatest in region 3 (0.16 birds/ha, 95% CI = 0.14 – 0.18, 6.55% CV).  

Density estimates were different for all regions.  We estimated total number of spring 

migrant soras to be 827 birds (± 178) in 2009 and 3,608 birds (± 242) in 2010.  

DISCUSSION 

To make valid inferences concerning our density estimates, distance sampling 

requires that researchers adhere to three main assumptions.  These assumptions are:  1) 

objects on the line or point are detected with certainty, 2) objects are detected at their initial 

location, and 3) distance measurements are exact (Buckland et al. 2001:29-37).  The use of 

distance sampling in conjunction with call-broadcast surveys for surveying marsh-birds has 

been questioned because some marsh-birds may move in response to the observer or to the 

broadcasted calls, thus violating the second assumption of distance sampling (Conway and 

Gibbs 2001). This potential movement towards the observer prior to detection is problematic 

because it leads to overestimates of local density (Buckland et al. 2001:264).    However, this 

responsive movement is only problematic if birds move prior to being detected by the 

observer (Conway and Gibbs 2001).  Evidence of responsive movement towards the call-

broadcast exists for pied-billed grebes (Gibbs and Melvin 1993), Virginia rails (Baird 1974, 

Tacha 1975), and soras (Baird 1974), although the frequency and propensity of movement in 

these species has not been further studied.  Legare et al. (1999) found that black rails 

(Laterallus jamaicensis) move towards the tape prior to vocalizing.  Weske (1969) found that 



19 

 

 

black rails moved towards the call-broadcast prior to vocalizing in 58% of trials, moved 

away from the call-broadcast in 4% of trials, and stayed in the same location during 38% of 

trials.  Little research has addressed the distance of responsive movement, but Legare et al. 

(1999) found that male and female black rails moved mean distances of 9.5 m and 4.9 m 

towards the call-broadcast, respectively.  Therefore, placing raw distances in bins a 

posteriori, that are wide enough to account for such movements, may reduce potential biases.  

Although we did not measure potential movement, we argue that by placing our raw 

distances into bins wide enough to account for any potential movement by each species 

improves the precision of our density estimates. 

Although bias may exist in implementing call-broadcast surveys in conjunction with 

distance sampling, the realized benefits of this methodology may outweigh the potential bias.  

Conway and Nadeau (2006), while recognizing the potential bias associated with estimating 

distance to birds that are heard only, stressed three benefits of distance sampling for marsh-

birds: 1) it allows researchers to rigorously assess detection probability of marsh-birds, 2) it 

better allows researchers to distinguish between multiple individuals at a single survey point, 

and 3) it provides researchers the option to control for observer bias by limiting detections to 

a certain distance from the observer.  The importance of having a robust method for 

estimating detection probability for secretive species allows for the assessment of different 

survey methodologies for future monitoring.  Call-broadcast surveys are effective at 

increasing detection probability when compared to passive surveys (Gibbs and Melvin 1993, 

Erwin et al. 2002, Conway and Gibbs 2005), and utilizing these methods along with distance 

sampling could better allow researchers to monitor population trends.    
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To our knowledge, no studies have utilized distance sampling to model detection and 

obtain density estimates of secretive marsh-birds.  Because of the wide array of conservation 

statuses of marsh-birds in Iowa and throughout the Midwest, obtaining density and 

abundance metrics is an important first step to effective conservation and future monitoring.  

Many conservation decisions and actions rely on population estimates to assess the current 

status of the population and as a baseline comparison for future studies to establish 

population trends.  Our study provides density and abundance estimates for four species of 

marsh-birds in Iowa, two of which are game species and one a SGCN species.  The estimates 

of density and abundance found in our study were considerably lower than those found by 

Manci and Rusch (1988).  However, we caution that our population estimates may be 

conservative because there may be more suitable habitat for marsh-birds in Iowa than what 

we considered for our extrapolation.   

Our annual abundance estimates for soras illustrate that these species are abundant 

migrants from mid-April to mid-May.  In 2009 we started surveys on 16 May, causing us to 

miss peak migration of this species and leading to a low estimate of abundance.  However, 

our estimate of the number of migrant soras in 2010 was also lower than we expected.  This 

is likely because the large number of birds detected during the narrow migration window was 

offset by the few birds detected during the remainder of the survey season.  This illustrates 

the need to focus survey efforts for migrant species to a narrow migration window to obtain 

accurate abundance estimates.  In contrast, our annual abundance estimates for the three 

breeding species were similar to what we expected.  This demonstrates the utility of 
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conducting call-broadcast surveys and distance sampling throughout the breeding season to 

obtain estimates of breeding populations. 

Density estimates were different in all regions except for least bitterns, which had 

similar densities in regions 1 and 2, but considerably lower density in region 3.  We expected 

densities for all species to be different between regions because of microhabitat differences 

in wetlands within each region.  Density of pied-billed grebes was greatest in region 2.  

Because pied-billed grebes frequently utilize wetlands with deep water for foraging and 

nesting (mean depth = 55.6cm ± 1.5cm; Lor and Malecki 2006), we were not surprised by 

this result because wetlands in region 2 contain deeper water (>40 cm; T.M. Harms, personal 

observation).  Least bitterns prefer wetlands with tall emergent vegetation and deep water 

(Lor and Malecki 2006, Poole et al. 2009).  We expected least bittern density to be greatest in 

region 2 because wetlands within this region are characterized by tall (>1m), robust stands of 

emergent vegetation and typically contain deeper water (>40cm; T.M. Harms, personal 

observation).  Density was greatest in region 2, however it was not significantly different 

from that of region 1.  The Iowa Breeding Bird Atlas Project (Jackson et al. 1996) found 

more evidence of breeding in the Des Moines Lobe than in western Iowa, although there are 

far more wetlands in the Des Moines Lobe than in other parts of Iowa.  Density of Virginia 

rails was highest in region 1.  The Iowa Breeding Bird Atlas Project (Jackson et al. 1996) 

found the most evidence of breeding for this species within the Des Moines Lobe.  Virginia 

rails prefer shallow water (<15cm) and emergent cover (Sayre and Rundle 1984), and 

typically place nests in drier areas near the edges of marshes (Tanner and Hendrickson 1954).  

Wetlands in region 1 are characterized by shallow water (<40cm) and emergent vegetation 
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and are likely preferred by Virginia rails for nesting.  Lastly, we found density of soras was 

greatest in region 3.  We expected density of soras to be greatest in region 1 because they 

require similar habitat characteristics to the Virginia rail (Johnson and Dinsmore 1986b).  

Soras migrate through Iowa during a narrow window (mid-April – early May).  Therefore, 

this finding could be the result of the timing of surveys in stratum 3.  

Considering detection probability when estimating density and abundance of 

secretive species greatly improves precision of the estimates.  Studies have used BBS data to 

evaluate population trends of marsh-birds (Conway et al. 1994, Lor and Malecki 2002).  

However, these studies recognize the drawbacks of using BBS data for these birds because 

they are typically undersampled.  Other studies have simply used the number of birds 

encountered during surveys as an index of relative abundance (Johnson and Dinsmore 1986a, 

Frederick et al. 1990).    Our study indicated that detection probability was low for all 

species, ranging from 0.076 (95% CI = 0.068 – 0.085) for Virginia rail to 0.27 (95% CI = 

0.22 – 0.34) for least bittern.   These estimates of detection probability are lower than those 

from other studies (Gibbs and Melvin 1993, Allen et al. 2004), but not surprising given this 

group’s secretive behavior and potential geographic variation in  detection probability 

(Nadeau et al. 2008).  This difference in detection probabilities illustrates the need to 

consider this parameter when estimating density and abundance of secretive marsh-birds. 

MANAGEMENT IMPLICATIONS 

The importance of population monitoring is crucial to the effective conservation of 

any species (Hagan 1992).  We argue that estimates of density are a reliable metric of 

population status because they consider the amount of suitable habitat in the study area rather 



23 

 

 

than all available habitats.  This is important because researchers can assess the effects of 

suitable habitat on density and because considering all available habitats may cause density 

to be overestimated because birds will not occupy non-suitable habitats.  Researchers can use 

density estimates as a baseline to establish population trends with information from future 

studies.  We suggest that detection probability be considered when estimating population 

density and abundance of secretive marsh-birds because detection can vary geographically 

and because detection probability can be low for secretive species.  If detection probability is 

not considered, density and abundance could be overestimated. 
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TABLE 2.1.  Number of wetlands visited and points surveyed for marsh-birds in each size 

class in Iowa, 2009-2010. 

 

 No. of wetlands visited No. of points surveyed 
Size class (ha) 2009 2010 2009 2010 
<5   20   30   20   30 
>5 – 10   21   35   21   35 
>10 – 20   28   39   56   78 
>20 – 30   20   28   55   83 
>30 – 40   11   11   39   44 
>40   30   34 135 159 
Total 130 177 326 429 
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TABLE 2.2.  Model selection results and respective density estimates (with 95% confidence intervals) of four species of secretive 

marsh-birds in Iowa, 2009-2010.  Density estimates are reported as birds/ha and by stratum.  K is the number of parameters 

estimated by the model, ∆AICc is the difference in AIC units from the top model, and CV is the percent coefficient of variation.  

