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Figure 4: Plots of four indices on very noisy dataset ds4.  

When adding the non-Gaussian noise by switching the data in different classes, the 

results keep the same in ds8 – ds25 in comparison with their base datasets. The BK, DU, and 

SI indices find the correct number of groups in ds8 – ds13. Unfortunately, in ds14 – ds25, the 

DU and SI indices obtain four instead of three.  

  BK CH DU SI Description 

ds8 – 13 3 - 3 3 Adding non-Gaussian noise 

ds14 – 19 3 - 4 4 20% noise+Occur.+cat. non-Gaussian  

ds20 – 25 3 - 4 4 20% noise+Occur.+real non-Gaussian 

     
ds26 4 - - - Relax categorical variables  

ds27 3 - 3 3 Relax numeric variables  

ds28 3 - 3 - Relax Cat. 1 

ds29 3 - 3 - Relax Cat. 2 

Table 22: Estimated numbers of clusters by four validity indices (continued).  

When relaxing some attributes, from the result of ds26 in Table 22, these methods are 

not good at handling pure numeric attributes since the BK index catches four and other three 

fail. On the contrary, three indices can better handle pure categorical attributes as seen in 

ds27.   
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The above two tables show that the BK index is more accurate than the DU and SI 

indices. The CH index is not capable of handling the synthetic datasets because the plot is 

non-decreasing with respect to k, meaning we cannot find a maximum number. Three indices 

handle perfectly for the well-separated dataset without adding noise. However, the BK index 

outperforms the DU and SI indices when datasets become noisy. The non-Gaussian noise 

seems no much effect on the indices. The weakness of the indices is the ability to deal with 

pure numeric datasets.  

4.4.2  Real-world Datasets 

We work with the six real datasets described in the preceding chapter. The Iris and 

Iris-Disc datasets consist of three classes. One type of Iris is linearly separable from the other 

two, but those two overlap. As a result, the index will be tested to determine whether it can 

properly deal with overlapping clusters. The DNA-nominal dataset demonstrates a sub-

cluster hierarchical structure where three clusters (ie boundary, ei boundary, and no 

boundary) fall into two pairs (with or without boundary). This dataset is then used to probe 

whether the index could recognize the sub-cluster hierarchical structure.   

In a similar way, we use the six corresponding trees derived in Chapter 3, and 

calculate the validity indices for the six real datasets, B(k), with respect to k from two up to 

18, and plot the results in Figure 5. 

The correct number of the true clusters and the estimated numbers of clusters by the 

four indices for the six real datasets are provided in Table 23. The results favor the BK index 

out of the four indices. The BK index obtains the correct number of clusters for Heart 

Disease, Vote, Austrian Credit and DNA-nominal datasets; but for Iris and Iris-disc datasets, 

it ignores the two overlapping clusters and only catches two types of Iris. 
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Figure 5: B(k) for six real-world datasets. 

Dataset # Cluster (true) BK CH DU SI 

Heart Disease  2 2 2 - 2 
Iris 3 2 - 2 2 

Iris-Disc 3 2 - - - 

Vote 2 2 2 2 2 
Aus-Credit 2 2 2 3 3 

DNA-nominal 3 3 2 2 2 

Table 23: Estimated numbers of clusters by four validity indices for real datasets. 

All of the cluster validation methods cannot catch three types of Iris and fail to detect 

the two overlapping clusters, but obtain the true class number of the Vote dataset. All validity 

indices except the DU index capture the correct group of patients in the Heart Disease 

dataset. For the Austrian credit dataset, the BK and CH retrieve the correct number; by 

contrast, the DU and SI estimate one more cluster. The DNA dataset has a cluster hierarchy 

where some clusters are closely grouped together. Only the BK index obtains the correct 

number of DNA dataset, while other three confuse the subclass structure and get two rather 

than three.   



51 

 

 

Figure 6: Plots of four indices on Heart Disease. 

 

Figure 7: Plots of four indices on Iris. 
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Figure 8: Plots of four indices on Iris-Disc. 

 

Figure 9: Plots of four indices on Vote. 
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Figure 10: Plots of four indices on Australian Credit. 

 

Figure 11: Plots of four indices on DNA. 
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4.4.3  Preprocessed Real Datasets 

In this section, we conduct a comparative study of the four indices on the series of 

datasets generated by data preprocessing on the six real-world datasets, and especially, focus 

on the datasets that achieve the most accuracy when using the co-occurrence distance, which 

are indicated in the second column in the tables (Table 24 – Table 28) in this section. The 

next four columns show the estimated numbers of clusters by four indices; and the last 

column presents brief description for each dataset. As usual, -‘s represent the failed methods. 

