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As seen from Figure 4.3, the prediction performance is better when sequence homologs of the

query protein are not excluded from the set of proteins used to generate the repository used for

making the predictions. The best performance is achieved by excluding the proteins with the

same PDB ID as those of the query proteins.

Figure 4.3 Comparison of schemes for filtering out similar proteins from the pre-
diction process. This experiment was performed using PrISEC with the DS188
dataset.

4.4.3 Comparison with two prediction methods based on geometric-conserved lo-

cal surfaces

We compared the three predictors from the PrISE family with the predictors proposed

by Carl et al. in (26; 27). These methods rely on conservation of the geometry and the

physico-chemical properties of surface patches to predict interfaces. In (26), the conserved

regions were extracted from proteins with similar structures. In (27), similar performance was

achieved using conserved regions extracted using local structural alignments. This comparison

was performed using the DS24Carl dataset composed of 24 proteins and generated in (27). In

the case of PrISE family of methods, samples were retrieved from the ProtInDb repository.
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Samples extracted from proteins sharing more than 95% of sequence identity with the query

protein and belonging to the same species were not used in the prediction process. The results

of the experiment, presented in Table 4.1, indicate that each of the three predictors from the

PrISE family outperforms the predictors described in (26; 27). The differences in performances

may be explained by the differences in the prediction techniques. In particular, PrISE family

of predictors, unlike those of Carl et al., exploit the interface / non-interface labels associated

with surface patches that share structural similarity with the surface neighborhood of each

surface residue of the query protein.

Table 4.1 Performance of different methods on the DS24Carl dataset. Performance
measures are computed as the average on the set of 24 proteins. Precision and recall
values for Carl08 and Carl10 were taken from (26) and (27) respectively.

Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Carl08 31.5 35.3 33.3 - - -
Carl10 32.0 34.0 33.0 - - -
PrISEL 45.1 56.2 50.0 69.1 27.1 70.5
PrISEG 53.9 58.7 56.2 75.1 36.8 75.6
PrISEC 58.3 58.3 58.3 77.5 40.6 77.1

Results of a similar experiment excluding samples extracted from homologs of the query

proteins, as well as results of experiments using the ProtInDb
⋂

PQS repository, are presented

in section six of the Appendix A.

4.4.4 Comparison with a prediction method based on protein structural similarity

We compared PrISEC with PredUs (212; 211), a method that relies on protein structural

similarity, using the DS188, DS56bound and DS56unbound datasets. PredUs is based on the

idea that interaction sites are conserved among proteins that are structurally similar to each

other. PredUs computes a structural alignment of the query protein with every protein in a

set of proteins with known interface residues. The alignments are used to extract a contact

frequency map which indicates for each residue in the query protein, the number of interface

residues that are structurally aligned with it. The contact frequency map is then used to predict

whether each residue on the query protein is an interface residue. In (212), the prediction was

performed using a logistic regression function that receives as inputs the counts contained in
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the contact frequency maps. In (211), the logistic regression function was replaced by a support

vector machine (SVM) classifier that uses accessible surface areas and the counts contained in

the contact frequency maps to perform prediction.

In order to perform a fair comparison between PrISE and PredUs, the structural elements

used by PrISE and the structural neighbors used by PredUs were extracted from the same

dataset of proteins. This dataset corresponds to the subset of proteins that are common to

both ProtInDb and PQS which ensures the largest overlap between the proteins used by PredUs

(which relies on the structural neighbors extracted from PDB and PQS) and PrISE (which

relies on the proteins extracted from biological assemblies in PDB and deposited in ProtInDb).

This resulting dataset, used to create the ProtInDB
⋂

PQS repository, includes 55,974 protein

chains derived from 21,786 protein complexes. PredUs predictions were obtained from the

available web server (211). This server allows us to choose the set of structural neighbors to be

considered in the prediction process. Using this feature, we were able to exclude from the sets

of structural neighbors those proteins that were not in the intersection of ProtInDb and PQS

as well as homologs or homologs from the same species.

A first comparison of the PrISE family of predictors and PredUs was carried out using

the DS188 dataset. However, since the SVM used by PredUs was trained using this dataset

(211), it is likely that the estimated performance of PredUs in this case is overly optimistic,

resulting in an unfair comparison with PrISE. We found that in 7 of 188 cases (corresponding

to the PDB Ids and chains 1ghq-A, 1gp2-G, 1t6b-X, 1wq1-G, 1xd3-B, 1z0k-B, and 2ajf-A)

PredUs failed to find structural neighbors, and hence failed to predict interfaces. In contrast,

the PrISE predictors found the structural elements needed to produce predictions for the 188

cases. Predictions including these seven cases are labeled as PrISEC 188 in Figure 4.4, whereas

predictions of PrISEC and PredUs considering the set of 181 proteins are labeled with the suffix

181. The performances of PrISEC in the two cases are similar. PredUs generally outperforms

PrISEC , the best performing predictor from thePrISE family. This result is not surprising

given that the SVM used by PredU s was trained on this dataset whereas PrISE did not have

this advantage.
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Figure 4.4 Comparison of PredUs and PrISEC using the dataset DS188, derived
from the docking benchmark 3.0. (A) performance of predictions from which
homologs from the same species were not used to compute the structural neighbors
and the samples used in PredUs and PrISE respectively. (B) performance of
predictions that did not consider homologs. Both images show results for the 181
proteins that were predicted by PredUs and PrISEC and for the 188 proteins
predicted by PrISEC .

A second comparison of PrISEC and PredUs was performed using the DS56bound dataset.

PrISEC and PredUs generated predictions for all the proteins in this dataset. The precision-

recall curves presented in Figure 4.5 show that when homologs from the same species are

excluded from the collection of similar structures, PrISEC outperforms PredUs, but when

homologs are excluded regardless of the species, the performances of PrISEC and PredUs

are comparable. These results indicate that the use of local surface structural similarity is a

competitive alternative to the use of protein structural similarity for the problem of predicting

protein-protein interface residues.