SP is the simple polynomial expansion and HP is the Hermite polynomial expansion. 

1AICc value for top model for pied-billed grebe is 578.82 

2AICc value for top model for least bittern is 1,015.62 

3AICc value for top model for Virginia rail is 735.00 

4AICc value for top model for sora is 387.

   Stratum 1 Stratum 2 Stratum 3 
Model K ∆AICc Density CV Density  CV Density  CV 
Pied-billed grebe         
    Uniform(SP) + No Cov 1 0.001 0.12 (0.11-0.14) 5.68 0.16 (0.14-0.18) 6.10 0.043 (0.039-0.048) 5.71 
    Half-normal(HP) + TEMP 2 0.92 0.15 (0.14-0.17) 4.77 0.19 (0.17-0.21) 5.26 0.053 (0.048-0.058) 4.81 
Least bittern         
    Half-normal(HP) + WIND 4 0.002 0.019 (0.014-0.024) 13.62 0.030 (0.020-0.045) 19.55 0.003 (0.001-0.008) 38.10 
Virginia rail         
    Half-normal(HP) + CLOUD 4 0.003

 0.10 (0.088-0.11) 5.81 0.014 (0.012-0.016) 6.32 0.050 (0.045-0.056) 5.87 
    Half-normal(HP) + No Cov 1 1.67 0.095 (0.082-0.11) 7.10 0.013 (0.011-0.015) 7.51 0.048 (0.042-0.055) 7.14 
Sora         
    Uniform(SP) + No Cov 1 0.004 0.064 (0.056-0.073) 6.45 0.038 (0.033-0.044) 6.79 0.16 (0.14-0.18) 6.55 
    Half-normal(HP) + TEMP 2 1.83 0.078 (0.066-0.092) 8.52 0.048 (0.029-0.078) 23.63 0.20 (0.17-0.24) 8.42 
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FIGURE 2.1.  Location of wetlands surveyed for secretive marsh-birds within three strata in 

Iowa, 2009-2010.  Each dot represents a surveyed wetland, which could have included from 

1 to 5 point counts.   
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FIGURE 2.2.  Density estimates for each species by region at wetlands in Iowa, 2009-2010.  

Estimates from the best-supported model for each species are shown.  PBGR is pied-billed 

grebe, LEBI is least bittern, VIRA is Virginia rail, and SORA is sora.  Region 1 was defined 

as the Des Moines Lobe and contained wetlands characterized as shallow potholes with 

shallow-marsh emergents (sedges [Carex spp.] and cattail [Typha spp.]) surrounded by 

upland prairie.  Region 2 was defined as western Iowa and consisted of wetlands with deeper 

water (>40 cm) and deep-water emergent (cattail and bulrush [Scirpus spp.]).  Region 3 

contained widely scattered wetlands in eastern and southern Iowa that included a variety of 

wetland types, many of which were isolated, man-made, or surrounded by forested uplands. 
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CHAPTER III.  HABITAT ASSOCIATIONS OF SECRETIVE MARSH-BIRDS IN 

IOWA 

A paper to be submitted to The Condor 

Tyler M. Harms and Stephen J. Dinsmore 

ABSTRACT:  Drastic losses of wetland habitats across North America over the past century 

have resulted in population declines of many marsh-birds.  This illustrates the need for 

proper management of remaining wetlands for the conservation of marsh-birds.  The 

objective of our study was to evaluate the probability of site occupancy of secretive marsh-

birds in Iowa in response to habitat variables at multiple scales.  We conducted call-broadcast 

surveys for eight species of marsh-birds at wetlands in Iowa from 16 May – 15 July 2009 and 

from 20 April – 10 July 2010.  We utilized occupancy models in Program MARK to estimate 

site occupancy probability based on habitat covariates for four species with the most 

detections (pied-billed grebe, least bittern, Virginia rail, and sora).  Wetland size had a 

positive effect on site occupancy for three species (pied-billed grebe [β = 0.03, 95% CI = 

0.006-0.054], least bittern [β = 0.03, 95% CI = 0.001-0.054], and Virginia rail [β = 0.03, 95% 

CI = 0.004-0.061]).  Water depth positively affected site occupancy for pied-billed grebes (β 

= 0.06, 95% CI = 0.026-0.099) and least bitterns (β = 0.06, 95% CI = 0.025-0.095), and 

percent cover of cattail positively affected site occupancy for Virginia rails (β = 0.05, 95% CI 

= 0.025-0.085).  We were unable to model site occupancy for soras because they are migrants 

in Iowa and violated the closure assumption of occupancy modeling.  Site occupancy 

probabilities estimated by the top models ranged from 0.28 (95% CI = 0.173-0.419) for least 

bitterns to 0.69 (95% CI = 0.522-0.819) for Virginia rails.   Detection probability ranged 
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from 0.54 (95% CI = 0.407-0.677) for least bitterns to 0.71 (95% CI = 0.608-0.799) for 

Virginia rails.  Knowing habitat associations of secretive marsh-birds in Iowa will allow us to 

provide guidance on wetland restoration and management decisions that will aid the 

conservation of these birds. 

KEY WORDS:  bittern, call-broadcast, detection, grebe, Iowa, MARK, marsh-bird, 

occupancy, rail 

INTRODUCTION 

Drastic losses of wetland habitats across North America over the past century have 

resulted in declines of many populations of marsh-birds (Eddleman et al. 1988, Conway et al. 

1994, Conway 2008).  Since 1970, >90% of wetlands have been lost across the United States 

with the greatest losses occurring in the Midwest and California (Dahl 1990).  In Iowa, many 

wetlands have been drained for agricultural purposes since settlement, leaving < 30,000 acres 

of the original 7.6 million acres of wetland habitat by 1980 (Bishop 1981).  In response to 

these wetland losses, several species of marsh-birds are of heightened conservation at the 

state and regional levels (Lor and Malecki 2002, Conway and Gibbs 2005).  This loss of 

wetlands and its corresponding effects illustrate the need for proper management of 

remaining wetlands for conservation of marsh-birds and other wetland-dependent birds (Lor 

and Malecki 2006, Rehm and Baldassarre 2007, Darrah and Krementz 2010). 

Until recently, little was known about secretive marsh-birds across the United States 

and, in Iowa, they are arguably some of the least understood birds.  Their secretive nature 

and tendency to occupy habitats with dense emergent vegetation makes monitoring these 



36 
 

 

birds very difficult (Lor and Malecki 2002).  This lack of information and evidence of 

population declines prompted the development of the North American Marsh Bird 

Monitoring Program (see http://ag.arizona.edu/research/azfwru/NationalMarshBird/).  The 

goal of this program was to develop a standardized set of survey protocols that could be 

implemented across the U.S. as a long-term monitoring tool with hopes to gain more 

information on secretive marsh-birds in the U.S. including status and population trends, 

habitat associations, and the effectiveness of targeted survey methodologies (Conway 2008). 

Several studies have examined habitat associations of marsh-birds relative to different 

wetland characteristics.  For example, some studies have examined the effects of different 

landscape-level variables such as degree of isolation (Brown and Dinsmore 1986, 1988, 

Craig and Beal 1992, Fairbairn and Dinsmore 2001), wetland size (Brown and Dinsmore 

1986, 1988, Craig and Beal 1992,Craig 2008), and adjacent land use (Smith and Chow-

Fraser 2010).  Other studies have evaluated the effects of local-scale characteristics such as 

water-vegetation interspersion (Lor and Malecki 2006, Rehm and Baldassarre 2007), 

vegetation density and height (Sayre and Rundle 1984, Lor and Malecki 2006, Darrah and 

Krementz 2010), and water level and fluctuation (Gonzalez-Gajardo et al. 2009).  Little 

research, however, has evaluated how these different habitat characteristics affect the 

probability of marsh-birds to occupy particular wetlands (Darrah and Krementz 2010). 

Estimating population parameters can be relatively difficult with rare or secretive 

species because detection probability is imperfect (< 100%; Mackenzie et al. 2002, 2003, 

Royle et al. 2005).  However, site occupancy can provide valuable information on species 

occurrence and, for territorial species such as some rails, can be directly linked to species 
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abundance (MacKenzie et al. 2002, 2003, 2005).  In addition, models have been developed to 

evaluate the effects of habitat variables on the probability of a species to occupy a particular 

habitat patch (MacKenzie et al. 2002, 2003).  The use of such models for secretive species is 

particularly appealing because they also consider the probability of detection when 

estimating occupancy. 

By determining habitat associations and linking such associations to life history 

characteristics, researchers can better understand the influence of different habitat attributes 

on the probability a species will occupy a particular patch.  The goal of our study was to 

evaluate the probability of site occupancy by secretive marsh-birds in Iowa in response to 

habitat variables at multiple spatial scales. 

