Metal-catalyzed and aryne-mediated multicomponent approaches to heterocycles

Nataliya Alexandrovna Markina
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd
Part of the Organic Chemistry Commons

Recommended Citation
Markina, Nataliya Alexandrovna, "Metal-catalyzed and aryne-mediated multicomponent approaches to heterocycles" (2012).
Graduate Theses and Dissertations. 12655.
http://lib.dr.iastate.edu/etd/12655
Metal-catalyzed and aryne-mediated multicomponent approaches to heterocycles

by

Nataliya Alexandrovna Markina

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Organic Chemistry

Program of Study Committee:
Richard C. Larock, co-Major Professor
Thomas J. Greenbowe, co-Major Professor
Malika Jeffries-EL
Yan Zhao
George A. Kraus

Iowa State University
Ames, Iowa
2012

Copyright © Nataliya Alexandrovna Markina, 2012. All rights reserved.
To my husband and my friend, Anton
TABLE OF CONTENTS

LIST OF ABBREVIATIONS .. x

CHAPTER 1. Dissertation organization .. 1

2.1. INTRODUCTION ... 6

2.2. MCPs IN THE SYNTHESIS OF INDOLES .. 7

 2.2.1. Modifications of the Fischer indole synthesis .. 8

 2.2.2. Modifications of the Ugi reaction ... 11

 2.2.3. Pd, Cu or Pd/Cu-catalyzed MCPs for indole formation ... 13

 2.2.4. Other MCPs for the synthesis of indoles .. 21

2.3. MCPs IN THE SYNTHESIS OF BENZOFURANS .. 23

 2.3.1. MCPs for the synthesis of benzofurans from 2-halophenols .. 23

 2.3.2. MCPs for the synthesis of benzofurans from phenols or 2-hydroxybenzaldehydes 26

 2.3.3. MCPs for the synthesis of benzofuran analogues .. 29

2.4. MCPs IN THE SYNTHESIS OF BENZOTHIOPHENES .. 30

2.5 MCPs IN THE SYNTHESIS OF INDAZOLES ... 31

2.6. MCPs IN THE SYNTHESIS OF INDOLIZINES, PYRYDOINDOLES, PYRIDOISOINDOLES 32
2.7. MCPs IN THE SYNTHESIS OF BENZIMIDAZOLES ...34
2.8. MCPs IN THE SYNTHESIS OF BENZOXAZOLES AND BENZISOXAZOLES38
2.9. MCPs IN THE SYNTHESIS OF BENZOTHIAZOLES ..39
2.10. CONCLUSIONS ...40
2.11. REFERENCES ..40

CHAPTER 3. Solution-Phase Parallel Synthesis of a Diverse Library of
1,2-Dihydroisoquinolines.

3.1. ABSTRACT ...48
3.2. INTRODUCTION ..49

3.3. RESULTS AND DISCUSSION

3.3.1. Library construction ...50
3.3.2. Preparation of building blocks ...52
3.3.3. Diversification ..58

3.4. CONCLUSIONS ...62

3.5. ACKNOWLEDGEMENT ...63

3.6. EXPERIMENTAL

3.6.1. General remarks ...63
3.6.2. General procedure for preparation of the 2-(1-alkynyl)benzaldehydes64
3.6.3. General procedure for preparation of the 1,2-dihydroisoquinolines72
3.6.4. Data for the 1,2-dihydroisoquinolines subjected to further elaboration73
3.6.5. Data for selected 1,2-dihydroisoquinolines ...81
3.6.6. General procedure for preparation of the
1-(3-indolyl)-1,2-dihydroisoquinolines .. 82
3.6.7. Data for 1-(3-indolyl)-1,2-dihydroisoquinolines subjected to
further elaboration.. 83
3.6.8. Data for selected 1-(3-indolyl)-1,2-dihydroisoquinolines 85
3.6.9. General procedure for the microwave-assisted Sonogashira coupling....... 87
3.6.10. Data for selected 1,2-dihydroisoquinolines prepared via
Sonogashira coupling.. 88
3.6.11. General procedure for the microwave-assisted Suzuki-Miyaura
coupling.. 90
3.6.12. Data for selected 1,2-dihydroisoquinolines prepared via
Suzuki-Miyaura coupling.. 91
3.7. REFERENCES ... 97

CHAPTER 4. Efficient Microwave-assisted One-pot Three-component
Synthesis of Indoles under Sonogashira Conditions.

4.1. ABSTRACT... 100
4.2. INTRODUCTION .. 100
4.3. RESULTS AND DISCUSSION... 102
4.4. CONCLUSIONS ... 109
4.5. ACKNOWLEDGEMENT ... 110
4.6. EXPERIMENTAL
CHAPTER 5. Efficient Microwave-assisted One-pot Three-component Synthesis of 2,3-Disubstituted Benzofurans under Sonogashira Conditions. Approaches Towards Total Syntheses Amurensin H, Gnetuhainin B, and Gnetuhainin F.

5.1. ABSTRACT .. 123
5.2. INTRODUCTION .. 123

5.3. RESULTS AND DISCUSSION

5.3.1. Optimization of the reaction conditions ... 127
5.3.2. Evaluation of the reaction scope and limitations ... 130
5.3.3. Study of the additional processes and further diversification 139
5.3.4. Approaches towards total syntheses of Amurensin H, Gnetuhainin B,
5.4. CONCLUSIONS .. 151

5.5. ACKNOWLEDGEMENT ... 151

5.6. EXPERIMENTAL

5.6.1. General remarks ... 152

5.6.2. Preparation of the starting compounds for the three-component coupling.... 152

5.6.3. General procedure for the one-pot, three-component Sonogashira/Cacchi coupling for the synthesis of benzofurans 153

5.6.4. General procedure for the synthesis of benzofurans via three-component Sonogashira/Heck type coupling 167

5.6.5. Elaboration of the bromo-containing benzofurans via Pd-catalyzed couplings .. 169

5.6.6. Experimental details related to the synthesis of Amurensin H, Gnetuhainin B and Gnetuhainin F .. 170

5.7. REFERENCES ... 181

CHAPTER 6. One-pot Synthesis of 1-Alkyl-1H-indazoles from 1,1-Dialkyldrazones via Aryne Annulation.

6.1. ABSTRACT ... 185

6.2. INTRODUCTION .. 185

6.3. RESULTS AND DISCUSSION

6.3.1. Background .. 187
6.3.2. One-pot protocol employing NCS ... 188
6.3.3. One-pot protocol employing Ac₂O/N₂H₄ ... 191
6.4. CONCLUSIONS .. 193
6.5. ACKNOWLEDGEMENT ... 193
6.6. EXPERIMENTAL
 6.6.1. General remarks .. 193
 6.6.2. Preparation of the hydrazones .. 194
 6.6.3. Data for the crude N',N'-dimethylbenzohydrazonoyl fluoride 194
 6.6.4. General procedure for the preparation of indazoles by a
 one-pot NCS procedure ... 194
6.7. REFERENCES AND NOTES ... 202

CHAPTER 7. Synthesis of Pyrido[1,2-a]indole Malonates and Amines

through Aryne Annulation.

7.1. ABSTRACT ... 204
7.2. INTRODUCTION ... 204
7.3. RESULTS AND DISCUSSION
 7.3.1. Aryne annulation of pyridin-2-ylmethyleneamine .. 207
 7.3.2. Optimization of the reaction conditions ... 209
 7.3.3. Study of the scope of the reaction ... 209
 7.3.4. Additional studies ... 213
 7.3.5. Aryne annulation of pyridin-2-malonates .. 214
7.3.6. Reaction mechanism .. 220

7.4. CONCLUSIONS .. 221

7.5. ACKNOWLEDGEMENT .. 221

7.6. EXPERIMENTAL

7.6.1. General remarks ... 221

7.6.2. Preparation of (E)-ethyl 1-phenylpyridin-2(1H)-ylidenecarbamate 222

7.6.3. General procedure for preparation of the pyridin-2-ylmethanimines 222

7.6.4. General procedure for preparation of the

 \[\text{N-methyl-N-phenylpyrido-[1,2-}a\text{]indol-10-amines} \] .. 229

7.7. REFERENCES AND NOTES ... 236

CHAPTER 8. General Conclusions .. 240

ACKNOWLEDGEMENTS .. 242

APPENDIX A. CHAPTER 3 \(^1\text{H} \text{ AND } \text{13C} \text{ NMR SPECTRA} \) .. 244

APPENDIX B. CHAPTER 4 \(^1\text{H} \text{ AND } \text{13C} \text{ NMR SPECTRA} \) .. 343

APPENDIX C. CHAPTER 5 \(^1\text{H} \text{ AND } \text{13C} \text{ NMR SPECTRA} \) .. 368