An evaluation considering additional performance measures is presented in Table 4.2. The

data in this table indicates that PrISEC outperforms PredUs in terms of F1, correlation co-

efficient, or area under the ROC. The values for precision, recall, F1, Accuracy and CC were

computed using the default cutoff values for PrISEC and PredUs.
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Table 4.2 Evaluation of PrISEC and PredUs on DS56bound using different per-
formance measures. The table is divided into two sections depending on which
proteins are excluded from the set of similar structures (First column).

Filter out Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Homologs from PredUs 44.3 39.8 41.9 80.4 30.2 75.1
the same species PrISEC 46.1 45.4 45.7 80.9 34.1 77.6

Homologs PredUs 44.5 38.5 41.3 80.6 29.8 74.9
PrISEC 43.6 42.4 43.0 80.0 30.9 76.3
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Figure 4.5 Comparison of PrISEC and PredUs using the dataset DS56bound, de-
rived from CAPRI. The results in (A) correspond to predictions in which ho-
mologs from the same species were excluded from the collection of samples and the
set of structural neighbors. The results in (B) were obtained excluding homologs
from the sets of similar structures.

A final comparison between PrISEC and PredUs was performed using the DS56unbound

dataset. Three out of the 56 proteins (corresponding to the PDB IDs-chains 1ken-H, 1ken-L,

and 1ohz-B) were not processed by PredUs because no structural neighbors were found. Figure

4.6 shows the precision-recall curves of PrISEC and PredUs on the 53 cases covered by PredUs,

as well as the performance of PrISEC when all the 56 proteins are considered. A comparison

of both predictors using the set of 53 proteins and excluding homologs from the same species,

indicates that PrISEC outperforms PredUs for precision values > 0.4. On the other hand, when

homologs are excluded, the performance of PredUs is better than the performance of PrISEC

for precision values ≥ 0.3. Finally, the performance of PrISEC computed on 56 proteins is,

surprisingly, slightly better than the performance computed on 53 proteins. This suggests that

idea that local structural similarity based interface prediction methods can be effective even in

the absence of globally similar structures in the repository used for making the predictions.

An evaluation of PrISEC and PredUs using additional performance measures is presented

in Table 4.3. PrISEC outperforms PredUs in terms of F1, CC and AUC when homologs from
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Figure 4.6 Comparison of PrISEC and PredUs using the DS56unbound dataset ,
derived from CAPRI. (A) shows the performance achieved after removing ho-
mologs from the same species from the set of similar structures in PredUs and
PrISEC . (B) shows the performances when homologs are excluded. The suffixes
53 and 56 indicate the number of proteins that were used in the experiment.

the same species are excluded from the set of similar structures. When homologs are excluded,

PredUs outperforms PrISEC on the set of 53 proteins predicted by PredUs.

4.4.5 Comparison with other prediction methods

We compared the performances of PrISEC , Promate (139), PINUP(119), Cons-PPISP (31),

and Meta-PPISP (158) using all the proteins in the DS56bound and DS56unbound datasets.

The choice of the predictors used in this comparison was based on the results of a comparative

study in which they were reported to achieve the best performance among the six different

classifiers on two different datasets (213). Promate uses a scoring function based on features

describing evolutionary conservation, chemical character of the atoms, secondary structures,

distributions of atoms and amino acids, and distribution of b-factors. Cons-PPISP’s predictions

are based on a consensus between different artificial neural networks trained on conservation

sequence profiles and solvent accessibilities. PINUP uses an empirical scoring function based

on side chain energy scores, interface propensity and residue conservation. Meta-PPISP uses

linear regression on the scores produced by Cons-PPISP, Promate and PINUP.
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Table 4.3 Evaluation of PrISEC and PredUs on DS56unbound using different per-
formance measures.

Filter out Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Homologs from PredUs 53 43.2 37.2 39.9 81.8 29.4 73.6
the same species PrISEC 53 42.3 42.1 42.2 81.2 31.0 74.8

PrISEC 56 43.7 44.0 43.8 81.2 32.6 75.5
Homologs PredUs 53 42.6 36.8 39.5 81.6 28.8 73.5

PrISEC 53 38.8 37.9 38.4 80.1 26.5 72.9
PrISEC 56 40.5 40.0 40.2 80.2 28.4 73.7
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In the experiments presented in this subsection, we considered the performance of two

PrISEC classifiers according to which proteins were filtered out from the process of extraction

of samples: homologs from the same species as the query protein and homologs regardless

of the species. The scores used to generate the precision-recall curves of Promate, PINUP,

Cons-PPISP and Meta-PPISP were computed using Meta-PPISP’s web server.

The precision-recall curves corresponding to the evaluation of the classifiers on the DS56bound

and DS56Unbound datasets are shown in Figure 4.7. On both the datasets, PrISEC predictors

outperform Meta-PPISP for precision values > 0.35 and achieve performance comparable to

that of Meta-PPISP for precision values ≤ 0.35. Furthermore, PRISEC outperform Promate,

PINUP, and Cons-PPISP over the entire range of precision and recall values.

Figure 4.7 Performance of different classifiers evaluated on the DS56bound (A) and
the DS56unbound (B) datasets. For the PrISE classifiers, “spe.” and “hom.”
show predictions in which samples extracted from homologs from the same specie
and homologs, respectively, has been excluded from the prediction process.

An evaluation considering additional performance measures is presented in Table 4.4. All

the performance measures, with exception of AUC ROC, were computed using threshold values

of 0.56, 0.28, 0.41, 0.34, and 0.34 on the scores generated by Promate, PINUP, Cons-PPISP,

Meta-PPISP, and PrISEC respectively. These threshold values correspond to the default values
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defined in the Meta-PPISP and PrISEC web servers. The results show that the PrISEC

predictors outperform the other predictors on both datasets in terms of F1, correlation coefficient

and area under the ROC.