STUDY AREA 

We surveyed marsh-birds at wetlands throughout Iowa in 2009 and 2010.  We used 

the National Wetlands Inventory (NWI; USFWS 2009) as a base from which to select our 

sites.  The NWI classifies wetlands into systems, subsystems, and classes based on wetland 

characteristics (USFWS 2009).   We considered wetlands from the Aquatic Bed (AB), 

Emergent (EM), and Unconsolidated Bottom (UB) classes of the Palustrine system (Wilen 

and Bates 1995).  Wetlands within these classes fit one or more of the following general 

habitat criteria required by our target species: 1) shallow water (less than 1m deep), 2) closed 

basins (no inflow or outflow), 3) surrounded by few or no trees, and 4) the presence of 

emergent vegetation. We considered both natural and constructed wetlands for selection.  

Most wetlands were permanent or semi-permanent, although some temporary or seasonal 

wetlands were also selected (Stewart and Kantrud 1971).  Wetlands contained a mix of 
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emergent vegetation that included cattail (Typha spp.), sedge (Carus spp.), river bulrush 

(Scirpus fluviatilis), soft-stem bulrush (Schoenoplectus tabernaemontani), and reed canary 

grass (Phalaris arundinacea).  Mean water depth at survey points within wetlands was 30 cm 

(± 1 cm) ranging from 0 to 115 cm. 

METHODS 

Site selection 

Using the NWI database, we stratified wetlands into six size classes based on area 

(ha) (≤5 ha,>5-10 ha, >10-20 ha, >20-30 ha, >30-40 ha, and >40 ha).  We randomly selected 

wetlands from each size class using Hawth’s Analysis Tools for ArcGIS (Beyer 2004).  This 

allowed for an equal representation of both large and small wetlands and ensured that 

potential area-dependent species were sampled (Brown and Dinsmore 1986).  To facilitate 

access for surveys, we only selected wetlands that were on public lands.  We randomly 

assigned a fixed number of survey points 400 m apart to wetlands within each size class to 

allow for maximum coverage of each wetland and to minimize double-counting birds 

(Conway 2008).  We assigned 1 point to both the ≤5 ha and >5-10 ha size classes, 2 points to 

the >10-20 ha size class, 3 points to the >20-30 ha size class, 4 points to the >30-40 ha size 

class, and 5 points to the >40 ha size class. 

Bird surveys 

We conducted unlimited-radius point counts in conjunction with call-broadcast 

surveys from 16 May to 15 July 2009 and from 20 April to 10 July 2010 during the early-

morning (one-half hour before sunrise to three hours after sunrise) and late-evening (three 
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hours before sunset to one-half hour after sunset).In accordance with the North American 

Marsh Bird Monitoring Protocol (Conway 2008), we conducted surveys for eight species of 

secretive marsh-birds:  pied-billed grebe (Podilymbus podiceps), American bittern (Botaurus 

lentiginosis), least bittern (Ixobrychus exilis), king rail (Rallus elegans), Virginia rail (Rallus 

limicola), sora (Porzana carolina), common moorhen (Gallinula chloropus), and American 

coot (Fulica americana).  We surveyed 56 wetlands up to four times during 2010 to create 

the encounter history necessary to estimate site occupancy probability and detection 

probability (MacKenzie et al. 2002).  We also included data from single surveys conducted at 

253 wetlands during 2009 and 2010.  Using an mP3 player (SanDisk Sansa Clip 1GB, 

SanDisk Corporation, Milpitas, California, USA) attached to a pair of amplified speakers 

(Panasonic Model RPSPT70, Panasonic Corporation, Secaucus, New Jersey, USA), we 

broadcast the call sequence at 90 dB 1 m from the source (Conway 2008).  We placed the 

speakers 0.5 m from the substrate (ground or water surface) and pointed them towards the 

interior of the wetland.  The call-broadcast sequence was obtained from the North American 

Marsh Bird Monitoring Program coordinator (Conway 2008) and consisted of a 5-minute 

passive listening period followed by 8 minutes of vocalizations.  Each minute of the 8-minute 

call-broadcast period corresponded to one species and consisted of 30 seconds of 

vocalizations and 30 seconds of silence.  Vocalizations were ordered by species dominance 

to minimize scaring birds prior to their respective sequence (Conway 2008).  We recorded all 

visual and aural detections of all species at each survey point.  We also recorded the distance 

(m) to each bird and the minute of the sequence during which each vocalization was heard to 

be used in other studies.  Using a Weather Kestrel 4000 (Nielsen Kellerman, Boothwyn, 

Pennsylvania, USA), we measured wind speed (Beaufort; bft) and temperature (˚C).  We 
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visually estimated the amount of cloud cover and assigned it to one of four categories (0 – 

few or no clouds, 1 – partly cloudy, 2 – cloudy or overcast, 4 – fog).  We refrained from 

conducting surveys during periods of rain or when wind speeds exceeded 12 km/hr. Most 

survey points were accessed by foot, although we used a canoe to reach points on some 

larger wetlands. 

Habitat measurements 

Prior to conducting surveys, we measured habitat variables at each survey point 

within each wetland.  We conducted measurements at both the survey point and within a 50-

m radius of the survey point to assess local habitat characteristics (Conway 2008).  We 

measured water depth (cm; WATERDEP) and vegetation height (m; VEGSIZE) at the survey 

point.  Vegetation height was assigned to one of three size classes (1 = 0.0-0.5 m, 2 = 0.5-1.0 

m, 3 = >1.0 m).  Within a 50-m radius of the survey point, we visually estimated percent 

coverage of the major types of emergent vegetation (Conway 2008).  These vegetation types 

included cattail (Typha spp.; CATTAIL), bulrush (Schoenoplectus spp.; BULRUSH), sedge 

(Carus spp.; SEDGE), reed canary grass (Phalaris arundinacea; REEDCAN), and woody 

vegetation (WOOD).  We took the sum of all vegetation cover estimates to obtain the total 

percent coverage of emergent vegetation (TOTVEG).  We also visually estimated the percent 

coverage of water (WATER) and bare ground (GROUND).  Percent coverage was estimated 

in 5% increments. 

Using ArcGIS (v. 9.3; ESRI 2009), we measured five landscape level variables of 

interest.  We obtained wetland size (ha; WETSIZE) from the NWI database from which we 

selected our survey wetlands.  Wetland size was an important variable because studies have 
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shown that larger wetlands host greater avian diversity (Brown and Dinsmore 1986, 1988) 

and because some of our study species are potentially area-dependent.  Those species are 

pied-billed grebe (Brown and Dinsmore 1986, Naugle et al. 1999), American bittern (Brown 

and Dinsmore 1986), and least bittern (Brown and Dinsmore 1986), king rail (Craig 1990), 

and common moorhen (Chabot 1996).  Using ET Geo Wizards extension for ArcGIS 

(Tchoukanski 2011), we measured distance to the nearest wetland (m; DIST).  We calculated 

the area of wetland habitat within a 1 km (ONEKM), 3 km (THREEKM), and 5 km 

(FIVEKM) buffer of the surveyed wetland to assess the degree of isolation of the surveyed 

wetland (Brown and Dinsmore 1986). 

Occupancy models 

We used the site occupancy model (MacKenzie et al. 2002) in Program MARK 

(White and Burnham 1999) to evaluate the effects of habitat variables on site occupancy of 

marsh-birds.  This model generates estimates of the probability that marsh-birds occupy a 

particular wetland (ψ) and the probability of detecting marsh-birds given that they are present 

(p).  We modeled site occupancy for four species that had the greatest number of detections.  

Those species were pied-billed grebe (P. podiceps), least bittern (I. exilis), Virginia rail (R. 

limicola), and sora (P. carolina).   The site occupancy model in Program MARK estimates 

the above mentioned parameters from encounter histories generated from repeated surveys of 

sites (MacKenzie et al. 2002, White and Burnham 1999).  We assumed that each wetland was 

independent and was closed to changes in occupancy state by marsh-birds throughout the 

survey season.  This was a reasonable assumption because our surveys were restricted to a 

portion of the marsh-bird nesting season, a time when each focal species was unlikely to be 
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immigrating or emigrating from a wetland (Darrah and Krementz 2010). We also assumed 

that the mean of all local habitat variables measured at survey points within each wetland 

were representative of habitat characteristics in the entire wetland (Darrah and Krementz 

2010). 

Based on an extensive literature review and our own observations pertaining to 

habitat associations of secretive marsh-birds, we developed species-specific predictions about 

the effects of different habitat variables on site occupancy probability (ψ).  We also 

considered the life history characteristics of each species when developing hypotheses.  

Below, we discuss hypotheses for each species in further detail. 