APPENDIX D. CHAPTER 6 \(^1\text{H} \text{ AND } \text{13C} \text{ NMR SPECTRA} \) .. 448

APPENDIX E. CHAPTER 7 \(^1\text{H} \text{ AND } \text{13C} \text{ NMR SPECTRA} \) .. 481
LIST OF ABBREVIATIONS

[O] oxidation
°C degrees Celsius
Ac acetyl
Ada adamantyl
APCI atmospheric-pressure chemical ionization
aq. aqueous
Ar aryl
BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
Bn benzyl
bpy 2,2’-bipyridine
br broad
calcld calculated
cat. catalytic amount
CMLD center for methodology and library development
COSY correlation spectroscopy
Cy cyclohexyl
d doublet
dba dibenzylidene acetone
DBU 1,8-diazabicycloundec-7-ene
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets</td>
</tr>
<tr>
<td>ddd</td>
<td>doublet of doublets of doublets</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyanobenzoquinone</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(N,N)-dimethylamino)pyridine</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>(N,N)-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>dppe</td>
<td>\textit{bis}(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>dppf</td>
<td>\textit{(diphenylphosphino)}ferrocene</td>
</tr>
<tr>
<td>dppp</td>
<td>\textit{bis}(diphenylphosphino)propane</td>
</tr>
<tr>
<td>dt</td>
<td>doublet of triplets</td>
</tr>
<tr>
<td>EI</td>
<td>electron ionization</td>
</tr>
<tr>
<td>eq.</td>
<td>equation</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalents</td>
</tr>
<tr>
<td>ESI</td>
<td>electron spray ionization</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>eV</td>
<td>electron-volt</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
</tbody>
</table>
h
hour(s)

Hal
halogen

HetAr
heteroaryl

Hex
hexyl

HIV
human immunodeficiency virus

HMDS
hexamethyldisiloxane

HPLC
high performance liquid chromatography

HRMS
high-resolution mass spectrometry

Hz
hertz

i
isomeric

IR
infrared

J
coupling constant

KU
University of Kansas

LAH
lithium aluminum hydride

LC-MS
liquid chromatography-mass spectrometry

M
molar

m
multiplet

mp
melting point

MCP
multicomponent process

MCR
multicomponent reaction

Me
methyl
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>metal</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>MLSCN</td>
<td>molecular library screening center network</td>
</tr>
<tr>
<td>mmol</td>
<td>millimoles</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>MOM</td>
<td>methoxymethyl</td>
</tr>
<tr>
<td>Ms</td>
<td>mesyl</td>
</tr>
<tr>
<td>MS 4A</td>
<td>molecular sieves, 4 angstrom</td>
</tr>
<tr>
<td>MW</td>
<td>microwave</td>
</tr>
<tr>
<td>N</td>
<td>normal</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NIS</td>
<td>N-iodosuccinimide</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>NMM</td>
<td>N-methylmorpholine</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear Overhauser effect spectroscopy</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>PPMCR</td>
<td>one-pot multicomponent reaction</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>PCC</td>
<td>pyridinium chlorochromate</td>
</tr>
<tr>
<td>PG</td>
<td>protecting group</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PMP</td>
<td>para-methoxyphenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PS</td>
<td>polymer supported</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>QTOF</td>
<td>quadrupole time of flight</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>satd</td>
<td>saturated</td>
</tr>
<tr>
<td>SPhos</td>
<td>2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>t</td>
<td>tert</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TBAT</td>
<td>tetrabutylammonium triphenyldifluorosilicate</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>td</td>
<td>triplet of doublets</td>
</tr>
<tr>
<td>Tf</td>
<td>triflate</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight</td>
</tr>
<tr>
<td>Tol</td>
<td>tolyl</td>
</tr>
<tr>
<td>Ts</td>
<td>tosyl</td>
</tr>
<tr>
<td>US</td>
<td>ultrasound</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>Δ</td>
<td>heat</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift in ppm</td>
</tr>
<tr>
<td>XPhos</td>
<td>2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl</td>
</tr>
</tbody>
</table>
CHAPTER 1

Dissertation organization

The eight chapters of this dissertation describe the importance of a number of novel approaches to chemical research and synthesis, such as combinatorial, multi-component, and aryne-mediated processes, as well as their combinations. The main focus of this thesis is the development of novel approaches towards medicinally-relevant heterocycles, such as 1,2-dihydroisoquinolines, indoles, benzofurans, 1H-indazoles and pyridoindoles, employing metal-catalyzed and aryne-mediated multicomponent strategies.

Chapter 2 is a review of recent advances in the development of multicomponent approaches to the synthesis of 5-membered ring fused aromatic heterocycles. It is meant to provide the reader with a general understanding of the importance of multicomponent synthetic strategies, as well as practical examples of their use in organic synthesis.

Chapter 3 is a paper that was published in the journal ACS Combinatorial Science in 2011.¹ This chapter describes the synthesis of a 105-membered library of medicinally promising 1,2-dihydroisoquinolines by a three-component reaction and their further elaboration using Pd-catalyzed couplings. While working on the library synthesis, a novel three-component reaction of 2-alkynylbenzaldehydes, anilines, and indoles has been discovered. This project was initiated together with a former postdoctoral fellow in our group, Dr. Raffaella Mancuso, in collaboration with the Kansas University NIH Center for Excellence in Chemical Methodology and Library Development (KU-CMLD). Dr. Mancuso
contributed to the initial library design and preparation of some of the library members. Researchers from the KU-CMLD carried out computational studies, LCMS purification of a portion of the library members and purity analysis for all of the compounds. These compounds have been added to the NIH library of compounds to be tested for an array of biological activities.

Chapter 4 is an article that was published in the journal *Tetrahedron* in 2009. This chapter describes the scope and limitations of a methodology that allows the generation of 2,3-disubstituted indoles under Sonogashira reaction conditions in a one-pot, three-component fashion from readily available starting materials. A variety of medicinally-relevant indoles has been obtained in good to excellent yields using microwave-assisted reaction conditions. This project was initiated by a former postdoctoral fellow in our research group, Dr. Yu Chen, who also carried out the synthesis and characterization of the N-methyl-substituted indoles.
Chapter 5 is a project soon to be published in the journal *Tetrahedron*. While working on the synthesis of indoles, we discovered that 2-iodophenols can participate in the same type of process, affording the corresponding 2,3-disubstituted benzofurans. This chapter describes the optimization process, scope, limitations and extensions of this one-pot, three-component methodology. Efforts in applying this method towards the total syntheses of the naturally-occurring oligostilbenes Amurensin H, Gnetuhainin B, and Gnetuhainin F are described.

![Chemical structure](image)

Chapter 6 is a paper that was published in the journal *Organic & Biomolecular Chemistry* in 2012. This chapter describes the optimization process, scope and limitations of a methodology for the synthesis of *N*-alkylindazoles in a one-pot reaction of 1,1-dialkylhydrazones and arynes through two complimentary routes employing either NCS-chlorination or an Ac₂O-trapping/deprotection/aromatization sequence. For the NCS protocol, we found that in the case of cyclic hydrazones the succinimide molecule is incorporated into the final compounds, resulting in a one-pot, three-component reaction.

![Chemical structure](image)

This project was carried out in collaboration with another group member, Anton
Dubrovskiy, who contributed by preparing the starting N,N-dialkylhydrazones, carrying out the optimization work on the process, and exploring the scope of the Ac$_2$O/deprotection/aromatization strategy.

Chapter 7 is a modification of a paper that was published in the *Journal of Organic Chemistry* in 2012. It describes a methodology for the synthesis of various 10-substituted pyrido[1,2-a]indoles by the reaction of readily prepared 2-substituted pyridines and arynes under mild reaction conditions. The optimization of the process and examination of the scope of the reaction of N-(1-(pyridin-2-yl)ethylidene)amines with arynes is described. A one-pot, three-component version of this reaction employing 2-pyridine aldehydes, primary amines, and arynes was found to be successful. The reaction of 2-(pyridin-2-ylmethylene)malonates with benzyne was independently discovered at roughly the same time by the former Larock group members Dr. Donald C. Rogness and Dr. Jesse P. Waldo. Dr. Rogness carried out the optimization work and studies on the scope of the synthesis of pyrido[1,2-a]indolemalonates, as well as their characterization.

Lastly, chapter 8 summarizes the contributions described in the previous chapters and discusses future directions one might see in the areas of metal-catalyzed and aryne-mediated multicomponent strategies.
REFERENCES

CHAPTER 2

Multicomponent Approaches to the Synthesis of 5-Membered Fused Aromatic Heterocycles. A Review.