The results of a experiment using 187 proteins from the DS188 dataset is presented in Figure

4.8. Protein chain 2vis-C was excluded from the experiment given that Promate could not gen-

erate a prediction. When homologs from the same species are excluded, PrISEC outperforms

the other predictors except Meta-PPISP. PrISEC outperforms Meta-PPISP for precision values

> 0.4 and achieves comparable performance to that of Meta-PPISP for precision values ≤ 0.4.

When homologs are excluded, the performance of PrISEC is superior that the performance of

PINUP and Promate. PrISEC outperforms Meta-PPISP and Cons-PPISP for precision values

> 0.5, and is outperformed by Meta-PPISP for precision values ≤ 0.45.

Figure 4.8 Precision-recall curves of different classifiers evaluated on 187 proteins
from the DS188 dataset. For the PrISE classifiers, “spe.” and “hom.” show
predictions in which homologs from the same species and homologs, respectively,
has been excluded from the repository of structural elements.

An evaluation using different performance measures is presented in Table 4.5. According to

this table, the performance of both PrISE predictors is superior that the performance of the
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Table 4.4 Evaluation on the datasets DS56bound and DS56unbound. “PrISEC spe.”
refers to the performance computed after filtering out from the repository samples
extracted from homologs from the same species. “PrISEC hom.” indicates that
samples extracted from homologs were not considered in the prediction process.

Dataset Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Promate 31.9 27.3 29.4 76.7 15.6 63.3
PINUP 37.3 31.9 34.4 78.4 21.7 63.7

DS56bound Cons-PPISP 39.8 36.1 37.9 78.9 25.2 72.6
Meta-PPISP 43.3 25.8 32.3 80.8 22.9 74.4
PrISEC spe. 46.1 45.4 45.7 80.9 34.1 77.6
PrISEC hom. 43.6 42.4 43.0 80.0 30.9 76.3

Promate 28.7 27.3 28.0 76.6 14.0 62.7
PINUP 30.4 30.1 30.2 76.9 16.4 60.0

Ds56unbound Cons-PPISP 37.4 34.5 35.9 79.5 23.8 71.2
Meta-PPISP 38.9 24.0 29.7 81.1 20.2 71.5
PrISEC spe. 43.7 44.0 43.8 81.2 32.6 75.5
PrISEC hom. 40.5 40.0 40.2 80.2 28.4 73.7
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other classifiers in terms of F1 and CC. Furthermore, when homologs from the same species are

excluded, PrISEC outperforms the other classifiers in terms of AUC.

Table 4.5 Evaluation on 187 proteins from DS188. “PrISEC spe.” refers to the perfor-
mance computed after excluding from the prediction process samples extracted from
homologs of the same species that the query proteins. “PrISEC hom.” indicates
that samples extracted from homologs were filtered out from the repository.

Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Promate 36.5 30.3 33.1 77.1 19.5 67.7
PINUP 40.7 34.7 37.5 78.3 24.6 66.0

Cons-PPISP 46.5 30.6 36.9 80.4 26.7 73.2
Meta-PPISP 49.0 26.7 34.6 81.1 26.2 74.6
PrISEC spe. 48.0 43.2 45.5 80.6 33.8 77.2
PrISEC hom. 43.2 38.1 40.5 79.0 27.9 74.2

4.4.6 Prediction performances in the absence of similar proteins

To evaluate the extent to which the performances of PrISEC and PredUs depend on the

degree of homology between the query proteins and the proteins used to extract samples or

structural neighbors, we compare the results obtained using three different sequence homology

cutoffs: 95%, 50% and 30%. The results, shown in Figure 4.9, indicate that PredUs is more sen-

sitive than PrISEC to the lack of similar proteins in the sets used to extract similar structures.

The figure also shows that the performance of PrISEC is competitive with that of Meta-PPISP

even when the repository used by PrISEC is composed by proteins sharing < 30% of sequence

identity with the query proteins.

4.5 Conclusions

We have shown that it is possible to reliably predict protein-protein interface residues using

only local surface structural similarity with proteins with known interfaces.

The experiments comparing the performance of the PriSE family of predictors with the

structural similarity based interface predictors of Carl et al. (26; 27) show that the use of inter-

face / non interface labels of residues in structurally similar surface patches leads to improved

predictions by PrISE. This observation is also supported by the results obtained using Pre-
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Figure 4.9 Performance computed in absence of similar proteins at different sim-
ilarity levels. Figures (A) and (B) show the precision recall curves computed
after excluding from the sets of similar structures homologs (without regarding the
species) sharing ≥ 95% of sequence identity with the query proteins. Similarly,
figures (C) and (D) show the performances after excluding proteins sharing ≥50%
sequence identity, and (E) and (F) display the results after filtering out proteins
with sequence identity ≥ 30%. The precision-recall curves corresponding to the
DS56bound dataset are shown at (A), (C), and (E), and the results computed us-
ing the DS56Unbound dataset are labeled as (B), (D), and (F). Figures (E) and
(F) were computed using 55 and 52 proteins respectively given that PredUs could
not find structural elements for the protein chain 1ynt-L.
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dUs, that implicitly exploits information about non-interface residues reflected in the contacting

frequencies of interface residues.

Surface structural similarity based methods for interface residue prediction may use local

similarity, overall similarity, or a combination of both. PrISEL, which relies on the similarity

between structural elements (i.e. local structural similarity) outperforms random prediction;

PrISEG which relies on the similarity between protein surfaces (i.e. general structural simi-

larity) outperforms PrISEL. This result may not be surprising in light of the influence that

regions outside the immediate local environment have on the conformation of protein com-

plexes. However, our results show that the best predictions are achieved by PrISEC , using a

combination of local and overall surface similarity.