Pied-billed grebe. - Pied-billed grebes are open-water nesters and typically build 

nests on floating platforms of vegetation (Muller and Storer 1999).  Therefore, we predicted 

that the percent cover of open water would have a positive effect on site occupancy 

probability.  We expected water depth to have a positive effect on site occupancy probability 

because this species forages primarily by diving (Muller and Storer 1999).  Because pied-

billed grebes utilize emergent vegetation in the construction of their nests (Glover 1953, 

Muller and Storer 1999), we surmised that percent cover of emergent vegetation would also 

have a positive effect on site occupancy probability.  However, we were unable to 

specifically predict which type of emergent vegetation would yield this effect.  At the 

landscape level, we expected wetland size to have a positive effect on site occupancy 

probability of pied-billed grebes because studies have found them to be area-dependent 

(Brown and Dinsmore 1986, Naugle et al. 1999).  We also expected that a greater proximity 

to other wetlands would positively affect site occupancy (Rehm and Baldassarre 2007).  
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Least bittern. - We expected vegetation height to have a positive effect on site 

occupancy probability for this species because they construct nests suspended in tall 

emergent vegetation (Weller 1961, Lor and Malecki 2006, Poole et al. 2009).  We also 

expected percent cover of bulrush to have a positive effect on site occupancy probability 

because least bitterns prefer this type of vegetation for nesting in Iowa (Kent 1951).  

However, other studies have shown that least bitterns associate more with percent cover of 

cattail (Frederick et al. 1990, Bogner and Baldassarre 2002), so we also expected percent 

cover of cattail to have a positive effect on site occupancy.  We hypothesized that percent 

cover of water would have a similar positive effect to those of percent cover of the 

aforementioned vegetation types because several studies have shown that least bitterns prefer 

wetlands with near equal proportions of water and emergent vegetation (Bogner and 

Baldassarre 2002, Winstead and King 2006).  We included wetland size in candidate models 

of site occupancy probability for least bitterns because they have been found to possibly be 

area-dependent (Brown and Dinsmore 1986).  We did not find any evidence in the literature 

that least bitterns respond to the degree of isolation of wetlands. 

Virginia Rail. - Lor and Malecki (2006) found that Virginia rails build nests in 

shallow water and others have shown that Virginia Rails are commonly found in wetlands 

with shallow water (Johnson and Dinsmore 1986, Conway 1995). Therefore, we expected 

water depth to have a negative effect on the site occupancy probability by this species.Lor 

and Malecki (2006) also found that Virginia rails build nests in wetlands with shorter 

vegetation, so we expected vegetation height to have a negative effect on site occupancy 

probability.  We predicted percent cover of cattail would have a positive effect on site 
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occupancy probability because studies have found that Virginia rails used habitats with high 

amounts of cattail (Johnson and Dinsmore 1986, Manci and Rusch 1988).  Virginia rails have 

been found to be area-independent (Brown and Dinsmore 1986, Benoit and Askins 2002, 

Craig 2008) and we found no evidence in the literature that they respond to the degree of 

isolation of wetlands, so we hypothesized that none of the landscape variables would affect 

site occupancy probability. 

Sora. - Studies have shown that soras use several types of emergent vegetation 

(Tanner and Hendrickson 1956, Brown and Dinsmore 1986,Manci and Rusch 1988, Melvin 

and Gibbs 1996).  We predicted that total percent cover of emergent vegetation would have a 

positive effect on site occupancy probability.  Similar to Virginia rails, we expected water 

depth to have a negative effect on site occupancy probability because soras typically 

associate with shallow water (Johnson and Dinsmore 1986, Lor and Malecki 2006).  Soras 

also associate towards shorter vegetation, so we expected vegetation height would have a 

negative effect on site occupancy probability (Lor and Malecki 2006).  We did not predict 

wetland size would have an effect on site occupancy probability of this species because they 

have been found to be area-independent (Brown and Dinsmore 1986, Melvin and Gibbs 

1996).  There is no evidence that the degree of isolation affects occurrence of soras at 

wetlands so we did not predict an effect of these variables. 

Detection probability (p). - We included variables wind speed (WIND), temperature 

(TEMP), and cloud cover (CLOUD) as factors affecting detection probability.  We modeled 

detection probability as a time-varying parameter by day to account for both seasonal 

differences in vocalization frequencies of the target species (T.M. Harms, pers. obs.) and 
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daily variation in weather conditions that may affect detectability.  Because observers were 

familiar with vocalizations of target species and highly trained at detecting birds at varying 

distances, we did not include observer as a covariate on detection probability. 

Modeling process. - We utilized a two-step modeling process by which covariates on 

p were modeled first while keeping ψ constant; the top model for p was then included in the 

models for ψ (Olsen et al. 2005, Kroll et al. 2010).  When modeling ψ, we envisioned a 

hierarchical model selection framework similar to that described by Johnson (1980) in which 

birds are first selecting for broad-scale, landscape variables to establish home ranges and then 

select for microhabitat variables to establish feeding and nesting sites.  When building 

models, we first included landscape-level variables (WETSIZE, DIST, ONEKM, 

THREEKM, FIVEKM) and then added microhabitat variables.  We compared models using 

Akaike’s Information Criterion (AIC) adjusted for small sample sizes (AICc) and considered 

models with ∆AICc≤ 2 to have strong support (Burnham and Anderson 2002).  There is 

currently no test for overdispersion in these data because the occupancy model in Program 

MARK does not currently have a goodness-of-fit test.  We assessed correlation amongst the 

site-specific covariates by constructing a correlation matrix.  Variables with r ≥ 0.80 were 

considered highly correlated (Lor and Malecki 2006).  Pairs of highly correlated variables 

included TOTVEG and WATER (r = -0.98), ONEKM and THREEKM (r = 0.85), and 

THREEKM and FIVEKM (r = 0.96).  Therefore, we did not include these pairs of variables 

as additive effects in the models. 

Model predictions. - We obtained model-based predictions of site occupancy 

probability by utilizing the user-specified covariate values option in Program MARK.  We 
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used the best model for each species and specified a range of values for the covariate of 

interest while setting values for all other covariates in the model to the mean.  This allowed 

us to obtain a set of occupancy predictions for species based on a range of values for 

biologically-relevant covariates.  We predicted site occupancy for all three species at 

wetlands 0.1 – 40.0 ha in size.  For pied-billed grebes and least bitterns, we also predicted 

site occupancy at wetlands with varying water depths (10 -100 cm) because this covariate 

was included in the best-supported model for both species.  Lastly, we predicted site 

occupancy for Virginia rails at wetlands with varying ranging from 10-90% because we 

assumed that wetlands with either 0% or 100% were not suitable habitat for this species.   

RESULTS 

Pied-billed grebe 

We detected pied-billed grebes at 127 sites during both years of surveys with the 

greatest percentage of sites occupied occurring in the >30-40 ha size class (77.2%; Table 1).  

The best-supported model for pied-billed grebe included the covariate CLOUD on detection 

probability and the covariates WETSIZE, WATER, WOOD, and WATERDEP on site 

occupancy probability (Table 2).  The single competitive model (∆AICc = 1.05) included the 

covariate CLOUD on detection probability and the covariates WETSIZE, TOTVEG, 

WOOD, and WATERDEP on site occupancy probability (Table 2).  Detection probability 

was not affected by CLOUD (β = -0.31, 95% CI = -0.636-0.021) because the 95% confidence 

interval included zero.  Site occupancy probability was positively affected by WETSIZE (β = 

0.03, 95% CI = 0.006-0.054), WATER (β = 0.03, 95% CI = 0.001-0.055), and WATERDEP 

(β = 0.06, 95% CI = 0.026-0.099) and was negatively affected by WOOD (β = -0.06, 95% CI 



47 
 

 

= -0.099 - -0.027).  TOTVEG did not have an effect on site occupancy probability because 

the 95% confidence interval included zero (β = -0.02, 95% CI = -0.049-0.003).  

Least bittern 

We detected least bitterns at 60 sites during both years of surveys with the greatest 

percentage of sites occupied occurring in the >30-40 ha size class (36.3%; Table 1).  The 

best-supported model for least bitterns included the covariate CLOUD on detection 

probability and the covariates WETSIZE, VEGSIZE, and WATERDEP on site occupancy 

probability (Table 2).  The single competitive model (∆AICc = 0.61) included the covariate 

WIND on detection probability and the covariates WETSIZE, VEGSIZE, and WATERDEP 

on site occupancy probability (Table 2).  Detection probability was not affected by CLOUD 

(β = -0.33, 95% CI = -0.744-0.085) or WIND (β = 0.33, 95% CI = -0.147-0.809) because the 

95% confidence intervals included zero.  Site occupancy probability was positively affected 

by WETSIZE (β = 0.03, 95% CI = 0.001-0.054), VEGSIZE (β = 1.41, 95% CI = 0.485-

2.325), and WATERDEP (β = 0.06, 95% CI = 0.025-0.095).   

Virginia rail 

We detected Virginia rails at 123 sites during both years with the greatest percentage 

of sites occupied occurring in the >40 ha size class (56.4%; Table 1).  The best-supported 

model for Virginia rails included the covariate CLOUD on detection probability and the 

covariates WETSIZE, CATTAIL, and REEDCAN on site occupancy probability (Table 2).  