2.1. INTRODUCTION

With increasing awareness of the environmental situation on our planet and the urge to improve it, the need for greener synthetic strategies and principles is becoming more and more obvious for chemical industries, as well as academic laboratories. Over the last couple of decades, significant progress in this direction has been made, introducing a plethora of novel approaches, such as combinatorial chemistry,\(^1\) multicomponent processes,\(^2\) microwave-\(^3\) and ultrasound-assisted reactions,\(^4\) solid phase syntheses,\(^5\) etc. Among these, multicomponent processes (MCPs) have attracted the most attention due to their obvious synthetic utility and numerous advantages. Multicomponent processes include multicomponent reactions (MCRs), in which three or more different reactants are combined together in one reaction vessel to generate one major product. Another type of MCP is one-pot multi-component reactions (OPMCRs) - a sequential addition of three or more reactants to the same reaction vessel to generate the major product without isolation of the intermediate products after each step. The advantages of MCPs are minimization of the amounts of reagents, solvents, catalyst loadings, as well as no need for isolation and purification of the intermediate compounds, which dramatically decreases the amounts of
chemical waste and time invested. In addition, due to the fact that the intermediates are not isolated, losses of the material due to isolation are minimized and usually higher yields of the final products are obtained compared to the overall yields for traditional step-by-step approaches.

Since 1959, when Ugi reported the first four-component reaction, interest in multicomponent reactions has grown immensely. The goal of this review is to give an overview of the developments in the applications of MCPs for the construction of 5-membered fused aromatic heterocyclic cores (e.g. indole, benzofuran, benzothiophene, indolizine, indazole, benzimidazole, benzoazole, benzothiazole, and their close analogues). Methodologies that afford other types of heterocycles or employ heterocyclic compounds as one of the components will not be covered due to space limitations.

2.2. MCPs IN THE SYNTHESIS OF INDOLES

Compounds containing an indole core have been studied extensively due to their high biological and pharmaceutical activity, as well as utility as building blocks in organic synthesis. Numerous methods to access the indole core have been developed, with a majority being multistep approaches. A number of MCPs for the synthesis of indoles have been successfully developed, providing a short and convenient route to these valuable structures.
2.2.1. Modifications of the Fischer indole synthesis

Attempts to transform the Fischer indole synthesis into a multicomponent process led to the discovery of several useful processes. In 1999, Buchwald described a three-component procedure that utilizes Pd-catalyzed amination for the one-pot formation of hydrazones 1, which then can be cyclized in situ with enolizable ketones to form 2,3-disubstituted indoles 2 (Scheme 1). Utilizing this method, the authors were also able to obtain N-aryl indoles when an additional equivalent of an aryl bromide was used in the first step.

Scheme 1. Synthesis of indoles via Pd-catalyzed amination/Fisher cyclization

A method based on the Rh-catalyzed hydroformylation of alkenes, followed by coupling of the resulting aldehydes with hydrazines for the formation of alkyl analogues of 3 and subsequent Fischer cyclization to indoles 4, has been developed by Elibracht (Scheme 2). More recently, a similar method for the synthesis of 2,3-disubstituted indoles has been described based on a tandem hydroformylation–Fischer indolization protocol.

Scheme 2. Rh-catalyzed hydroformylation of alkenes/Fischer indole synthesis
In a related method described by Simoneau and Ganem, arylhydrazones 5 are formed in situ from nitriles or carboxylic acids, organolithium or Grignard reagents and arylhydrazines (Scheme 3). A number of pharmacologically useful 2,3-substituted indoles 6, including a series of triptamines and tryptamides, has been prepared in good yields.

Scheme 3. Synthesis of indoles from nitriles, organometallic reagents and arylhydrazines

An alternative method for the synthesis of tryptamines and tryptamine homologues involving a Fischer indole synthesis and the titanium-catalyzed hydroamination of alkynes has been reported by Beller and co-workers (Scheme 4). The Ti-catalyzed hydroamination of alkynes gives intermediate N-aryl-N-chloroalkylhydrazones 7, which are transformed into the desired indoles 8 by a [3,3]-sigmatropic rearrangement. Finally, the chlorine atom is replaced by ammonia, generated in the reaction mixture during the previous step.

Scheme 4. Synthesis of tryptamines via Ti-catalzed hydroamination of alkynes
Very recently, one more three-component method for the formation of highly functionalized tryptamines has been reported, starting from acyl chlorides, 2-methyl-1-pyrroline, and arylhydrazines. The proposed reaction pathway involves pyridine- or DMAP-catalyzed N-acylation of the 1-pyrroline to form the intermediate 9, which co-exists in equilibrium with the enamine 10 (Scheme 5). Upon reaction of 9 or 10 with arylhydrazines, the Fisher indole precursor 13 is formed, which, upon heating under acidic conditions, provides the desired indoles 14 in good to excellent yields (66-99%).

Scheme 5. Plausible reaction pathway for the synthesis of highly functionalized triptamines

A similar pyridine-catalyzed, three-component coupling between acyl chlorides, diazonium salts, and alcohols or amines affords α-hydrazone carboxylic acid derivatives 15, which after Fischer cyclization provide 2-(carboalkoxy)indoles 16 in good yields (Scheme 6).
Scheme 6. Preparation of 2-(carboalkoxy)indoles via Fischer cyclization

![Scheme 6](image)

$$R^1 = \text{Me, Ph}$$
$$XR^2 = \text{Oalkyl, OBn, Nalkyl, NHcy, Nallyl}$$
$$R^3 = \text{Cl, F}$$

Related 5-(3-indolyl)oxazoles 19 have been synthesized starting with the Sonogashira coupling of acyl chlorides with substituted propargylic amides, followed by cycloisomerization of the yrones 17 obtained to the corresponding oxazoles 18. Subsequent coupling of 18 with arylhydrazines is followed by Fischer indole cyclization with the aid of microwave irradiation (Scheme 7). As a result, a small library of highly luminescent compounds 19 was obtained.

Scheme 7. Synthesis of 5-(3-indolyl)oxazoles

![Scheme 7](image)

2.2.2. Modifications of the Ugi reaction

The three-component synthesis of 3-aminooindoles from aldehydes, anilines and isocyanides by an interrupted Ugi reaction has been reported by Sorensen et al (Scheme 8). When carboxylic acids are omitted in the classical Ugi reaction, formation of the 3-
aminoindoles 21 is favored through the intermediate 20. Addition of triflic phosphoramide was found to be critical to obtain high yields under mild reaction conditions. Although the \emph{in situ} formation of the imine 20 is possible, the authors decided to focus on the precondensation of anilines and aldehydes in their studies of the scope of the process, and proceed then with the next step without purification of the imine, which greatly improved the yields of the desired products.

Scheme 8. Three-component synthesis of 3-aminoindoles

A combination of the Ugi and Heck reactions provides a novel route to indoles (Scheme 9).\(^{17}\) A two-step OPMCR of acrylic aldehydes, bromoanilines, formic acid and isocyanides affords the Ugi-Smiles adduct 22, which under Heck reaction conditions leads to the polysubstituted indoles 23, albeit in only 15-38% overall yields.

Scheme 9. Ugi/Heck reaction for the synthesis of indoles
The Ugi-Smiles reaction in combination with a Heck cyclization has also been reported for the synthesis of indole scaffolds.18 2-Iodo-4-nitrophenol, allylamine, aldehydes and isocyanides are combined in an Ugi-Smiles coupling to afford the intermediate 24, which is converted in one-pot into the indoles 25 under Heck coupling conditions (Scheme 10). A one-pot reaction was possible if the residual isocyanide is neutralized prior to the addition of the palladium catalyst.

Scheme 10. Ugi-Smiles/Heck strategy for the synthesis of indoles

![Scheme 10](image)

An Ugi coupling with intermediate preformation of the indole ring and its subsequent cleavage has been employed by several groups in the synthesis of other substrates, such as \textit{N}-substituted diketopiperazines,19 the natural product omuralide,20 and others products.21

2.2.3. Pd, Cu or Pd/Cu-catalyzed MCPs for indole formation

A number of MCPs for the synthesis of indoles have been developed based on Pd- or Cu-catalyzed, or Pd/Cu-cocatalyzed reactions.

In addition to the Pd-catalyzed carboalkoxylation of 2-alkynyl anilines in the presence of CO and MeOH to afford 3-(carbomethoxy)indoles,22 an analogous Pd-catalyzed three-component coupling between 2-alkynylacetanilides, aryl iodides and CO to afford indoles 26...
has been reported by Cacchi in 1994 (Scheme 11).\(^2\) This methodology has been successfully applied to the synthesis of the NSAID pravadoline and later modified by other groups to provide a large variety of 2,3-disubstituted indoles and analogues.\(^2\)

Scheme 11. Pd-catalyzed reaction between 2-alkynylacetanilides, aryl iodides and CO

\[
\begin{align*}
\text{NHCOCF}_3 & + \text{CO} + R^2\text{X} \\
\stackrel{\text{[Pd\text{cat.}]}}{\text{K}_2\text{CO}_3} & \rightarrow \text{MeCN, 45 }^\circ\text{C} \\
R^1 & = \text{alkyl, vinylic, Ar} \\
R^2 & = \text{vinylic, Ar}
\end{align*}
\]

In 2001, Flynn reported a three-component synthesis of benzo[b]furans starting from \(o\)-iodophenols, alkynes and aryl iodides.\(^3\) Over the course of this work, the authors found that 2-ido-5-methoxycacetanilide can also be employed under the same reaction conditions to afford the indole 27 in an 85\% yield (Scheme 12).