Our results indicate that, in general, PrISEC outperforms several state of the art predictors

such as Promate, PINUP, Cons-PPISP, and Meta-PPISP. Blind comparisons of PrISEC and

PredUs using the same proteins to extract samples and structural neighbors respectively, indi-

cate that PrISEC achieves performance that is superior to or comparable with that of PredUs.

Furthermore, PrISEC is more robust that PredUs at low levels of homology between the query

proteins and proteins in the sets used to extract similar structures, while remains competitive

with Meta-PPISP.

The interface residue prediction methods such as PrISE that use only local surface struc-

tural similarity have an advantage relative to methods that rely on global structural similarity:

The former can produce predictions whereas the latter cannot in the absence of protein with

structures that are sufficiently similar to the structure of the query protein.

Another advantage of the PrISE family of predictors is that the information needed to com-

pute similar structural elements (i.e. residues in the structural elements, accessible surface area

of these residues and their histogram of atom nomenclatures) can be obtained in a reasonable

amount of time. The time required for retrieving the samples associated with a query protein

from a repository of 21,289,060 structural elements extracted from 88,593 protein chains is in

average 90 seconds using a personal computer (Intel Core2 Duo CPU at 2.40GHz, 4MB of RAM

and a hard disk of 232 GB).

We conclude that methods based on local surface structural similarity are a simple yet
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effective approach to the problem of prediction of protein-protein interface residues.
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CHAPTER 5. CONCLUSIONS

The work presented in this thesis focuses on the development of tools and methods for

improving the prediction of protein-protein interaction sites. Advancements in prediction of

protein-protein interaction sites will lead to advances in problems such as prediction and val-

idation of protein function, prediction of protein quaternary structures (i.e. protein docking),

prediction and validation of protein-protein interactions and protein-protein interaction net-

works, identification of hot-spot residues, prediction of epitopes, and drug design.

We introduced ProtInDb, a database of protein-protein interface residues that allows users

to visualize the interaction sites in protein structures deposited in the PDB, and that assists

users in the creation of representative datasets that simplify the processes used for training,

testing, and comparing predictors of interface residues. The format of the data in these datasets

allows users to efficiently store and extract the fundamental information required to identify

interface residues as well as data about the solvent accessibility and the structural neighborhood

of each amino acid residue of proteins of interest. ProtInDb also allows users to download a

copy of the basic information of all the interacting proteins in the PDB, which can be used

to perform comprehensive studies involving interactions between proteins. Such information

includes the protein sequence (derived from structural data), mappings between the position of

each residue in the sequence and in the structure, and flags indicating whether each residue in

a protein is or is not an interface and/or surface residue. ProtInDb supports three definitions

of interface residues, and allows users to define threshold values that determine whether a

residue is or is not an interface residue and whether a residue is or is not on the surface of a

protein subunit. ProtInDb also allows users to select which type of structure should be used to

determine the interaction sites: Asymmetric units, derived directly from experiments performed

to determine the protein structures, or biological assemblies, representing the structure that has
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been shown or is believed to be biologically functional. ProtInDb has been used to construct

representative datasets utilized to train and test diverse predictors of interaction sites, and to

build a benchmarking dataset of bound-unbound conformational B-cell epitopes. ProtInDb also

provides the data required by several predictors of interface residues based on similarity between

proteins (i.e. PS-HomPPI and NPS-HomPPI (202), and PrISE (98)) that benefit from using

the largest amount of information involving interaction sites. ProtInDb is accessible at http://

protindb.cs.iastate.edu.

We proposed PoInterS, a method to predict interface patches based on the outcomes pro-

duced by predictors of interface residues. Prediction of interface patches allows users to focus

their experiments into specific sites on the surface of the protein, which can generate significant

savings in time and resources. PoInterS decomposes the surface of a protein into a series of

patches, ranks them using a scoring function based on the probabilities or the interface/non-

interface labels assigned to every surface residue by predictors of interface residues, and returns

the three patches that are the most likely to belong to the interaction sites of the given protein.

Based on the PoInterS method we implemented PoInterS-SVM, a predictor of protein-protein

interface patches that uses the results generated by a support vector machine predictor of inter-

face residues. Our results indicate that PoInterS-SVM outperforms SHARP 2 and PPI-Pred,

two state-of-the-art predictors of interface patches. The modular nature of the method, based

on the idea that the outcomes generated by any predictor of interface residues can be used to

predict interaction patches, and the experimental results supporting the success of the method

in predicting interaction sites, indicate that the creation of improved predictors of interface

residues will result in more successful predictors of interface patches. PoInterS-SVM has been

implemented as a Web application available at http://pointers.cs.iastate.edu

We introduced PrISE (98), a method for predicting protein-protein interface residues based

on the similarity of small protein regions called structural elements A structural element is

composed of a central residue and its closest residues in a protein structure, and is represented

using data extracted from the atomic composition and the area accessible to the solvent of its

constituent residues. This representation allowed us to create an efficient method to search

and retrieve from a large database of structural elements a set of similar elements to those of

http://protindb.cs.iastate.edu
http://protindb.cs.iastate.edu
http://pointers.cs.iastate.edu


91

a query protein. Each similar structural element is weighted using the idea of contribution

of a protein to a set of structural elements, that counts the number of structural elements in

the protein that are similar to structural elements in the set. The set of weighted structural

elements are used to compute a final score that indicates whether the central residue of every

structural element in the query protein is or is not an interface residue. We created predictors

of interface residues based on the similarity between proteins (PrISEG), the similarity between

protein regions (PrISEL) or a combination of both (PrISEC). Our results indicate that