Competitive models (∆AICc≤ 2) also included the covariates VEGSIZE, WATERDEP, and 

DIST on site occupancy probability in addition to those covariates included in the top model.  
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Detection probability was negatively affected by CLOUD (β = -0.39, 95% CI = -0.708 - -

0.067).  Site occupancy probability was positively affected by WETSIZE (β = 0.03, 95% CI 

= 0.004-0.061) and CATTAIL (β = 0.05, 95% CI = 0.025-0.085).  All other covariates 

mentioned above had little or no effect on site occupancy probability because the 95% 

confidence intervals included zero. 

Sora 

We detected soras at 98 sites during both years of surveys with the greatest 

percentage of sites occupied occurring in both the >30-40 ha and >40 ha size classes (50.0% 

in each; Table 1).  Soras are abundant in Iowa during migration and are a rare breeder (Kent 

and Dinsmore 1996).  We presumed that this violated the closure assumption because 

individuals were not available for detection throughout the duration of the survey season 

(MacKenzie et al. 2002).  To satisfy this assumption, we truncated detections to the breeding 

season only (1– 30 June) and eliminated the possibility of migrants through late May (Melvin 

and Gibbs 1996).  Truncation of the data in this manner resulted in too few detections (n = 

48) to model site occupancy for this species. 

Parameter estimates and model predictions 

Site occupancy probability for pied-billed grebes ranged from 0.47 – 0.74 (SE = 0.08 

and 0.07, respectively) across wetland sizes (Figure 2).  For least bitterns, site occupancy 

probability ranged from 0.15 – 0.36 (SE = 0.05 and 0.10, respectively) across wetland sizes 

(Figure 2).  Site occupancy ranged from 0.49 – 0.78 (SE = 0.10 and 0.08, respectively) across 

wetland sizes for Virginia rails (Figure 2). 
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We used the best model for each species to make predictions about site occupancy as 

a function of important covariates. Site occupancy for pied-billed grebes ranged from 0.53 

(SE = 0.07) at 10-cm depths to >0.99 (SE = 0.01) at 100-cm depths (Figure 3).  For least 

bitterns, site occupancy was 0.18 (SE = 0.05) at 10-cm depths and 0.98 (SE = 0.03) at 100-

cm depths (Figure 3).  Site occupancy for Virginia rails across varying percent cover of 

cattail ranged from 0.39 – 0.98 (SE = 0.07 and 0.02, respectively; Figure 4). 

DISCUSSION 

Wetland size had a positive effect on site occupancy probability for all species in this 

study.  Several studies have shown that larger wetlands support the greatest avian species 

diversity (Brown and Dinsmore 1986, Craig and Beal 1992, Fairbairn and Dinsmore 2001, 

Craig 2008).  Studies have found evidence of area-dependency in both pied-billed grebes 

(Brown and Dinsmore 1986, Naugle et al. 1999) and least bitterns (Brown and Dinsmore 

1986, Moore et al. 2009), whereas Virginia rails have been found to be area-independent 

(Brown and Dinsmore 1986).  Pied-billed grebes typically occupy wetlands with large 

expanses of open water (Muller and Storer 1999, Osnas 2003, Darrah and Krementz 2010).  

Least bitterns are believed to occupy larger wetlands to increase distance (>123 m) between 

breeding territories and avoid aggressive interactions between conspecifics (Bogner and 

Baldassarre 2002) and prefer larger wetlands for nesting (Lor and Malecki 2006).  Wetland 

size has not been shown to be a factor influencing site occupancy of Virginia rails.  However, 

Kantrud and Stewart (1984) found that larger semi-permanent and permanent wetlands 

typically possess tall, robust stands of emergent vegetation which are preferred by Virginia 

rails during the breeding season (Johnson and Dinsmore 1986, Lor and Malecki 2006). 
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Water depth positively affected site occupancy probability for pied-billed grebes and 

least bitterns.  Published literature suggests that pied-billed grebes prefer wetlands with 

deeper water (Lor and Malecki 2006), although we found no evidence of this for least 

bitterns.  Pied-billed grebes forage by diving and studies have shown that other diving 

species (e.g., diving ducks) occupy wetlands with deeper water (Murkin et al. 1997, Webb et 

al. 2010).  This could be because wetlands with deeper water possess larger invertebrates, 

such as salamanders and small fish, which are preferred prey items of pied-billed grebes 

(Muller and Storer 1999, Osnas 2003).  In addition, pied-billed grebes build nests over 

deeper water (Lor and Malecki 2006) and have higher reproductive success in deep wetlands 

(Osnas 2003).  Deep water may result in increased foraging efficiency and may eliminate 

access to nests by potential mammalian predators.  Although we found no evidence for least 

bittern preference of deep-water wetlands, studies have shown that low water levels can 

cause population declines (Weller 1961, DesGranges et al. 2006).  Least bitterns utilize tall 

emergent vegetation for a variety of purposes including nesting (Bogner and Baldassarre 

2002, Lor and Malecki 2006, Poole et al. 2009) and foraging (Poole et al. 2009).  Kantrud 

and Stewart (1984) found that deeper water increases water permanence in wetlands, thus 

allowing establishment of robust emergent vegetation communities.  Therefore, the observed 

effect of water depth on site occupancy of least bitterns could be indirect. 

 Site occupancy probability for pied-billed grebes was negatively affected by percent 

cover of woody vegetation.  Darrah and Krementz (2010) also found that site occupancy 

decreased with increased cover of woody vegetation.  Woody plants are not common in 

prairie pothole wetlands (Galatowitsch and Van Der Valk 1996) and are frequently found in 
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wetlands with little or no emergent vegetation (pers. obs.).  Pied-billed grebes require some 

component of emergent vegetation for nesting (Muller and Storer 1999, Osnas 2003), which 

may explain why site occupancy decreased at wetlands with increased cover of woody 

vegetation and decreased cover of emergent vegetation.  Darrah and Krementz (2010) also 

suggest the pied-billed grebes may avoid wetlands with increased woody vegetation to avoid 

risk of predations by hawks and mammals.   

 We found no effect of degree of wetland isolation on site occupancy probability for 

any species.  This was a surprising result because other studies have shown that marsh-birds 

prefer wetlands within a complex in favor of isolated wetlands (Brown and Dinsmore 1986, 

Fairbairn and Dinsmore 2001, Smith and Chow-Fraser 2010).  Iowa has lost nearly 90% of 

its original wetland habitat since the development of agriculture and European settlement 

(Dahl 1990) and those wetlands remaining are isolated on the landscape (Brown and 

Dinsmore 1986).  Birds may be occupying isolated wetlands because they still produce 

microhabitat characteristics preferred for nesting and foraging.  In addition, Johnson (1980) 

explains that habitat selection is based on usage and availability.  If few wetland complexes 

are available on the landscape, birds may focus their selection on alternative habitats (e.g., 

isolated wetlands) that they can still use and are more readily available on the landscape. 

MANAGEMENT IMPLICATIONS 

Although some habitat characteristics will be suitable for all species, managers should 

consider species-specific habitat needs for effective conservation.  We found that large 

wetlands (>26 ha) with deep water (>19 cm) benefited three focal species of marsh-birds in 

Iowa because they provided suitable areas for foraging, enough area for birds to establish 
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breeding territories, and minimized interactions with conspecifics.  In addition, pied-billed 

grebes occupied wetlands with little surrounding woody cover and greater cover of open 

water for foraging and nesting.  Least bitterns occupied wetlands with tall, robust stands 

emergent vegetation for building nests and perching while foraging.  Virginia rails occupied 

wetlands with greater cover of cattail for placement and construction of nests, cover from 

predators, and foraging habitats.  We suggest that land managers focus efforts to restoring 

and managing wetlands for deep water and tall emergent vegetation communities.  Also, 

managers should attempt to acquire larger wetlands, although most species will use smaller 

wetlands when available.  Knowing habitat associations of secretive marsh-birds relative to 

wetland characteristics in Iowa will help land managers to make informed decisions when 

managing and restoring wetlands for multiple species of marsh-birds.     
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TABLE 3.1.  Number of wetlands surveyed in each size class in Iowa, 2009-2010 and the 

percent of wetlands in which each species was detected. 

 

Species Wetland size (ha) 
    ≥5 >5-10 >10-20 >20-30 >30-40 >40 

Number n =52 n =54 n =70 n =49 n =22  n =62 

Pied-billed grebe 31 31 37  33  77 56 

Least bittern 12 11  10 29  36 31 

Virginia rail 37 19  36 45  55  56 

Sora 21 13  33 31 50  50 
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TABLE 3.2.  Model selection results for site occupancy (ψ) and detection probability (p) of 

three species of marsh-birds in Iowa, 2009-2010. ∆AICc is the difference in Akaike’s 

Information Criterion relative the smallest value, K is the number of parameters in the model, 

wi is the AICcweight, and Dev is the model deviance.  Time-varying covariates on detection 

probability are as follows:  CLOUD is the amount of cloud cover (0, 1, 2, 4) and WIND is 

the wind speed (Bft).  Site-specific covariates on site occupancy probability (ψ) are as 

follows:  WETSIZE is wetland size (ha), WATER is percent cover of open water, WOOD is 

percent cover of woody vegetation, WATERDEP is water depth (cm), TOTVEG is percent 

cover of all emergent vegetation, VEGSIZE is the height of vegetation, CATTAIL is the 

percent cover of cattail (Typha spp.), REEDCAN is the percent cover of reed canary grass 

(Phalaris arundinacea), and DIST is the distance to the nearest wetland (m). 