Scheme 12. One-pot synthesis of indole 27 from 2-ido-5-methoxycacetanilide
This methodology has been later extended by the authors to its carbonylative version for the synthesis of tubulin polymerization inhibitors.26 Lu and co-workers reported a modification of this method for the synthesis of 2,3-disubstituted indoles 29. The use of \textit{o}-iodo-\textit{N}-trifluoroacetanilides significantly expanded the reaction scope (Scheme 13).27

Scheme 13. Synthesis of 2,3-disubstituted indoles from the \textit{o}-iodo-\textit{N}-trifluoroacetanilides

![Scheme 13](image_url)

The Larock group recently developed a microwave-assisted modification of this reaction, which allows the efficient synthesis of multisubstituted indoles and \textit{N}-methylindoles under Sonogashira conditions.28

Recently, Rao \textit{et al} reported a new method for the synthesis of indoles from (trimethylsilyl)acetylene and iodoarenes in the presence of 10\% Pd/C–CuI, followed by treatment of the reaction mixture with potassium carbonate in aqueous MeOH, and then coupling with \textit{o}-idoanilides (Scheme 14).29 The reaction sequence includes 2 consecutive Sonogashira couplings and Pd-catalyzed cyclization of intermediate 2-alkynylanilines to form the corresponding indoles 30.
Scheme 14. Indoles from (trimethylsilyl)acetylene, iodoarenes and o-iodoanilines

A multicomponent cascade process, based on the sequential nucleophilic attack of *in situ* preformed imines, followed by a palladium-catalyzed oxidative heterocyclization-alkoxycarbonylation process, leads to 1-(alkoxyarylmethyl)indole-3-carboxylic esters 32, as has been reported by Gabriele in 2010 (Scheme 15). Imines 31 are formed *in situ* from the reaction of 2-alkynylanilines and aldehydes and a further reaction with CO and O₂ in ROH-HC(OR)₃ as a solvent in the presence of catalytic amounts of PdI₂ to afford a wide variety of indoles 32 in 40-73% yields.

Scheme 15. Pd-catalyzed synthesis of 1-(alkoxyarylmethyl)indole-3-carboxylic esters

In 2002, a Pd-catalyzed three-component reaction for the synthesis of 2-aryl-3-(methylamino)indoles was reported (Scheme 16). 2-Vinylphenylisocyanide, aryl iodides and secondary amines combine together to provide indoles 33 in low to moderate (24-42%) yields.
Scheme 16. Synthesis of 2-aryl-3-(methylamino)indoles

\[
\begin{align*}
\text{Ar} & = \text{Ph, } p\text{-NO}_2\text{C}_6\text{H}_4, \text{ } p\text{-MeOC}_6\text{H}_4 \\
X & = \text{I, OTf}
\end{align*}
\]

The same year, Yamamoto reported a Pd-catalyzed multicomponent process for the synthesis of \(N\)-cyanoindoles from isocyanides, allyl carbonates, and trimethylsilyl azide (Scheme 17).\(^{32}\) The authors proposed that this transformation most likely proceeds through the intermediate 34, which upon losing \(N_2\) and cyclizing, affords 1-cyano-3-allylindoles 35 in 30-77% yields.

Scheme 17. Pd-catalyzed multicomponent reaction for the synthesis of \(N\)-cyanoindoles

A \(C,N\)-coupling/carbonylation/\(C,C\)-coupling sequence starting from 2-gem-dibromovinylanilines and boronic acids under an atmosphere of carbon monoxide has been reported to afford 2-arylidinoles 36 (Scheme 18).\(^{33}\) The use of methanol, instead of boronic acids, also proved to be successful, affording 2-(carbomethoxy)indoles.\(^{34}\)
Scheme 18. Pd-catalyzed multicomponent reaction for the synthesis of 2-aroylindoles

\[
R^1\frac{\text{Br}}{1} R^2\frac{\text{NH}_2}{2} + R^2\text{B(OH)}_2 \overset{\text{cat. Pd(PPh}_3)_4}{\underset{\text{K}_2\text{CO}_3, \text{dioxane}, \Delta}{\longrightarrow}} R^1\frac{\text{O}}{1} R^2\frac{\text{H}}{2}
\]

18 examples, 21 - 73%

2-(2-Haloalkenyl)aryl halides have been shown to participate in sequential amination reactions to provide 1-substituted indoles 37 under Pd catalysis (Scheme 19). 35

Scheme 19. Sequential amination reactions for the synthesis of 1-substituted indoles

\[
R^1\frac{\text{Cl}}{1} R^2\frac{\text{Cl}}{2} + R^2\frac{\text{NH}_2}{3} \overset{\text{cat. Pd\textsubscript{2}(dba)}_3}{\underset{\text{NaO}^+\text{Bu, toluene, 100 }\circ\text{C}}{\longrightarrow}} R^1\frac{\text{N}}{1} R^2\frac{\text{PMP}}{2}
\]

R\text{_NH} = \text{morpholine, PMPNHMe}

2 examples, 55 - 57%

In their efforts to develop a new method for the synthesis of tertiary propargylic amines, Alami and co-workers found that when protected 2-iodoanilines are used as starting materials, good yields of the corresponding indole products 38 can be obtained (Scheme 20). 36 In this reaction, propargyl bromide and the amine form the corresponding propargylic amine, followed by an \textit{in situ} Sonogashira reaction and intramolecular Pd-catalyzed cyclization, leading to the formation of the desired 2-(aminomethyl)indoles 38 in 80-97% yields. Examples of indoles bearing tertiary, as well as Boc-protected methylamino, groups were prepared successfully using this methodology.
Scheme 20. Three-component synthesis of 2-(methylamino)indoles

Copper was found to be a suitable catalyst for the formation of indole-fused benzo-1,4-diazepines 40 by a Mannich-type process starting from 2-alkynylanilines, formaldehyde, and amines (Scheme 21). This domino three-component coupling-indole formation-N-arylation sequence proceeds through the formation of alkynylamines, which under CuI-catalyzed conditions provide indole intermediates 39, which after deprotection and additional N-C bond formation result in the formation of benzo-1,4-diazepines 40 in 23-85% yields. Various modifications of this method were later reported to afford a wide array of indole analogues.

Scheme 21. Formation of 2-methylaminoindoles via modified Mannich reaction

A similar method that involves a reaction between 2-ethynylaniline, sulfonyl azides, and nitroolefins, affords 2-amino-3-alkylindoles in good yields.

Gevorgyan and co-workers developed an efficient Cu(I)-catalyzed MCR for the synthesis of 3-aminoidoles. 2-Aminobenzaldehydes, secondary amines, and alkynes are combined to form the corresponding propargylamine intermediate, which then undergoes
cyclization to the desired indolines 41. The indolines 41 were synthesized in good to excellent yields. Alternatively these scaffolds can be isomerized in situ into the indoles 42 (Scheme 22).

Scheme 22. Cu(I)-catalyzed MCR for the synthesis of 3-aminoindoles

A Pd/Cu-catalyzed process that employs ortho-dihaloarenes together with primary amines and bromoalkenes was developed in 2007 by Barluenga and co-workers (Scheme 23). 41 The imine intermediate 43 is formed after the Pd-catalyzed coupling of the bromoalkene and the amine and subsequent C-H activation and coupling with dibromobenzenes. This intermediate then undergoes C-N coupling to afford the 1,2-disubstituted indole derivatives 44 in 57-77% yields. An alternative process employing terminal alkynes, instead of bromoalkenes, also proved to be successful. 42

Scheme 23. Synthesis of indoles from ortho-dihaloarenes

Lebel and co-workers reported an OPMCR for the synthesis of indoles 45 from 2-iodobenzoic acid by a one-pot Curtius rearrangement, followed by a Pd-catalyzed
indolization (Scheme 24). Various indoles and N-acylindoles were obtained following this method in good to excellent yields. The authors note that annulation of the aromatic ureas had not been reported previously. The fact that intermediate 2-idoindoles are not isolated is important, since the number of available 2-idoanilines is limited.