PrISEC outperforms PrISEG and that PrISEG outperforms PrISEL. Comparisons using

several datasets show that PrISEC outperforms a method based on the similarity between

protein regions, and achieves a performance that is superior or comparable to that of a state-

of-the-art predictor based on the similarity between protein structures (PredUs), and a meta-

predictor (meta-PPISP) of protein-protein interface residues that was selected given its high

performance in several experiments presented in the literature. PrISEC is accessible via Web

server at the URL http://prise.cs.iastate.edu

The results of this research work can facilitate the development of experiments based on or

related to protein-protein interface residues. Biochemists and molecular biologists can use the

predictions generated by PoInterS and PrISE as a guide to performing in vitro or in vivo ex-

periments oriented to find hot spot residues, to gain a better understanding of the mechanisms

involved in protein-protein interactions, and to develop new therapeutic drugs. Bioinformati-

cians can benefit from the tools provided by ProtInDb to visualize protein-protein interface

residues and to create representative datasets of interface residues. The ideas behind PoInterS

and PrISE, as well as their predictions, can also be applied to problems such as prediction

of interactions between diverse macromolecules, prediction of protein function, prediction and

validation of interactions between proteins, molecular docking, and in-silico design of new drugs.

http://prise.cs.iastate.edu
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5.1 Future work

5.1.1 Extending ProtInDb

Two changes would allow ProtInDb to be useful to a larger number of scientists. ProtInDb

could be extended to include information of interaction sites between proteins and DNA, RNA

and small ligands. This would extend the applicability of ProtInDb to different problems con-

cerning interaction between different macromolecules. In addition, including structural infor-

mation of non-interacting proteins (i.e. protein complexes composed of only one subunit) in

ProtInDb would allow the generation of datasets of unbound proteins. This could facilitate the

development of studies such as the evaluation of conformational changes in molecular structures

after formation of complexes, and to carry out more comprehensive evaluations (e.g. assessing

the performance of predictors of interaction sites on bound and unbound proteins).

5.1.2 Prediction of interface residues between different macro-molecules

Although PrISE and PoInterS methods were developed to predict protein-protein inter-

action sites, they could be extended for predicting protein-RNA (157), protein-DNA (45) and

protein-small ligands (112) interaction sites.

5.1.3 Using PrISE and PoInterS to assist biological experiments

Though the performance evaluations of PrISE and PoInterS indicate their effectivity in

predicting interaction sites, it would be interesting to use them to assist scientist in in-vitro

or in-vivo experiments (e.g. in tasks such as selection of target residues for alanine-scanning

mutagenesis experiments oriented to detect hot-spot residues, or the prediction or validation

of interactions in protein-protein interaction networks). In addition to the potential benefits of

using the predictions generated by our methods, this would allow us to gain a better under-

standing of their advantages and limitations, which will result in improvements in the reliability

of their predictions, and to explore alternative applications of our methods.
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5.1.4 Creation of more sophisticated methods to retrieve similar structural ele-

ments in PrISE

The method used by PrISE to retrieve similar structural elements is based on a measure of

the differences in the atomic composition and the accessible surface areas of the query structural

element and another element in the repository of structural elements. Despite this method

proved to be effective and efficient, it ignores some physico-chemical properties and relationships

between the atoms or residues in a structural element that could contribute to retrieve a most

suitable set of similar structural elements. For example, the selection of a subset of the atoms

included the histogram of atom nomenclatures or the use of weights associated with each atom

in the histogram (e.g. according to the relative accessible surface area or the average charge of

the atom and its neighbors), or the consideration of topological relationship between functional

groups of residues (167; 107), could lead into a new representation of structural elements that

produces a more accurate prediction of interaction sites.

5.1.5 Partner-specific versions of PrISE and PoInterS

PrISE and PoInterS are non-partner specific prediction methods, in the sense that they

predict interface residues and interaction sites for a query protein without considering any in-

formation of its specific interacting protein partner(s). However, applications such as protein

docking, prediction and validation of protein-protein interactions, and development of drugs

that disrupt interactions between particular proteins will benefit of partner-specific prediction

methods, that focus on predicting the interaction sites between two or more specific proteins.

Diverse partner-specific methods has been devised in the literature, including a method that

computes the interaction sites from sets of homo-interologs (i.e. complexes containing interact-

ing proteins that are similar to the query proteins) (202), and other that use machine learning

techniques to infer a set of pairs of interaction sites in the partner proteins that are most likely to

interact (36; 195; 2). Similar approaches can be developed for PrISE and extended to PoInterS

using a database of interacting structural elements that can be extracted from ProtInDb.
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5.1.6 Searching for proteins with similar structure

Retrieving proteins with similar structures from the PDB is a computational intensive task

(101) with applications in problems such as protein design, analysis and prediction of protein

functions, prediction of protein structures, and drug discovery. The concept of local structural

similarity devised for PrISE could be used to create a method to efficiently retrieve from the

PDB proteins with similar structure or substructures to that of a query protein. This hypothesis

is supported by the existence of methods that retrieve structural neighbors (38; 23) or similar

substructures (198; 18) based on protein segments, and by the similarity in the performances

of PrISEC with PredUs, based on local structural similarity and protein structural similarity

respectively. Such method could serve (i) to discover a reduced number of proteins with similar

structures to that of a query protein; (ii) as a filter to decrease the number of pairwise structural

alignments required to find proteins with similar structures by excluding proteins with low

similarity; or (iii) to retrieve a set of similar substructures for a query substructure. An efficient

and reliable method to perform search of similar protein structures will produce a significant

impact on the problems mentioned above.
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

This document provides additional information about the process used for building the

PrISE family of predictors of protein-protein interface residues as well as supplementary results

of some of the experiments described in chapter 4. The first two sections describe details about

the histograms of atom nomenclatures and the constraints used to retrieve similar structural

elements from a repository of structural elements. The next section describe the dataset and

the experiments used for tuning the parameters of PrISEG, PrISEL, and PrISEC . The

remaining sections show the results of complementary experiments to the reported in chapter

4 performed on different datasets.