Model ∆AICc K wi Dev 
Pied-billed grebe     
      p(CLOUD) ψ(WETSIZE+WATER+WOOD+WATERDEP) 0.001 7 0.51 531.21 
      p(CLOUD) ψ(WETSIZE+TOTVEG+WOOD+WATERDEP)        1.05 7 0.30 532.26 
Least bittern     
p(CLOUD) ψ(WETSIZE+VEGSIZE+WATERDEP) 0.002 6 0.39 371.47 
      p(WIND) ψ(WETSIZE+VEGSIZE+WATERDEP) 0.61 6 0.28 372.08 
Virginia rail     
      p(CLOUD) ψ(WETSIZE+CATTAIL+REEDCAN)  0.003 6 0.25 544.47 
      p(CLOUD) ψ(WETSIZE+CATTAIL+REEDCAN+VEGSIZE) 0.51 7 0.19 542.89 
      p(CLOUD)ψ(WETSIZE+CATTAIL+REEDCAN+WATERDEP) 0.65 7 0.18 543.03 
      p(CLOUD) ψ(WETSIZE+DIST+CATTAIL) 1.58 6 0.11 546.05 
      p(CLOUD) ψ(WETSIZE+CATTAIL+VEGSIZE) 2.00 6 0.09 546.48 

1AICc value for top model for pied-billed grebe is 545.58 

2AICc value for top model for least bittern is 383.75 

3AICc value for top model for Virginia rail is 556.75 
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FIGURE 3.1.  Location of wetlands surveyed for marsh-birds in Iowa, 2009-2010.  Each dot 

represents a surveyed wetland, which could have included from 1 to 5 point counts.  
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FIGURE 3.2.  Predicted probability of site occupancy (±95% confidence limits) for pied-

billed grebe, least bittern, and Virginia rail at wetlands ranging from 0.1 to 40 ha in Iowa, 

2009-2010. 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

P
ro

b
a

b
il

it
y

 o
f 

o
cc

u
p

a
n

cy

Wetland size (ha)

PBGR

LEBI

VIRA



64 
 

 

FIGURE 3.3.  Predicted probability of site occupancy (±95% confidence limits) for pied-

billed grebe and least bittern at wetlands with water depths ranging from 10 to 100 cm in 

Iowa, 2009-2010. 
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FIGURE 3.4.  Predicted probability of site occupancy (±95% confidence limits) for Virginia 

rail at wetlands with 10 to 90 percent cattail cover in Iowa, 2009-2010.  
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CHAPTER IV:  RESPONSE RATES OF SECRETIVE MARSH-BIRDS IN IOWA 

 

A paper submitted to Wildlife Society Bulletin 

 

Tyler M. Harms and Stephen J. Dinsmore 

ABSTRACT:  Call-broadcast surveys are frequently used to elicit responses of secretive 

marsh-birds and produce greater detection rates than passive surveys.  However, little is 

known about how detection rates of birds from these surveys differ by season and time of 

day.  We conducted call-broadcast surveys for eight focal species at wetlands throughout 

Iowa from 15 May – 13 June 2010 (early season) and from 15 June – 10 July 2010 (late 

season).  Surveys were conducted in the early morning (one-half hour before sunrise to three 

hours after sunrise) and late evening (three hours before sunset to one-half hour after sunset) 

in accordance with the North American Marsh Bird Monitoring Protocol.  We evaluated 

response rates to call-broadcast surveys as a function of a) time of day (morning and evening 

survey periods), b) season (early and late in the breeding season), and c) wetland size for four 

species with the greatest detection rate (pied-billed grebe, least bittern, Virginia rail, and 

sora).  We also evaluated the above effects for all eight species pooled and all rails pooled.  

We found strong (P < 0.05) effects on the number of detections for pied-billed grebe in 

response to time of day, time of season, and wetland size; sora, Virginia rail, all rails, and all 

species had an effect of time of season only.  Understanding seasonal and time-of-day 

differences in detection rates, as well as area dependence of secretive marsh-birds, will refine 

existing monitoring protocols by allowing researchers to maximize detection probabilities of 

target species. 
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INTRODUCTION 

Secretive marsh-birds (e.g., bitterns and rails) are some of the most inconspicuous 

birds in North America.  These birds are difficult to monitor using conventional survey 

techniques because they vocalize infrequently and tend to occupy habitats that are densely 

covered by emergent vegetation (Lor and Malecki 2002).  In addition, their crepuscular 

habits require sampling to occur in the early-morning and late-evening hours.  The North 

American Marsh Bird Monitoring Protocol (Conway 2008) was established to aid researchers 

in the development of standardized surveys to effectively monitor these birds.  Call-broadcast 

surveys have been implemented in several studies to elicit responses from marsh-birds 

(Johnson and Dinsmore 1986, Manci and Rusch 1988, Gibbs and Melvin 1993, Lor and 

Malecki 2002) and produce higher detection rates when compared to passive surveys (Gibbs 

and Melvin 1993, Erwin et al. 2002, Allen et al. 2004, Conway and Gibbs 2005 DesRochers 

et al. 2008).  However, the effectiveness of call-broadcast surveys can vary temporally 

(Conway and Gibbs 2001, Rehm and Baldassarre 2007, Nadeau et al. 2008) and by species 

(Manci and Rusch 1988, Gibbs and Melvin 1993, Lor and Malecki 2002, Soehren et al. 

2009).  There is a need for additional information on seasonal variation in response rates and 

whether responses vary between morning and evening periods.  

The North American Marsh Bird Monitoring Protocol (Conway 2008) instructs 

researchers to conduct call-broadcast surveys in the morning or evening depending on when 

birds are most vocal in the study area.  A single study found that vocalization probabilities of 

marsh-birds are greater during morning surveys (Nadeau et al. 2008); other studies have 

shown that such probabilities are greater during evening surveys (Johnson and Dinsmore 
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1986, Conway et al. 2004).  Several environmental factors such as temperature, wind speed, 

and cloud cover may differ during morning and evening survey periods, potentially affecting 

the vocalization frequency of marsh-birds (Nadeau et al. 2008).  Vocalization frequencies of 

marsh-birds may also vary by time of day due to activity levels and other behavioral 

characteristics of the birds (Palmeirim and Rabaça 1994).  No research has been done to 

determine the best time of day for surveying marsh-birds in the Midwestern United States.  

This information is critical to maximize detection probabilities of target species. 

Another important consideration when conducting call-broadcast surveys for marsh-

birds is that temporal variation in detection probability is minimized (Conway and Gibbs 

2001, 2005).  The national monitoring protocol states that optimal timing of surveys should 

overlap with the breeding seasons of focal marsh-bird species in the study area and suggests 

that surveys be conducted during a 45-day window that varies regionally based on average 

minimum temperatures in May.  However, research has found that these survey windows 

may not be long enough to include peak detection periods for all focal species (Rehm and 

Baldassarre 2007).  In Iowa, for example, the American bittern (Botaurus lentiginosis) and 

sora (Porzana carolina) arrive and initiate breeding in mid- to late April (Kent and Dinsmore 

1996), whereas the least bittern (Ixobrychus exilis) arrives in mid-May and initiates breeding 

in late May or early June (Weller 1961).  Therefore, the suggested survey window for Iowa 

(15 April to 30 May) may not include peak detection periods for all species of marsh-birds, 

especially late breeders like the least bittern.  An adjustment of survey timing at the regional 

level may be necessary to account for seasonal differences in detection of target species. 



69 
 

 

Our objective was to examine the effects of 1) time of day, 2) time of season, and 3) 

wetland size on the detection rates of secretive marsh-birds in Iowa.  This information will 

help refine survey timing for secretive marsh-birds in Iowa and whether detection rates vary 

with wetland size. 