Scheme 24. Curtius rearrangement/Pd-catalyzed indolization of 2-idoarene carboxylic acids

2.2.4. Other MCPs for the synthesis of indoles

Del Ponte and co-workers reported a rhodium-catalyzed domino hydroformylation/indolization of m-substituted-o-nitrocinna maldehyde diethyl acetics for the synthesis of 3-substituted indoles (Scheme 25). The process most likely proceeds through the aniline intermediate with attack of its amino group onto the aldehyde and subsequent aromatization to afford indoles. Unfortunately, no studies of the scope of this process have been carried out.

Scheme 25. Rhodium-catalyzed domino hydroformylation/indolization

A rapid synthesis of 5-hydroxybenzo[g]indole scaffolds by a modified Nenitzescu
reaction has been reported. This fast, neat, microwave-assisted, Lewis acid-catalyzed, one-pot reaction efficiently produces various benzo[g]indoles from aminoketones, naphthoquinones and urea as an environmentally friendly source of ammonia (Scheme 26).

Scheme 26. Synthesis of 5-hydroxybenzo[g]indoles

![Scheme 26](image)

Recently, a multicomponent domino reaction that employs an intermolecular allylic esterification and indole formation has been described. In this process, the formation of the dihydroindole core through intermediate and its subsequent dimerization provides the desired indoles in moderate 40-54% yields (Scheme 27).

Scheme 27. Multicomponent domino reaction for the synthesis of indoles

![Scheme 27](image)

Very recently, a one-pot, three-component synthesis of the 7-azaindole derivatives from N-substituted 2-amino-4-cyanopyrroles, aldehydes, and active methylene compounds
has been reported (Scheme 28). A small library of 7-azaindoles has been prepared following the described methodology.

Scheme 28. One-pot, three-component synthesis of 7-azaindoles

\[
\begin{align*}
X - Y + R^1\text{-CHO} + H_2N\text{-}N^+\text{CN}^\text{X} & \xrightarrow{1. \text{EtOH, heat}} \text{DDQ} \xrightarrow{2. \text{DDQ}} \text{54} \\
R^1, R^2 = \text{Ar, alkyl} \\
X - Y = \text{NC} - \text{CN}, \text{NC} - \text{Ph}, \text{O} - \text{O} \quad \text{45 examples, 22 - 97%}
\end{align*}
\]

It is noteworthy that indoles have been extensively studied as starting materials for MCPs. Recently, a review on the use of indoles in MCPs appeared in the literature that nicely summarizes the developments in this area, and provides a more detailed overview of the synthesis of indoles by the MCPs described above.

2.3. MCPs IN THE SYNTHESIS OF BENZOFURANS

Similarly to indoles, interest in synthesizing benzofurans has been growing for many years due to their high biological potential. A number of convenient methods have been developed that allow preparation of a variety of substituted benzofurans in few steps with good overall yields and from readily available starting materials. Several examples of MCPs for the synthesis of this valuable core have been developed.

2.3.1. MCPs for the synthesis of benzofurans from 2-halophenols

Several Pd-catalyzed methods involving the use of CO as one of the components have been reported. As early as 1989, the first carbonylative cyclization of 2-alkynylphenols was reported by Sakamoto (Scheme 29). In this process, the methyl benzofuran-3-carboxylates
55 were obtained in good yields, although the scope of the process was rather limited. Later, this method was employed in the synthesis of XH-14 and its analogues,50 and a modified catalytic system (PdI₂/thiourea/CBr₄) was reported, which significantly increased yields and expanded the scope of the initial process.51 A related method was developed for the generation of benzo[\(b\)]furan-3-carboxylic acids.52

Scheme 29. Three-component carbonylative cyclization of 2-alkynylphenols

\[
\begin{align*}
\text{R}^1\text{C} = \text{C} & + \text{CO} + \text{MeOH} \quad \text{cat. PdCl}_2 & \xrightarrow{\text{AcONa, K}_2\text{CO}_3} \text{rt, 3 h} & \text{CO}_2\text{Me} \\
\text{R}^2 & = \text{Bu, Ph} & & 55 \quad 3 \text{ examples, 16-66\%}
\end{align*}
\]

An analogous process reported in 1996 by Cacchi involves the Pd-catalyzed cyclization of 2-alkynylphenols in the presence of vinylic triflates and CO (Scheme 30).53 In this case, the benzofurans 56 are obtained in 20-64% yields. Fathi and co-workers later successfully extended this process to the use of aryl iodides and prepared a number of highly substituted benzofurans.54

Scheme 30. Pd-catalyzed cyclization of 2-alkynylphenols with vinylic triflates and CO

\[
\begin{align*}
\text{R}^1\text{C} = \text{C} & + \text{CO} + \text{TfO} \quad \text{cat. Pd(PPh}_3\text{)}_4 & \xrightarrow{\text{AcOK, MeCN}} \text{45 \degree C, 3 h} & \text{R}^2 \\
56 & \quad 5 \text{ examples, 20 - 64\%}
\end{align*}
\]

Although these methods allow generation of the desired benzo[\(b\)]furan core in good yields, the possibilities for the synthesis of polyfunctionalized compounds is limited due to
the use of CO as an one of the components. In 2001, Flynn reported the first three-component synthesis of benzo[b]furans starting from iodophenols, alkynes and aryl iodides (Scheme 31).

In this Pd-catalyzed process, the first Sonogashira coupling was found to be inefficient when 2-iodophenols were employed. The authors turned to the use of MeMgCl as a reagent to mask the phenol group, which allowed a more efficient Sonogashira reaction to take place. The authors propose that after the intermediate 57 is formed, attack of the oxygen onto the triple bond in the second step of this OPMCR is promoted by the “R³PdX” species formed in situ after the addition of R³X to the reaction mixture. Despite the reactive nature of the MeMgCl reagent, a number of functional groups are tolerated under these reaction conditions and the process affords the highly substituted benzofurans 58 in good to excellent yields (45-88%). Examples of the coupling in the presence of CO results in the formation of the corresponding carbonylative coupling products.

Scheme 31. Three-component synthesis of benzofurans

\[
\begin{align*}
R^1 & = \text{OMe, alkyl} \\
R^2 & = \text{Ar, alkyl} \\
R^3 & = \text{Ar, allyl, vinylic}
\end{align*}
\]

The authors later applied this method for the one-pot, three-component synthesis of (±)-Frondosin B. The OPMCR between 2-bromo-4-methoxy-phenol, 3-methylbutenyne and vinylic bromide 59 was successful, affording the non-cyclized product 60 as a major product in a 48% yield, along with 11% of the ring-expanded product 61 (Scheme 32). The authors propose that the product 61 is likely formed from compound 60 by a 1,7-hydrogen shift. This
ring-expanded analogue 61 could be obtained as a sole product in a 61% yield if the cyclization step is carried out at 100 °C for 48 h. The product 60 was then successfully converted to (±)-Frondosin B in 3 additional steps.

Scheme 32. One-pot synthesis of a ring-expanded analogue of (±)-Frondosin B

The Larock group developed a similar microwave-assisted one-pot method that does not require the use of the harsh MeMgCl reagent and allows one to obtain benzo[b]furans in excellent yields in a one-pot process under milder reaction conditions.\(^{56}\) Also, a similar palladium-mediated, three-component process for the synthesis of furo[2,3-b]pyridones starting from 3-iodopyridones have been reported by the Balme group.\(^{57}\)

The same OPMCR developed for the formation of indoles 38 has been successfully applied to the synthesis of 2-(methylamino)benzo[b]furans (Scheme 20).\(^{36}\)

2.3.2. MCPs for the synthesis of benzo[furans from phenols or 2-hydroxybenzaldehydes

An MCR analogous to the one developed for the synthesis of indoles 42,\(^{40}\) has been reported for the synthesis of 2-(alkylamino)substituted benzo[b]furans (Scheme 33).\(^{58}\) Various alkynes and amines were well tolerated under the optimized reaction conditions and afforded the benzo[b]furans 62 in 22-99% yields.
Scheme 33. Three-component synthesis of 3-aminobenzofurans

In this three-component coupling of an alkynylsilane, o-hydroxybenzaldehydes and secondary amines, the best results were obtained when the CuCl/Cu(OTf)$_2$ catalytic system was employed. The authors propose that CuCl is required for transforming the TMS-alkyne into the corresponding copper acetylide. The Cu(OTf)$_2$ is responsible for: a) being a Lewis acid to facilitate formation of the iminium intermediate 64, and b) activating the alkyne moiety to help with nucleophilic attack by the OH group in the intermediate 65 by a 5-exo-dig cyclization to produce compound 66, which after losing Cu(OTf)$_2$, deprotonation and aromatization affords the desired 3-aminobenzo[b]furans 62 (Scheme 34).