The bold font denotes the value equal to the true number of classes.  

4.4.3.1  Iris Dataset 

There are three types of Iris in the Iris datasets. The BK, CH, and DU indices only 

capture two types in the original dataset. However, for the two datasets of interest, namely, 

Iris 2 and Iris 5, the BK index identifies the number correctly, but all other indices fail.   

   BK CH DU SI Description 

Iris  2 - 2 2  

Iris 1  2 - 6 7 Discretize SW and SL; PW, PL 

Iris 2 √ 3 - 5 5 Discretize PW and PL; SW and SL 

Iris 3  2 - - - Four real and four categorical Attr.  

Iris 4  3 - - 6 Discretize SW and SL  

Iris 5 √ 3 - - 5 Discretize PW and PL  

Table 24: Estimated numbers of clusters by four validity indices for Iris. 

The plots of four indices present some details. For instance, the DU index on Iris 2 

shows the hard decision between 2 and 5 while the SI index is confused among 3 – 6.  
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Figure 12: Plots of four indices on Iris 2. 

4.4.3.2  Vote Dataset 

All numbers of clusters for these vote datasets caught by the BK index are correct. 

However, from Table 25, other three indices almost fail to find the proper number. 

   BK CH DU SI Description 

Vote  2 - 2 2  

Vote 1 √ 2 - - - Significant Attr. (C3, C4) 

Vote 2 √ 2 - - - Significant Attr. (C4, C8) 

Vote 3 √ 2 - 7 - Significant Attr. (C3, C4, C5) 

Vote 4  2 - - - Significant Attr. (C3, C4, C5, C8)  

Vote 5  2 2 - 2 The nine weakest Attr.  

Vote 6  2 - 3 - The four Attr. among the weakest  

Table 25: Estimated numbers of clusters by four validity indices for Vote. 
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Figure 13: Plots of four indices on Vote 2. 

4.4.3.3  Heart Disease Dataset 

Only the BK index captures the correct number of clusters for all constructed datasets 

based on the Heart Disease dataset. By contract, from Table 26, other three indices almost 

fail to find the proper number. 

   BK CH DU SI Description 

Heart  2 2 - 2  

Heart 1 √ 2 3 - - Significant Attr. (C4, C8, R3, R5) 

Heart 2 √ 2 - 6 7 Significant Attr. (C4, C8, R3, R4, R5) 

Heart 3  2 - 6 7 C2, C4, C5, C8, R1, R2, R3, R4, R5 

Heart 4  2 2 3 - All categorical attributes 

Heart 5 √ 2 - - 2 All numeric attributes 

Table 26: Estimated numbers by four validity indices for Heart Disease. 
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Figure 14: Plots of four indices on Heart 1. 

4.4.3.4  Australian Credit Dataset 

The BK and CH indices have good performance on datasets related to the Australian 

Credit data. They detect the correct number of clusters for all datasets except Aus 5 dataset, 

which is very noisy since the highest clustering accurate rate in Aus 5 is 68.12% compared to 

84.78% in original dataset (Aus). The corresponding accuracy can be found in Section 3.5.4.   

   BK CH DU SI Description 

Aus √ 2 2 3 3  

Aus 1  2 2 3 3 C2, C4, C5, C6, C8, R3, R4 

Aus 2 √ 2 2 2 - C2, C3, C4, C5, C6, C8, R3, R4 

Aus 3 √ 2 2 2 - C2, C3, C4, C5, C6, C8 

Aus 4 √ 2 2 5 - All categorical attributes 

Aus 5  6 - - 2 All real attributes 

Table 27: Estimated numbers by four validity indices for Australian Credit. 
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4.4.3.5  DNA-nominal Dataset 

The BK index is able to catch the correct number of datasets related to the DNA data. 

On the other hand, the CH, DU, and SI indices find two subclasses of DNA in all datasets 

except DNA 3. However, as could be seen in Figure 15, the estimated numbers of the other 

three indices for DNA 3 are not stable and easily confused since the values on 2 and 3 are 

very close in the three plots. If some redundant information or noise is introduced, for 

instance, adding attribute 1, 53, 55 and 57, the three indices are not able to determine the 

proper number and catch two rather than three.   