STUDY AREA 

We surveyed marsh-birds at wetlands in the Des Moines Lobe of north-central and 

northwestern Iowa (Prior 1991; Figure 1).  We used the National Wetlands Inventory (NWI; 

USFWS 2009) as a base from which to select our sites.  The NWI classifies wetlands into 

systems, subsystems, and classes based upon wetland characteristics (USFWS 2009).   We 

considered wetlands from the Aquatic Bed (AB), Emergent (EM), and Unconsolidated 

Bottom (UB) classes of the Palustrine system (Wilen and Bates 1995).  Wetlands within 

these classes fit one or more of the following general habitat criteria required by our target 

species: 1) shallow water (< 1m deep), 2) closed basins (no inflow or outflow), 3) surrounded 

by few or no trees, or 4) the presence of emergent vegetation. We considered both natural 

and constructed wetlands for selection.  Most wetlands were permanent or semi-permanent, 

although some temporary or seasonal wetlands were also selected (Stewart and Kantrud 

1971). Most wetlands contained a mix of emergent vegetation that included cattail (Typha 

spp.), sedge (Carex spp.), river bulrush (Scirpus fluviatilis), soft-stem bulrush 

(Schoenoplectus tabernaemontani), or reed canary grass (Phalaris arundinacea).  Mean 

water depth at survey points within wetlands was 30 cm (± 1 cm) ranging from 0 to 115 cm. 
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METHODS 

Site selection and surveys 

Using Hawth’s Analysis Tools for ArcGIS (Beyer 2004), we randomly selected 

wetlands from the NWI database.  We stratified wetlands into six size classes based on area 

(ha) (≤5 ha, >5 to 10 ha, >10 to 20 ha, >20 to 30 ha, >30 to 40 ha, and >40 ha) to facilitate 

an equal representation of wetlands of different sizes and to ensure that potential area-

dependent species were sampled.  We randomly selected 10 wetlands from each size class 

(Brown and Dinsmore 1986) except that only 6 wetlands of 30-40 ha were selected due to the 

small number of wetlands within that class.  To facilitate access for surveys, we selected only 

wetlands that were on public lands.  We randomly assigned a fixed number of survey points 

400 m apart to wetlands within each size class to allow for maximum coverage of each 

wetland and to minimize double-counting birds (Conway 2007).  We assigned 1 point to both 

the <5 ha and >5 to 10 ha size classes, 2 points to the >10 to 20 ha size class, 3 points to the 

>20 to 30 ha size class, 4 points to the >30 to 40 ha size class, and 5 points to the >40 ha size 

class. 

We conducted unlimited-radius point counts with call-broadcast surveys from 15 May 

to 10 July 2010.  We conducted surveys for eight focal species of marsh-birds in accordance 

with the North American Marsh Bird Monitoring Protocol (Conway 2008).  The eight focal 

species included pied-billed grebe (Podilymbus podiceps), American bittern, least bittern, 

king rail (Rallus elegans), Virginia rail (Rallus limicola), sora, common moorhen (Gallinula 

chloropus), and American coot (Fulica americana).  Using an MP3 player (SanDisk Sansa 

Clip 1GB, SanDisk Corporation, Milpitas, CA, USA) attached to a pair of amplified speakers 
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(Panasonic Model RPSPT70, Panasonic Corporation, Secaucus, NJ, USA) we broadcast the 

call sequence at 90 dB 1 m from the source (Conway 2008).  We placed the speakers 0.5 m 

from the substrate (ground or water surface) and pointed them towards the interior of the 

wetland. The call-broadcast sequence was obtained from the North American Marsh Bird 

Monitoring Program coordinator (Conway 2008) and consisted of a 5-minute passive 

listening period followed by 8 minutes of vocalizations.  Each minute of the 8-minute call-

broadcast period corresponded to one species and consisted of 30 seconds of vocalizations 

and 30 seconds of silence.  Vocalizations were ordered by species dominance to minimize 

scaring birds prior to their respective sequence (Conway 2008).  We recorded all visual and 

aural detections of all species at each survey point.  We also recorded the distance (m) to 

each bird and the minute of the sequence during which each vocalization was heard to be 

used in other studies.  We refrained from conducting surveys during periods of rain or when 

wind speeds exceeded 12 km/hr. Most survey points were accessed by foot, although we used 

a canoe to reach points on some larger wetlands. 

To assess time-of-day differences in response rates, we conducted paired surveys at 

each wetland during both morning (30 minutes before sunrise to 3 hours after sunrise) and 

evening (3 hours before sunset to 30 minutes after sunset) survey periods.  We conducted 

surveys during consecutive survey periods (morning-evening or evening-morning) to 

minimize any daily variation in responses of birds (Nadeau et al. 2008) and the order in 

which we conducted morning and evening surveys was varied so that one survey was not 

always conducted prior to the other (Conway et al. 2004).  We split the survey season into 

early season (15 May to 14 June) and late season (15 June to 14 July) and conducted paired 
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surveys at each wetland during both seasons.  To standardize the time between surveys, we 

conducted late-season surveys about a month (within 3 days) after early-season surveys.  For 

example, if surveys were conducted on 25 May during early season, surveys of the same 

wetland were conducted within 3 days of 25 June during late season.  We randomized the 

order in which points were surveyed at each visit.  We hypothesized that all species would be 

more vocal in the morning survey period than evening survey period during both early and 

late in the survey season.  We also hypothesized that pied-billed grebes, Virginia rails, and 

soras would be more vocal early in the survey season than late in the survey season, whereas 

least bitterns would be more vocal late in the survey season than early in the survey season.  

Statistical analyses 

Using generalized linear mixed-effects models (PROC GLIMMIX; SAS Institute 

2002) we examined the effects of time of day, time of season, and wetland size on the 

number of detections at each survey point.  Because our data were over-dispersed counts, we 

fit models using a Poisson-log normal probability distribution and a log (ln) link function 

(P.M. Dixon, Iowa State University, pers. comm.).  Also known as mixed Poisson regression 

models, these models assume that the conditional distribution of the response is Poisson 

distributed with a random mean, which is dependent on the normally-distributed random 

effects (Weems and Smith 2004).  The inclusion of random effects accounts for over-

dispersion in the response variable.  We considered effects significant at P ≤ 0.05.  For those 

models that yielded a significant interaction between time of season and time of day, we 

conducted further analyses to examine time-of-day effects by season. 
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We used the total number of birds detected at each survey point as the number of 

detections.  We assumed that detection probability was increased in our study by the use of 

call-broadcast surveys (Gibbs and Melvin 1993, Conway and Gibbs 2005).  We also assumed 

constant detection probability across survey sites because sites contained similar habitat and 

because habitats were open with little to inhibit bird detections.   Time of day and time of 

season were categorical variables (1 or 2) corresponding to morning and evening survey 

periods and early and late in the survey season, respectively.  We included wetland size in the 

models because we assumed that larger wetlands would harbor more marsh-birds and make 

the number of detections area-dependent (Conway and Gibbs 2001). 

To account for over-dispersion in the response variable, we included a random effect 

on each individual visit to each wetland (WETLAND*TIME OF DAY*TIME OF SEASON).  

We also included random effects on wetland, survey point, the interaction of wetland and 

time of day (WETLAND*TIME OF DAY), and the interaction of wetland and time of season 

(WETLAND*TIME OF SEASON) to further account for variation in the model.  We 

modeled the number of detections versus fixed effects for four of our focal species.  We 

chose these species to compare results between three breeding species (pied-billed grebe, 

least bittern, and Virginia rail) and a migrant (sora).  Due to the low number of detections 

(<10), we could not model the number of detections for American bittern, king rail, or 

common moorhen.  We chose not to include American coot because many individuals were 

visually detected and their response to call-broadcasts was problematic.  We also modeled 

the number of detections for all rails combined (king rail, Virginia rail, sora, and common 

moorhen) and for all eight species pooled.  Survey points at which no birds were detected 
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during all four visits (n = 406) were not included because these points did not contribute any 

information to the analyses.  

RESULTS 

 We surveyed a total of 56 wetlands (136 points) from both 15 May - 14 June (early 

season) and 15 June - 10 July (late season) 2010 (Figure 1).  The number of detections was 

greater during the early season (n = 379) than during the late season (n = 217) and we 

detected more birds during morning survey periods (n = 306) than during evening survey 

periods (n = 290; Table 1).   

We found significant (P < 0.05) effects of time of season on the number of detections 

for three species (pied-billed grebe, Virginia rail, and sora) and both groups (Table 2).  Birds 

were more vocal early in the survey season than late in the survey season.  For pied-billed 

grebes, we also found significant effects of wetland size (F1, 14.01 = 10.30, P = 0.006), and the 

interaction of time of season and time of day (F1, 219 = 6.04, P = 0.015) on the number of 

detections.  The number of detections for pied-billed grebes was greater at larger wetlands.  

Upon further analysis of the interaction term, we found a significant effect of time of day late 

in the survey season (F1, 19.47 = 7.85, P = 0.011), thus illustrating that pied-billed grebes were 

vocal at all hours early in the survey season but were more vocal during morning hours late 

in the survey season.  For least bitterns, we found no effects of the variables on the number of 

detections.   
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DISCUSSION 

Seasonal differences in detection rates have been observed for several species of 

marsh-birds (Spear et al. 1999, Rehm and Baldassarre 2007).  These differences, however, 

can vary geographically (Rehm and Baldassarre 2007).  In this study, birds vocalized more 

frequently early in the survey season than late in the survey season.  The explanation for this 

finding varies by species.  Pied-billed grebes and Virginia rails are regular breeders in Iowa 

and their peak breeding seasons overlap with the early portion of the survey period.  Virginia 

rails frequently vocalize during the breeding season (Glahn 1974, Conway 1995), but are 

mostly silent during migration (Griese 1980, Kaufmann 1989).  Similarly, pied-billed grebes 

frequently vocalize during the breeding season when establishing territories and during 

courtship (Glover 1953, Muller 1999), but vocalize less frequently outside the breeding 

season depending on geographic location (Palmer 1962, Muller 1999).  We expected the 

distribution of detections of both pied-billed grebes and Virginia rails to be non-linear.  That 

is, birds vocalize frequently during the breeding season, infrequently when on the nest or 

with young, and more often again later in the survey season at the potential start of a second 

nesting attempt.  Gibbs and Melvin (1993) found that the probability of response for both 

pied-billed grebes and Virginia rails peaked from 16 May – 31 May, decreased from 1 June – 

30 June, and then increased again from 1 July – 15 July.  If a similar pattern occurs in Iowa, 

it could diminish our ability to find differences in the detection rate between early and late in 

the survey season.  Detections for both pied-billed grebes and Virginia rails peaked early in 

the survey season and decreased over time with no evidence of an increase late in the survey 

season.    
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Soras are common migrants in Iowa and are infrequent breeders in the northern half 

of Iowa (Melvin and Gibbs 1996).  Soras commonly vocalize during migration (Kaufmann 

1983, 1989, Johnson and Dinsmore 1986).  Therefore, we expected strong seasonal variation 

in detections of this species with a peak early in the survey season and a steady decline 

thereafter.  This explains why the detection rate of soras was greater early in the survey 

season than late in the survey season.   