Analogous processes where terminal acetylenes59 or isocyanides60 are employed, instead of the silyl acetylenes, have been reported by other groups. In the case of isocyanides, 2,3-diaminobenzo[b]furans are obtained.
Recently, a novel method has been reported for the synthesis of 2-amino-3-arylbenzo[b]furans starting from the phenol 67, aldehydes and alkyl isocyanides (Scheme 35). The reaction proceeds in DMF under reflux conditions and affords a variety of products 70 in excellent (90-95%) yields. The authors propose that the reaction between phenol and aldehyde most likely produces the oxoquinodimethane intermediate 68, which can then add to the isocyanide molecule to form the [4+1] cycloaddition adduct 69. A [1,3]-hydrogen shift in compound 69 results in the formation of the product 70. 1-Naphthol was also shown to undergo an analogous transformation and afford naphtho[1,2-b]furan-2-amines in excellent 90-95% yields. A similar process was reported by Mosslemin et al for the synthesis of annulated furan heterocycles.
Scheme 35. Three-component reaction between phenols, aldehydes and isocyanides

Very recently an analogous method for the synthesis of acenaphtho[1,2-b]furan derivatives has been reported by Damavandi and co-workers.63

2.3.3. MCPs for the synthesis of benzofuran analogues

A three-component synthesis of furo[2,3-c]quinolones from 2-alkynylanilines, aldehydes, and isocyanooacetamides has been reported (Scheme 36).64 Although no detailed mechanistic study has been carried out, the authors propose that this transformation proceeds through the oxazole intermediate 71, which, followed by intramolecular cycloaddition to the triple bond, forms the oxa-bridged intermediate 72. The latter, by a retro-Diels-Alder loss of the nitrile unit and in situ oxidation by atmospheric oxygen, furnishes the furo[2,3-c]quinolones 73 in moderate to good (42-75%) yields.
Scheme 36. A three-component synthesis of furo[2,3-c]quinolines

Very recently, an isocyanide-based multicomponent reaction in combination with an intramolecular Ullmann reaction for the synthesis of furo[2,3-b]indoles has been described.65 The Cu-catalyzed reaction of 1,3-dicarbonyl compounds, 2-halobenzaldehydes and isocyanides afforded products 74 in 49-90% yields (Scheme 37).

Scheme 37. Multicomponent reaction for the synthesis of furo[2,3-b]indoles

2.4. MCPs IN THE SYNTHESIS OF BENZOTHIOPHENES

Benzothiophenes and benzoselenophenes are compounds of interest to synthetic chemists due to their wide variety of useful applications.66 Though a variety of methods have
been discovered for the synthesis of these compounds, there is only one reported example of MCP for their synthesis.

In 2007, an OPMCR for the synthesis of 2-aminobenzo[b]thiophenes was reported by Neckers and co-workers. The authors discovered that the reaction between 1-(2-chloro-5-nitrophenyl)ethanone and secondary amines in the presence of elemental sulfur and NaOAc gives 2-aminobenzothiophenes 75, albeit in only low to moderate (4-46%) yields (Scheme 38).

Scheme 38. One-pot three-component synthesis of 2-aminobenzo[b]thiophenes

\[
\begin{align*}
\text{O}_2\text{N} & + \text{S}_8 + \text{R}^1 \text{NH}^+ \text{S}_8^+ \text{R}^1 \text{AcONa, DMF} \rightarrow \text{O}_2\text{N} \\
\text{R}^1 & = \text{alkyl, allyl, Bn}
\end{align*}
\]

11 examples, 4 - 46%

2.5. MCPs IN THE SYNTHESIS OF INDAZOLES

1H- and 2H-Indazoles are important classes of compounds whose derivatives are widely used in the pharmaceutical industry. There has been a lot of interest in the synthesis of these structures in the last few decades. Numerous synthetic pathways for the synthesis of 1H-indazoles have been developed, whereas methods for the synthesis of 2H-analogues are still relatively underexplored. Several MCPs for the synthesis of indazoles and analogues have been reported recently.

In 2011, a copper-catalyzed, one-pot, three-component synthesis of 2H-indazoles was reported (Scheme 39). 2-Bromobenzaldehydes are reacted with primary amines and NaN₃
to afford good to excellent yields of a variety of 2H-indazoles 76.

Scheme 39. Three-component synthesis of 2H-indazoles

$$\begin{align*}
\text{R}^1\text{NO}2 &+ \text{H}_2\text{N}-\text{R}^2 + \text{NaN}_3 \\
\text{DMSO, 120 °C} &\rightarrow \text{cat. CuI/TMEDA} \\
\text{R}^1\text{N} &- \text{R}^2
\end{align*}$$

25 examples, 20 - 98%

Very recently, another one-pot method for the synthesis of 2H-indazoles has been reported (Scheme 40). This process is based on a four-component Ugi reaction of 2-nitrobenzaldehydes, amines, and isocyanides in the presence of TMSN$_3$. The preformed Ugi intermediates 77 are transformed into the 2H-indazoles 78 by heating with triethylphosphite in DMF. In most cases, moderate to good (24-65%) yields of indazoles 78 were obtained.

Scheme 40. Four-component synthesis of 2H-indazoles

$$\begin{align*}
\text{CHO} + \text{NaN}_3 + \text{H}_2\text{N} - \text{R}^2 + \text{TMSN}_3 &\rightarrow \text{cat. CuI/TMEDA} \\
\text{R}^1\text{N} &- \text{R}^2
\end{align*}$$

12 examples, 24 - 65%

2.6. MCPs IN THE SYNTHESIS OF INDOLIZINES AND ANALOGUES

Indolizines, pyridoindoles, and their partially hydrogenated analogues are known for their pharmaceutical and biological activity. Although a lot of methods have been developed for their synthesis, many of them are either harsh or require multiple steps. Recently, several multicomponent approaches have been reported that significantly improve the already existing methods and allow quick and easy generation of these valuable cores.
In 2005, an MCR for the synthesis of indolizines was reported (Scheme 41).72 This method allows great possibilities for variation of the substituents in all three of the starting materials. The variously substituted indolizines 79 were obtained in 10-73% yields.

Scheme 41. Three-component synthesis of indolizines

\[
\text{R}_1^1 \text{CN} \text{N} \text{CH}_2 \text{NH}_2 + \text{R}_2^2 \text{CHO} + \text{R}_3^3 \text{NC} \xrightarrow{10\% \text{ DBU}, n\text{-butanol}, 100 \text{°C}} \text{R}_1^1 \text{CN} \text{N} \text{R}_2^2 \text{R}^3^3
\]

11 examples, 10 - 73% yield

The authors demonstrated that other heterocyclic moieties can be used in place of the starting pyridines, leading to a great variety of mixed heterocyclic compounds (Scheme 42).

Scheme 42. Selected examples of the other heterocycles obtained

A convenient three-component reaction for the synthesis of indolizines and their annulated versions, pyridoindoles, has been reported by Zou and co-workers (Scheme 43).73 The indolizines 80 were obtained in moderate to excellent (42-97%) yields by the reaction of pyrrole-2-carboxaldehyde with alkyl bromides and alkenes. Using an indole-2-carboxaldehyde afforded the pyrido[1,2-\(a\)]indoles 81 in moderate (40-58%) yields.
Scheme 43. MCR for the synthesis of indolizines and pyridoindoles

An interesting MCR for the synthesis of pyrido[2,1-\(a\)]isoindoles involving aryne annulation has been independently reported by Huang and Zhang (Scheme 44).\(^7\) In this process, a pyridinium salt, formed from the reaction of pyridine with \(\alpha\)-bromoketones, most likely generates the azomethine ylide 82 by the elimination of HBr. A [3 + 2] cycloaddition of the ylide 82 with the aryne, followed by aromatization, affords the desired products 83.

Scheme 44. MCR for the synthesis of pyrido[2,1-\(a\)]isoindoles

2.7. MCPs IN THE SYNTHESIS OF BENZIMIDAZOLES

Benzimidazole and its derivatives play a crucial role in the pharmaceutical industry and have a wide range of applications in material science.\(^7\) Numerous processes for their synthesis have been developed. However, multicomponent approaches to this valuable core are still very limited.

Tempest and Hulme reported a synthesis of benzimidazoles by a four-component Ugi
Although this transformation was technically carried out in two steps, the isolation of the intermediate Ugi product after Boc-group cleavage was minimized and the product 84 was used crude in the cyclization step to afford a variety of benzimidazoles 85 (Scheme 45).

Scheme 45. Synthesis of benzimidazoles by a four-component Ugi coupling

In 2010, Wang and co-workers reported a copper-catalyzed, three-component cascade reaction between sulfonyl azides, terminal alkynes and 2-bromoanilines for the synthesis of 1,2-disubstituted benzimidazoles 86 (Scheme 46).