   BK CH DU SI Description 

DNA √ 3 2 2 2  

DNA 1  3 2 2 2 First 12 most significant Attr.  

DNA 2 √ 3 2 2 2 First 38 most significant Attr.  

DNA 3 √ 3 2 3 3 All Attr. except C1,C53,C55,C57 

Table 28: Estimated numbers of clusters by four validity indices for DNA. 

 

Figure 15: Plots of four indices on DNA 3. 
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4.5  Summary 

The proposed algorithm is performed on some synthetic and real-world datasets with 

various characteristics. The results show it is efficient not only to cluster a dataset having 

mixed types of features, but also to determinate the best number of classes. The BK index 

presents an impressive result in comparison with the DU, CH, and SI indices.  

Especially, we provide the solution to preprocess the mixed data according to the 

ranks of the importance for each attribute and properties of hierarchical clustering with the 

co-occurrence distance. As a result, the reduced mixed datasets are more applicable to be 

analyzed by the proposed algorithms in terms of not only the capability of achieving a higher 

accurate rate, but also the ability to find the best number of groups.  
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CHAPTER 5 CONCLUSION  

Many applications give rise to databases with mixed data, that is, variables that take 

both numerical and categorical attributes. As one example, a surveillance database of 

criminal activities might contain numeric attributes such as age, time of the day, and number 

of the offenders, as well as categorical attributes like gender, location, and weapons used 

(Yang and Olafsson, 2011). It is often of interest to find natural clusters of instances in such 

databases, but unfortunately the majority of clustering algorithms are designed for only one 

data type and incapable of handling data containing both types directly.   

Motivated by the need to solve mixed data type clustering problems and the current 

gap in the literature regarding methods for such problems, in this dissertation we propose and 

demonstrate a clustering framework that is effective and yields important practical results. 

This framework has two main components. First there is the actual clustering algorithm, 

which is based on traditional hierarchical clustering and outputs a tree structure containing 

multiple actual cluster solutions. For measuring similarly, we choose the recently proposed 

co-occurrence measure. We compare this measure with three other well-known distances 

measurements capable of handing mixed data when incorporated into agglomerative 

hierarchical clustering. These measures are the Goodall distance, the k-prototype distance, 

and the optimal weight distance. We also identify certain limitations of applying hierarchical 

clustering with a co-occurrence distance and propose a solution in which the co-occurrence 

distance would outperform other distance measures.    

 The second component of the framework is to define a validity index to find an 

optimal number of clusters in mixed datasets and integrate it with the hierarchical clustering. 

The performance of the so-called BK index is compared to other known validity indexes, 

namely the Calinski-Harabasz index (CH), the Dunn index (DU), and the Silhouette index 

(SI), and the results are favorable for using the BK index for cluster validation in mixed data.  

By testing the proposed approach on both standard benchmark datasets from the UCI 

repository and, synthetic datasets with various characteristics, we demonstrate the method 

not only effectively retrieves the true class in terms of prediction accuracy, but also is 

capable of effectively finding the true number of clusters. 
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In conclusion, our framework addresses two important issues regarding clustering 

mixed datasets. One is how to search for the optimal number of clusters, which is important 

as this is unknown in many applications. We extend the BK index to both data types. Thus, it 

would be used to quantify clustering results from the hierarchical algorithm. The BK index 

outperforms other three indices, namely, the CH, DU, and SI indices in comparison with the 

true numbers of clusters. The other issue is how to group the objects “naturally” given the 

number of cluster. We use the co-occurrence distance to measure the dissimilarity since this 

distance is as effective as other distances capable of handling mixed data such as the Goodall, 

k-prototype and optimal weighted distances.   

All of the research problems considered in this dissertation address critical issues for 

clustering mixed-type attributes in data mining applications. Clearly the research in this area 

is far from complete. Some details would be improved such as using optimal techniques to 

discretize the numeric attribute rather than the five-equal width method. Feature selection in 

the proposed algorithm is optional and exploratory, but was found to be promising. However, 

providing an adaptive feature selection technique to systemically and dynamically determine 

which attributes should be included as a preprocessing step prior applying learning 

algorithms is also another challenge. In addition, as instances accumulate, scalability 

improvement will be under consideration, which leads to solving optimization problems on 

instance selection. On the other hand, feature selection and instance selection may provide 

valuable information about the objects of interest.  
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