A.1 Atom nomenclatures

A list of the 36 atom nomenclatures used to build the histograms of atom nomenclatures

(HAN) is presented in Table A.1. These nomenclatures were extracted from PDB.

Table A.1 Atom nomenclatures used to build the histograms of atom nomencla-
tures.

C CA CB CD CD1 CD2
CE CE1 CE2 CE3 CG CG1
CG2 CH2 CZ CZ2 CZ3 N
ND1 ND2 NE NE1 NE2 NH1
NH2 NZ O OD1 OD2 OE1
OE2 OG OG1 OH SD SG

A.2 Retrieving similar structural elements - additional details

As explained in the methods section of chapter 4, we defined four constraints that every

structural element retrieved from a repository should comply to be considered similar to a query
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structural element:

“(i) qr and qs must not be from the same protein complex; (ii) the central residues

r and s of the structural elements qr and qs respectively, must be identical; (iii)

the difference between the accessible surface areas of r and s should be ≤ 5%

of the maximum accessible surface area of residues identical to r ; and (iv) the

differences between the accessible surface areas of qr and qs must be ≤ 15%

of the maximum estimated accessible surface area of any structural element

centered on a residue identical to r ”.

Constraint (iii) requires the computation of the difference between the accessible surface

area of the central residues r and s of two structural elements qr and qs respectively. This

difference, denoted by dASAres, is computed as:

dASAres(r, s) =
|asaRes(r)− asaRes(s)|

maxAsaRes(r)−minAsaRes(r)
× 100%

where asares(r1) denotes the accessible surface area of the residue r1, and minAsaRes(r1) and

maxAsaRes(r1) denotes the experimental minimum and maximum accessible surface area of

the residue r1 respectively1. The values of maxAsaRes and minAsaRes were estimated from

a dataset of 400 proteins randomly selected from ProtInDb 2, a database of protein-protein

interface residues. the lower the values of dASAres, the highest the similarity between the

accessible surface areas of the residues r and s.

Constraint (iv) requires the computation of the difference between the accessible surface

areas of two structural elements q1 and q2. This difference, denoted by dASAse, is computed

as:

dASAse(q1, q2) =
|asaSe(q1)− asaSe(q2)|

maxAsaSe(q1)−minAsaSe(q1)
× 100%

where asaSe(q) denotes the summation of the accessible surface area of the surface atoms in the

structural element q. An atom is considered to be a surface atom if its accessible surface area

is > 0 Å2. MinAsaSe(q) and maxAsaSe(q) represent the estimated minimum and maximum
1Note that according to constraint (ii) residue r is identical to residue s.
2http://protindb.cs.iastate.edu

http://protindb.cs.iastate.edu
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accessible surface areas of structural elements centered on a residue identical to the central

residue of q. These two values were estimated from the dataset of 400 proteins extracted from

ProtInDb. The interpretation of dASAse is similar to the interpretation of dASAres (i.e. the

lowest the value of dASAse(q1, q2), the highest the similarity between the accessible surface

areas of the structural elements q1 and q2).

A.3 Tuning method

We tuned the parameters of the PrISE family of predictors in two steps. The goal of the

first step was to efficiently retrieve structural elements from the repository of structural elements

for all the structural elements in a query protein. The goal of the second step was to maximize

the prediction performance. We use the ProtInDb repository of structural elements to perform

these experiments.

A.3.1 Tuning dataset

The tuning dataset is composed of 50 chains (see Table A.2) with more than 40 residues,

resolution ≤ 2.5 Å, and sequence identity ≤ 15%. This dataset has 10,379 residues from which

1,946 are interface residues.

Table A.2 List of the 50 protein chains included in the tuning dataset.
1df4A 1risA 2dkoB 2qeeA 3fedA
1dqzA 1s72H 2dw5A 2vn6A 3h7hB
1dysA 1smxA 2hdiB 2vtbA 3hf5A
1euvA 1t0bA 2iihA 2ww2A 3hm4A
1i2cA 1u5kA 2izzA 2xdpA 3k94A
1j34C 1u9dA 2jkhL 2zewA 3kb4A
1kqfC 1uuyA 2o2vA 3ag3I 3kz5B
1kyfA 1v05A 2o70A 3bm3A 3m9lA
1pytA 1yrkA 2odeA 3ct6A 3mcwA
1q7lB 2cchB 2pmuA 3d32B 3pg6A
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A.3.2 Representative set of similar structural elements

We wanted to efficiently obtain a set of similar structural elements (samples) from the

repository that allows us to perform predictions for all the structural elements in a query

protein. To achieve this goal, we performed a grid search using values equivalent to 5%, 10%

and 15% on the parameters dASAres and dASAse. We found that using dASAres ≤ 5%

and dASAse ≤ 15% we can retrieve samples for all the structural elements in the dataset. The

threshold of 5% on dASAres allows us to obtain samples whose central residues are as similar as

possible to the central residue of a query structural element. The threshold of 15% on dASAse

allows us to include some flexibility to account for conformational changes in residues in the

fringe of the structural elements whereas minimizes the potential problem of lack of samples for

query proteins not included in the tuning dataset.

A.3.3 Performance tuning

We analyzed the impact of different factors in the performance of the PrISE family of

predictors that extracted samples with dASAres ≤ 5%, and dASAse ≤ 15%. We evaluated

several metrics of distance between histogram of atom nomenclatures as well as several schemes

used to assign weights to the samples and to find the number of samples that maximized the

performance of the predictions.