Scheme 46. Synthesis of 1,2-disubstituted benzimidazoles 86

The authors propose that this transformation is most likely occurring through the ketamine intermediate 87, formed from the reaction of an alkyne and a sulfonyl azide (Scheme 47). Intermediate 87 is then reacted with aniline to produce the N-sulfonylamide 88, which is in equilibrium with its tautomer 89. The Cu-catalyzed intramolecular C-N coupling of 89 affords the benzimidazoles 86.
Scheme 47. Proposed reaction mechanism

\[R^2 \xrightarrow{\text{Cul/Et}_3\text{N}} \text{NH}_2 \xrightarrow{X} R^2\text{NH}_2 \xrightarrow{\text{R}^3\text{SO}_2\text{N}_3} \text{R}^2\text{NH}_2 \xrightarrow{\text{CuI/proline}} \text{K}_2\text{CO}_3 \xrightarrow{\text{Cul/proline}} \text{CuI} \xrightarrow{\text{TMEDA, DMSO}} 120 \degree\text{C}, 12 \text{h} \]

In 2011, Lee and co-workers reported a three-component approach for the synthesis of benzimidazoles from 2-haloanilines, aldehydes, and NaN\(_3\) under Cu(I)-catalyzed conditions (Scheme 48).\(^{78}\) A total of 28 benzimidazoles 90 were prepared through this method in good to excellent yields. The authors also showed that the fungicide and parasiticide tiabendazole (91) (trade names Mintezol and Tesaderm) could be accessed through this method in a 97% yield starting from 2-iodoaniline.

Scheme 48. MCR for the synthesis of benzimidazoles

\[\text{R}^1\text{NH}_2 + \text{R}^2\text{H} + \text{H}_2\text{C} = \text{N} - \text{R}^3 + \text{NaN}_3 \xrightarrow{\text{2 mol % CuCl}} \text{CuI/TMEDA, DMSO}} 120 \degree\text{C}, 12 \text{h} \]

The same year, El Kaïm and Grimaud reported a phosphite-mediated synthesis of benzimidazoles by a four-component Ugi-Smiles approach from 2-nitrophenols (Scheme
After the Ugi-Smiles intermediate 92 is obtained, the reaction mixture is filtered and dried and then subjected to a second step to afford the desired benzimidazoles 93 in 23-83% yields. When aromatic aldehydes were employed, mixtures of isomers were obtained due to the formation of two competing benzylic positions in the corresponding intermediates 92.

Scheme 49. Phosphite-mediated synthesis of benzimidazoles

![Chemical structure](image)

R¹ = Ar, alkyl
R² = Ar, HetAr
R³ = alkyl
R⁴ = H, OMe, Me

The synthesis of a pyrido[1,2-α]benzimidazole by a novel multicomponent reaction of chloroacetonitrile, malononitrile, an aromatic aldehyde, and pyridine has been reported by Yan and co-workers (Scheme 50). In this process, 6 molecules are combined in a one-pot process to create 21 examples of multifunctional pyrido[1,2-α]benzimidazoles 94 in 20-51% yields. In some cases, small amounts of polysubstituted benzenes or 2-amino-3-cyanoindoles were obtained as side products.

Scheme 50. MCR for the synthesis of pyrido[1,2-α]benzimidazoles

![Chemical structure](image)

R = H or Me
A novel methodology for the synthesis of $1H$-phenanthro[9,10-d]imidazoles under ultrasonic irradiation has been reported.81 $9,10$-Phenanthrenequinone, an aromatic aldehyde, and ammonium acetate were reacted in the presence of catalytic amounts of 95 and afforded the phenanthro[9,10-d]imidazoles 96 in good to excellent (78-93\%) yields (Scheme 51).

Scheme 51. Synthesis of 2-aryl-$1H$-phenanthro[9,10-d]imidazoles

\[
\begin{align*}
\text{Ph} & + \text{RCHO} + \text{NH}_4\text{OAc} \\
\text{US irradiation, rt} & \rightarrow \text{Ph-N-R} \\
\text{R = Ar, HetAr} & \\
\end{align*}
\]

2.8. MCPs IN THE SYNTHESIS OF BENZOXAZOLES AND BENZISOXAZOLES

Benzoxazoles and isomeric benzisoxazoles represent pharmaceutically valuable compounds and approaches to their synthesis have been studied extensively.82 While a few MCPs have been developed for the synthesis of benzoxazoles, no reports of MCPs for the synthesis of benzisoxazoles have been described in the literature.

A novel Pd-catalyzed multicomponent process has been developed for the synthesis of benzoxazoles and their non-fused analogues, oxazolines (Scheme 52).83 Starting from 2-aminophenols, tert-butylisocyanide, and various aryl halides, the authors were able to obtain the benzoxazoles 97 in excellent (92-99\%) yields. Oxazolines were obtained when 2-aminoethanol-1-ol was used, instead of 2-aminophenols.
Scheme 52. Pd-catalyzed multicomponent process for the synthesis of benzoxazoles

\[
\text{Scheme 52. Pd-catalyzed multicomponent process for the synthesis of benzoxazoles}
\]

\[R_2\text{NH}_2 + \text{BuNC} + \text{ArX} \xrightarrow{\text{cat. PdCl}_2, \text{cat. dppf}, \text{Cs}_2\text{CO}_3, \text{toluene, reflux}} R_2\text{N}-\text{Ar} \]

\[\text{5 examples, 92 - 99%}\]

2.9. MCPs IN THE SYNTHESIS OF BENZOTHIAZoles

Benzothiazoles represent another class of compounds that play an important role as biologically and synthetically important scaffolds. To the best of our knowledge, only two examples of MCPs to access these compounds have been reported recently.

A Cu-catalyzed, cascade, three-component reaction for the synthesis of 2-\(N\)-substituted benzothiazoles from 2-haloanilines, carbon disulfide, and amines has been reported (Scheme 53).\(^{84}\) Various amines were found to be efficient in this process, including primary, secondary aliphatic and aromatic amines, cyclic secondary amines, and aromatic \(N\)-containing heterocycles, such as pyrrole, indole, and imidazole. A small library of 49 unique compounds 98 has been generated employing this methodology.

Scheme 53. Three-component reaction for the synthesis of 2-\(N\)-substituted benzothiazoles

\[R_1^1\text{NH}_2 + \text{CS}_2 + \text{H}^{\text{R}^3\text{N}} \xrightarrow{\text{cat. CuCl}_2\cdot2\text{H}_2\text{O}, \text{K}_2\text{CO}_3, \text{DMF}} \text{R}_1^1\text{N}-\text{N}^{\text{R}^2} \]

\[\text{49 examples, 40 - 97%}\]
Very recently, a Cu-catalyzed OPMCR for the synthesis of benzothiazoles from 2-iodoanilines, aldehydes, and sodium hydrosulfide as a sulfur source has been reported (Scheme 54). A small library of 39 benzothiazoles has been synthesized in 61-99% yields. The authors note that NaSH·nH₂O functions both as a sulfur surrogate and as an oxidant in this transformation.

Scheme 54. Cu-catalyzed OPMCR for the synthesis of benzothiazoles

\[
\begin{align*}
&\text{R}^1\text{I} + \text{H}^+\text{O} + \text{NaSH·nH}_2\text{O} \quad \xrightarrow{2 \text{ mol % CuCl}} \quad \text{MgSO}_4, \text{DMSO} \\
&\quad \quad 110^\circ\text{C}, 6 \text{ h} \\
\end{align*}
\]

R¹ = H, Cl, F, CF₃, Me
R² = Ar, HetAr

2.10. CONCLUSIONS

As can be seen from the methods described above, MCPs are becoming a convenient and efficient tool for easy access to 5-membered fused aromatic heterocycles. The obvious advantages of these one-pot methods motivate scientists to continue their work in this direction so that more methods can be developed. However, considering the demands of today’s pharmaceutical industry, the field of multicomponent reactions is still under-exploited and more efficient MCPs for the synthesis of new heterocycles of pharmaceutical interest are waiting to be discovered.
2.11. REFERENCES

21. a) Rubinshtein, M.; James, C. R.; Young, J. L.; Ma, Y. J.; Kobayashi, Y.; Gianneschi,

41. Barluenga, J.; Jimenez-Aquino, A.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007,
 46, 1529-1532.
 348, 846-850.
 5163.
 2012, 48, 808-810.
49. For the most recent reviews on the synthesis and biological activity of benzofurans, see:
 A.; Abdel-Wahab, B. F.; El-Hiti, G. A. Curr. Org. Chem. 2010, 14, 48-64. c) Cacchi,
56. Unpublished results, see chapter 3 of this dissertation.

82. For selected reviews on the synthesis and biological activity of benzoxazoles, see: a) Lokwani, P.; Nagori, B. P.; Batra, N.; Goyal, A.; Gupta, S.; Singh, N. J. Chem. Pharm.