Our data indicate that time of day did not affect the detection rate of most species of 

marsh-birds in Iowa.  We were surprised by this result because other studies have found that 

vocalization frequencies of marsh-birds vary by time of day (Johnson and Dinsmore 1986, 

Conway et al. 2004, Nadeau et al. 2008).  Variation in vocalization frequency of marsh-birds 

is often attributed to temperature (Spear et al. 1999, Nadeau et al. 2008) because higher 

temperatures during the evening survey period may decrease activity levels of birds (Robbins 

1981).  We found a time-of-day effect on the number of detections for pied-billed grebes 

only, but this effect was significant only late in the survey season.  As expected, the number 

of detections of pied-billed grebes was greater during the morning survey period than the 

evening survey period during late season.  Gibbs and Melvin (1993) also observed that 

detection probabilities of pied-billed grebes were relatively high during morning surveys, 

although no previous studies have compared detection probabilities of pied-billed grebes 

between morning and evening survey periods.  We attribute increased detections of pied-

billed grebes during the morning survey period to weather conditions.  Late in the survey 

season, temperatures ranged from 12.3 – 25.4˚ C during morning survey periods and 19.4 – 

33.0̊  C during evening survey periods with a mean difference of 6.6̊ C.  This suggests that 
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pied-billed grebes are most active and vocal during cooler times of the day (e.g. morning 

hours) late in the season because of generally warmer temperatures during this time of year.  

It is difficult to ascertain why higher evening temperatures affect the detection rate of pied-

billed grebes and not other species.  Pied-billed grebes spend a majority of their time on open 

water, whereas bitterns and rails spend their time in dense, tall stands of emergent vegetation 

(T.M. Harms, personal observation).  Perhaps pied-billed grebes are most active during 

cooler, morning hours because they are more exposed to direct sunlight.  Rails and bitterns 

are protected from the sun by tall vegetation, and therefore can remain active during the 

warmer hours of the day. 

We did not find effects of time of season or time of day on the detection rate for least 

bitterns.  Least bitterns vocalize infrequently (Bogner and Baldassarre 2002) and it is 

debatable whether call-broadcast surveys are effective at increasing detection probabilities of 

these birds.  Some studies have shown that call-broadcasts are effective at eliciting responses 

of least bitterns (Swift et al. 1988, Gibbs and Melvin 1993, Bogner and Baldassarre 2002), 

whereas other studies have shown call-broadcasts to be ineffective (Manci and Rusch 1988, 

Tozer et al. 2007).  Although we did not address the effectiveness of call-broadcasts at 

increasing detections of least bitterns in this study, the number of detections (n=80) was 

relatively low compared to other species.  In addition, Bogner and Baldassarre (2002) 

suggested that call-broadcast sequences consist of >1 minute of least bittern calls to 

effectively stimulate birds to respond.  Our call sequence contained 30 seconds of least 

bittern calls.  The unknown effectiveness of call-broadcast surveys and our small sample size 
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could explain why we did not find any seasonal or time-of-day effects on the number of 

detections of least bitterns. 

The North American Marsh Bird Monitoring Protocol (Conway 2007) suggests a 

survey window of 15 April – 30 May for Iowa based on average minimum temperatures in 

May.  We extended our survey season to 10 July to determine if there was a justification for 

extending the survey window for Iowa.  As a result, we detected nearly half of the total 

number of birds (n=296) after 30 May, illustrating that the survey window for Iowa can be 

extended to increase detections of target species.  Rehm and Baldassarre (2007) found similar 

results in a New York study and also suggested that the survey window be extended to 

incorporate peak detection periods for all species. 

MANAGEMENT IMPLICATIONS 

Interspecific seasonal variation of peak detection periods should be considered when 

conducting call-broadcast surveys, especially when surveying for both breeding species and 

migrants. If time is a limiting factor, surveys should be conducted early in the survey season 

because this is when marsh-birds are most vocal, thus increasing detections of target species.  

Surveys for pied-billed grebes should also be limited to the morning survey period.  In Iowa, 

we suggest extending the survey window past that recommended by the North American 

Marsh Bird Monitoring Protocol to increase the number of detections of marsh-birds.  

Minimally, this period should be extended to 15 June, although the exact date will depend on 

the species being surveyed and the time available for conducting surveys. 
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TABLE 4.1.  Number of detections of marsh-bird species and group by survey period during 

call-broadcast surveys in Iowa, 2010.  

 

Species Early/Morn Early/Eve Late/Morn Late/Eve Total 

Pied-billed grebe   48   54   49 10 161 

Least bittern   22   17   13 28 80 

Virginia rail   54   55   40 36 185 

Sora   35   23     5   1 64 

Rails   95   80   51 38 264 

All species 180 199 126 91 596 
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TABLE 4.2.  Model estimates (SE) for each fixed effect for models to predict site occupancy 

by marsh-bird species and group from call-broadcast surveys in Iowa, 2010.  Significant 

effects (P ≤ 0.05) are italicized 

Species Time of season Time of day Wetland size Season/Day 

Pied-billed grebe      0.91 (0.25)  0.79 (0.25) 0.0084 (0.0026) -0.72 (0.29)1 

Least bittern -0.51 (0.34) -0.45 (0.30) -0.0641 (0.0855)  0.29 (0.44) 

Virginia rail  0.45 (0.19) -0.06 (0.20) -0.0027 (0.0018) -0.20 (0.27) 

Sora  1.98 (0.54)  0.55 (0.63) 0.0004 (0.0033) -0.36 (0.69) 

Rails  0.63 (0.19)  0.04 (0.20) -0.0020 (0.0020) -0.14 (0.24) 

All species  0.66 (0.14)  0.21 (0.15) 0.0016 (0.0023) -0.29 (0.18) 
1The time-of-day effect differed between early season (15 May to 14 June; -0.01 [0.17], P = 
0.954) and late season (15 June to 15 July; 0.76 [0.27], P = 0.011) for this species. 
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FIGURE 4.1.  Location of surveyed wetlands (points) within the Des Moines Lobe (bold 

line) region of Iowa, 2010. 
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CHAPTER V.  GENERAL CONCLUSIONS 

 

 The North American Marsh Bird Monitoring Program has prompted several research 

projects examining population and habitat ecology of secretive marsh-birds, as well as 

ongoing research evaluating the efficacy of call-broadcast surveys for monitoring these birds 

across the U.S.  My study aimed to provide information on the population status and habitat 

associations of secretive marsh-birds in Iowa.  I estimated population density ranged from 

0.019 birds/ha for least bitterns to 0.12 birds/ha for pied-billed grebes.  I concluded that 

density of each species was different in different areas of the state due to contrasting 

microhabitat characteristics.  I argue that distance sampling is a rigorous method that 

provides a precise population estimate, although the potential exists for violating the second 

assumption that birds are detected at their initial location. 

 I found that wetland size was the single habitat characteristic that positively affected 

probability of occupancy of all species.  I also concluded that water depth and percent 

coverage and height of emergent vegetation (specifically cattail) were important 

characteristics affecting wetland occupancy by marsh-birds.  These findings provide valuable 

information about habitat associations of marsh-birds in Iowa and offer guidance to land 

managers regarding wetland restoration and management. 

 Lastly, I determined that response rates of secretive marsh-birds vary between early 

and late in the survey season.  Response rates varied by time of day for pied-billed grebes 

only, although this variation was only evident late in the survey season.  I suggest that marsh-

bird surveys in Iowa be conducted from 15 May to 15 June during both morning and evening 
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to obtain adequate detections for estimating site occupancy and density.  This 

recommendation deviates from currently accepted recommendations to complete marsh-bird 

surveys in Iowa between 15 April and 31 May. 

 Overall, this study increased our general knowledge about population status and 

habitat associations of secretive marsh-birds in Iowa.  Findings from this study will also be 

contributed to the national database to establish large-scale population trends of these birds.  

I hope that information from this study will guide future marsh-bird research and monitoring, 

as well as wetland restoration and management decisions.   
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