A.3.3.1 Evaluation of distance metrics for histogram of atom nomenclatures

We evaluated six different metrics of distance between histograms selected from a survey

presented in (28): Inner product, fidelity, Euclidean distance, city block distance, symmetric

Kullback–Leibler divergence, and symmetric Kullback–Leibler divergence with Laplace esti-

mates3. We predicted a residue as an interface if the majority of the central residues of the top

50 samples (according to each metric) are interface residues. The results of these experiments,

presented as precision-recall curves in Figure A.1, indicate that predictions using the city block

and the Euclidean metrics outperform predictions using the other metrics. However the per-

3The Laplace estimates add 0.0001 to each bin of the HAN. This allows to perform comparisons between
empty and non-empty bins in the histograms of the query structural element and a sample using Kullback–Leibler
divergence.
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formance achieved using city block distance is slightly better that the same using Euclidean

distance in the central part of the curves. Hence, we selected the city block metric to compute

the distances between histogram of atom nomenclatures (DHAN).

Figure A.1 Prediction results using majority vote on the top 50 samples according
to different definitions of distance between histogram of atom nomen-
clatures.

A.3.3.2 Evaluation of different schemes to assign weights to the samples

We performed several experiments to evaluate different alternatives to assign weights to

the samples and to find an adequate number of samples that maximized the performance of

the prediction in the tuning dataset. These experiments were performed with dASAres ≤ 5%,

dASAse ≤ 15%, and using the city block metric for comparing distances between histograms of

atom nomenclatures.

To set a base case for the comparisons presented in this subsection, we performed predictions

using majority vote on the top n unweighted samples according to the ordering determined by

the values of DHAN. The results of these experiments, shown in Figure A.2, indicate that the

prediction performance is not significantly affected by the number of unweighted samples.
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Figure A.2 Prediction results using majority vote with different number of un-
weighted samples.

A second experiment was performed using majority vote on samples weighted using the

normalized DHAN as:

w(s, q) = 1−
DHAN(s, q)

maxr∈S(Q),q1∈Sr ,{DHAN(q1, r)}

where s is a sample associated with the query structural element q, S(Q) represents the set of

all the structural elements of a query protein Q, and Sr represents the set of all the samples

associated with a query structural element r. The normalization term corresponds to the largest

DHAN between any structural element in a query protein and its associated samples. Hence,

samples with lower DHAN values are assigned larger weights. The results of this experiment,

presented in Figure A.3, indicate that the best performance was achieved using the top 20 to

30 samples. A comparison between these results and the results presented in Figure A.2 shows

that the best performance was achieved when the samples were weighted using DHAN.

The following experiments evaluated the weighting schemes proposed for each member of

the PrISE family of predictors. For PrISEG, the weight of each sample extracted from

protein p (described by equation (4.1) in the methods section in chapter 4) is computed as

the total number of samples extracted from p. Hence, samples extracted from proteins with

higher general structural similarity to the query protein (according to the number of samples)
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Figure A.3 Prediction results with different number of samples and using majority
vote on samples weighted using the city block distance between his-
togram of atom nomenclatures.

are assigned larger weights. For PriSEL (see equation (4.2) in chapter 4), the weight of a

sample extracted from protein p is computed as the number of samples extracted from p that

are associated with the structural elements in a region surrounding the query structural element

(i.e. local similarity). The PrISEC predictor (equation (4,3) in chapter 4), weights each sample

using information derived from the combination of local and general similarity.

The results of an evaluation of PrISEG using different number of samples are presented

in Figure A.4. These results indicate that the best prediction was achieved using 100 to 200

samples.

On the other hand, the best results using PrISEL are achieved using as few as 50 samples,

as presented in Figure A.5.

The results of experiments using PrISEC presented in Figure A.6 show that the prediction

performances were similar when more than 300 samples were used. We decided to use 500

samples, which produced slightly better precision than the other alternatives for recall values

between 0.6 and 0.75.
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Figure A.4 Prediction results using different number of samples and general con-
tribution (i.e. PrISEG).

A comparison of the best results derived from all the previous experiments, as well as the

curve computed from a randomized prediction, are shown in Figure A.7. The randomized

prediction was achieved by randomly shuffling the interface/non-interface labels of the samples

in the repository of structural elements, and performing prediction using samples weighted

by combined contribution. From the figure it is possible to deduce that (i) all the prediction

schemes are superior than random predictions, (ii) predictions generated using weighted samples

are better than predictions produced using unweighted samples, (iii) schemes that incorporate

general contribution produces better results than prediction based only in local contribution,

and (iv) the best performance is achieved using the contribution scheme that combines local

and general information.

As a result, the experiments described in chapter 4 were performed using the top samples

based on the city block metric for DHAN, differences ≤ 5% between the accessible surface areas

of the central residues of the samples and the query structural elements, and differences ≤ 15%

between the accessible surface areas of the samples and each query structural element. The
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Figure A.5 Prediction results using set of samples of different size and local contri-
bution (i.e. PrISEL).

number of samples used by PrISEG, PrISEL, and PrISEC were set to 200, 50, and 500

respectively.

A.4 Selection of a threshold value for performing classification

The PrISE family of predictors produce a probability that indicates the likelihood of each

residue on the surface of the protein of being an interface residue. The selection of a threshold

value on this probability allows to label each residue as interface / non-interface. The lower the

threshold value, the more residues are labeled as interfaces. We used the results of the PrISEC

predictor presented in Figure A.7 to select a threshold value of 0.34, which produced predictions

with similar precision and recall values. This value was used as default for all the predictors of

the PrISE family throughout the experiments presented in chapter 4.

A.5 Additional comparisons of PrISEL, PrISEG and PrISEC

The performances of PrISEL, PrISEG and PrISEC on the DS24Carl, DS56bound and

DS56unbound datasets are shown in Figures A.8 to A.10. Samples extracted from homologs of

the same species than the query proteins were filtered out from the repository of structural ele-

ments. In terms of performance, the precision recall curves indicate that random < PrISEL <

PrISEG ≤ PrISEC .
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Figure A.6 Prediction results using number of samples and combined contribution
(i.e. PrISEC).

Figure A.7 Prediction results using different weighting schemes. The number in
the labels indicates the number of samples used for prediction.

An example of the relationship between the scores of PrISEL, PrISEG and PrISEC , and

the actual interface/non-interface labels for some residues in the protein 1ohz-B is illustrated

in Figure A.11. From this figure is clear that PrISEC is successful correcting some erroneous

predictions generated by both PrISEL and PrISEG (e.g. residues 19, 25, and 26) or by only
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Figure A.8 Comparison of PrISEL, PrISEG, and PrISEC using the dataset
DS24Carl.

Figure A.9 Comparison of PrISEL, PrISEG, and PrISEC using the dataset
DS56Bound.

one of them (e.g. amino acids 2, 18, and 24). PrISEC sometimes generates wrong predictions

in cases where PrISELor PrISEG make correct predictions (e.g. residues 6, 11, 14, and 20).

However, our experimental results indicate that the number of errors fixed by PrISEC exceeds

the number of errors it introduces.
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Figure A.10 Comparison of PrISEL, PrISEG, and PrISEC using the dataset
DS56Unbound.

A.6 Additional evaluation of the impact of homologs of the query protein

in the predictions

The impact caused on the predictions by filtering out from the repository samples derived

from sequence homologs of the query proteins is presented in Figures A.12 to A.14. This

evaluation was performed using PrISEC on the DS24Carl, DS56Bound and DS56Unbound

datasets. These figures show that the prediction performances are lower when samples extracted

from homologs of the query proteins are filtered out from the repository of structural elements.

A.7 Additional comparison with two prediction methods based on

geometrical conserved local surfaces

A comparison of the predictors of the PrISE family with the methods presented in (26; 27)

using the DS24Carl dataset and excluding from the repository of structural elements samples

extracted from homologs (without regarding the species) is presented in Table A.3. According to
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Figure A.11 Example of the scores generated by PrISEL,P rISEG, and PrISEC . This
figure show (in the vertical axis) the score generated by PrISEL,P rISEG, and
PrISEC as well as the actual interface residues for the first 28 residues (shown in
the horizontal axis) in the sequence of the protein chain 1ohz-B. The horizontal red
line signals the threshold computed on the scores (0.34) to differentiate between
interfaces and non-interfaces.
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Figure A.12 Performance of PrISEC with DS24Carl using three schemes for exclud-
ing similar proteins.

Figure A.13 Performance of PrISEC with DS56Bound using different schemes for
excluding similar proteins.

this table, all the members of the PrISE family outperform the classifiers presented in (26; 27)

in terms of precision, recall, and F1.

We also evaluated the performance of the PrISE family of predictors using the ProtInDb

and the ProtInDb
⋂

PQS repositories of structural elements. The results of these compar-

isons, shown in Tables A.4 and A.5, indicate that predictors that use samples extracted from the

ProtInDb repository slightly outperform predictors that extract samples from the ProtInDb
⋂

PQS

repository.
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Figure A.14 Performance of PrISEC with DS56Unbound using several schemes for
excluding similar proteins.

Table A.3 Performance of different methods on the DS24Carl dataset. Performance
measures are computed as the average on the set of 24 proteins. Precision and recall
values for Carl08 and Carl10 were taken from (26) and (27) respectively. Samples
derived from homologs of the query proteins were excluded from the ProtInDb
repository.

Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Carl08 31.5 35.3 33.3 - - -
Carl10 32.0 34.0 33.0 - - -
PrISEL 41.1 52.3 44.1 66.3 21.1 66.7
PrISEG 45.6 48.6 45.4 69.9 24.0 68.8
PrISEC 48.7 46.4 45.8 72.2 26.3 69.2

A.8 Abbreviations

dASAres - Difference between the accessible surface area of the central residues and of two

structural elements.

dASAse - Difference between the accessible surface area of two structural elements.

DHAN - distance between two histograms of atom nomenclatures.

Sample - a structural element retrieved from a repository of structural elements.
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Table A.4 Performance of PrISE predictors using different repositories of struc-
tural elements and excluding homologs. Performance measures are computed
as the average on the set of 24 proteins in the DS24Carl dataset. Samples extracted
from homologs (without regarding the species) were excluded from the prediction
process. The column “ProtInDb” indicates whether samples were extracted from
the ProtInDb repository (marked with a tick), or from the ProtInDb

⋂

PQS repos-
itory.

Predictor ProtInDb Precision % Recall % F1 % Accuracy % CC % AUC %
PrISEL X 41.1 52.3 44.1 66.3 21.1 66.7

41.0 50.7 43.3 66.6 19.2 66.6
PrISEG X 45.6 48.6 45.4 69.9 24.0 68.8

43.4 47.7 43.8 69.3 21.2 67.3
PrISEC X 48.7 46.4 45.8 72.2 26.3 69.2

45.5 47.7 45.0 70.4 23.4 69.5

Table A.5 Performance of PrISE methods using different repositories and excluding
homologs of the same species. The performance measures were computed as the
averages on the proteins in the DS24Carl dataset. Samples extracted from homologs
from the same species than the query proteins were filtered out from the prediction
process. The “ProtInDb” column indicates whether the samples were extracted
from the ProtInDb repository (marked with a tick), or from the ProtInDb

⋂

PQS

repository.
Predictor ProtinDb Precision % Recall % F1 % Accuracy % CC % AUC %
PrISEL X 45.1 56.2 50.0 69.1 27.1 70.5

46.3 55.7 48.6 69.9 26.8 71.0
PrISEG X 53.9 58.7 56.2 75.1 36.8 75.6

51.6 56.7 52.5 74.0 33.1 74.3
PrISEC X 58.3 58.3 58.3 77.5 40.6 77.1

54.4 58.4 54.8 75.5 36.6 76.2
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