CHAPTER 3

Solution-Phase Parallel Synthesis of a Diverse Library of 1,2-Dihydroisoquinolines

Reproduced from ACS Combinatorial Science 2011, 13, 265-271, with permission from the American Chemical Society.
Copyright © 2011

Nataliya A. Markina,† Raffaella Mancuso,‡ Benjamin Neuenswander,‡ Gerald H. Lushington‡ and Richard C. Larock†,*

† Department of Chemistry, Iowa State University, Ames, Iowa 50011
‡ Dipartimento di Chimica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
‡ University of Kansas NIH Center of Excellence in Chemical Methodologies and Library Development, Lawrence, Kansas 66047

3.1. ABSTRACT

Synthesis of a 105 membered library of 1,2-dihydroisoquinolines is described. The 1,2-dihydroisoquinoline compounds have been prepared in good yields using a Lewis acid and organocatalyst-cocatalyzed multicomponent reaction of 2-(1-alkynyl)benzaldehydes, amines and ketones. Various indoles have also been employed as pronucleophiles, furnishing 1-(3-indolyl)-1,2-dihydroisoquinolines. The halogen functionality present in some of the synthesized compounds allows for further diversification by palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings to give more diversified 1,2-dihydroisoquinoline derivatives.
3.2. INTRODUCTION

Structures containing a 1,2-dihydroisoquinoline fragment are valuable intermediates for the synthesis of biologically active compounds, e.g. alkaloids and pharmaceuticals.¹ For example, cribrostatin 4 and toneberbine IK-2 have been shown to possess cytotoxicity against some human cancer cells (Figure 1).²,³ The hydrochloride salt of the tetrahydroisoquinoline quinapril (sold under the brand name Accupril) is used for the treatment of congestive heart failure and hypertension⁴.

![Molecules](attachment:structures.png)

Figure 1. Examples of biologically active 1,2-dihydro- and tetrahydroisoquinolines

Among the numerous methods developed for synthesis of the 1,2-dihydroisoquinoline core, the most common strategies include functionalization of preformed isoquinoline units using various nucleophiles⁵ or ring-forming reactions of 2-(1-alkynyl)arencarboxaldehyde imines through transition metal-catalyzed processes.⁶ The latter processes have also been extended to one-pot procedures that employ 2-(1-alkynyl)arencarboxaldehydes and amines.
to preform the required imines \textit{in situ}.7

The solution-phase parallel synthesis of libraries of low molecular weight compounds is increasingly important in modern medicinal chemistry.8 This approach facilitates the high throughput screening of larger and more diverse sets of compounds with less time spent on optimization of the reaction conditions. In continuation of our work in adapting proven methods for the synthesis of heterocycles to a high throughput synthesis format,9 we herein report the solution phase synthesis of a library of 1,2-dihydroisoquinolines.

In order to synthesize a library with greater chances for biological activity, the multi-substituted 1,2-dihydroisoquinoline template 1 has been evaluated computationally for its drug-like properties on the basis of Lipinski’s “rule of five”10 (Scheme 1).

Calculations have been performed based on the commercial availability of aldehydes 4 (Scheme 2), terminal alkynes 5 and 10, ketones 6, anilines 7, indoles 9 and boronic acids 11 (Figures 2 and 4). This data has been used to populate a virtual library of all theoretically possible products, giving 24,888 \([8 \times 2 \times 6 \times 40) + (8 \times 50 \times 6 \times 3) + (8 \times 50 \times 6) + (8 \times 53 \times 9 \times 3)\] unique potential compounds. A small subset of this virtual library, namely 239 compounds, was shown to follow Lipinski’s rules with \(\leq 1\) violation. The library synthesis of 1,2-dihydroisoquinolines described herein was primarily focused on the preparation of compounds that fall within these 239 examples.

3.3. RESULTS AND DISCUSSION

3.3.1. Library construction

To study a wide variety of multisubstituted 1,2-dihydroisoquinolines, we developed
the strategy described in Scheme 1. The 1,2-Dihydroisoquinolines 1 can be prepared directly from the corresponding 2-(1-alkynyl)benzaldehydes 3 through reaction with anilines 7 and either ketones 6 or indoles 9. More highly substituted 1,2-dihydroisoquinolines can be prepared via palladium-catalyzed couplings of the corresponding halogen-containing 1,2-dihydroisoquinolines 2, prepared through the same three-component coupling reaction.

Scheme 1. Library outline and preparation of 2-(1-alkynyl)benzaldehydes 3

![Scheme 1](image_url)

The 2-(1-Alkynyl)benzaldehydes 3 are easily prepared by palladium/copper-catalyzed Sonogashira coupling\(^{11}\) of the corresponding \(\alpha\)-bromobenzaldehydes 4 (1.0 equiv of 4, 1.05 equiv of terminal alkyne 5, 2 mol % of \(\text{PdCl}_2(\text{PPh}_3)_2\), 2 mol % of CuI, and Et\(_3\)N at 50 °C for 6 h) (Scheme 1). The yields of this process range from 65% to 100% and this procedure readily accommodates various functional groups (Table 1).
Table 1. Data for Compounds 3\{1-15\}

<table>
<thead>
<tr>
<th>compound 3</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>X</th>
<th>yield (%)(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3{1}</td>
<td>4-(MeO)C(_6)H(_4)</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>99</td>
</tr>
<tr>
<td>3{2}</td>
<td>3,5-(MeO)(_2)C(_6)H(_3)</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>96</td>
</tr>
<tr>
<td>3{3}</td>
<td>3,5-(MeO)(_2)C(_6)H(_3)</td>
<td>H</td>
<td>MeO</td>
<td>Br</td>
<td>85</td>
</tr>
<tr>
<td>3{4}</td>
<td>3,5-(MeO)(_2)C(_6)H(_3)</td>
<td>H</td>
<td>Br</td>
<td>I</td>
<td>68(^b)</td>
</tr>
<tr>
<td>3{5}</td>
<td>3-(MeO)C(_6)H(_4)</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>78</td>
</tr>
<tr>
<td>3{6}</td>
<td>3-(MeO)C(_6)H(_4)</td>
<td>H</td>
<td>F</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>3{7}</td>
<td>4-(O(_2)N)C(_6)H(_4)</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>65(^c)</td>
</tr>
<tr>
<td>3{8}</td>
<td>3-thiophenyl</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>68</td>
</tr>
<tr>
<td>3{9}</td>
<td>3-thiophenyl</td>
<td>H</td>
<td>MeO</td>
<td>Br</td>
<td>87</td>
</tr>
<tr>
<td>3{10}</td>
<td>3-thiophenyl</td>
<td>H</td>
<td>F</td>
<td>Br</td>
<td>89</td>
</tr>
<tr>
<td>3{11}</td>
<td>3-thiophenyl</td>
<td>H</td>
<td>MeO</td>
<td>Br</td>
<td>90</td>
</tr>
<tr>
<td>3{12}</td>
<td>3-MeC(_6)H(_4)</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>81</td>
</tr>
<tr>
<td>3{13}</td>
<td>phenyl</td>
<td>H</td>
<td>NO(_2)</td>
<td>Cl</td>
<td>89</td>
</tr>
<tr>
<td>3{14}</td>
<td>4-(MeO)C(_6)H(_4)</td>
<td>H</td>
<td>Br</td>
<td>I</td>
<td>56</td>
</tr>
<tr>
<td>3{15}</td>
<td>Phenyl</td>
<td>H</td>
<td>F</td>
<td>Br</td>
<td>84</td>
</tr>
</tbody>
</table>

\(^d\)Isolated yields after column chromatography. All compounds 3 were characterized by \(^1\)H NMR spectroscopy. Those not described in the literature were additionally characterized by \(^{13}\)C NMR and HRMS; \(^b\)prepared from the corresponding methyl benzoate (1. LAH; 2. PCC); \(^c\)this reaction used different reaction conditions: 3\% PdCl\(_2\)(PPh\(_3\))\(_2\), 2\% Cul, \(^7\)Pr\(_2\)NH (4 equiv), DMF, 70 °C, 2 h.

3.3.2. Preparation of the building blocks

For the synthesis of the 1,2-dihydroisoquinoline core, we utilized the procedure described by Ding et al.\(^7\)a (Scheme 2, eq. 1). The advantages of this three-component AgOTf and \(L\)-proline cocatalyzed process include the commercially availability of ketones 6 and amines 7, three independent points of diversification and formation of the desired products in
one step.

Scheme 2. Synthesis of 1,2-dihydroisoquinolines and 1-(3-indolyl)-1,2-dihydroisoquinolines

\[
\begin{align*}
3 + \text{Acetone} + 7 & \xrightarrow{\text{AgOTf, L-proline, EtOH, 60 °C, 16 h}} 8a \\
3 + 9 + 7 & \xrightarrow{\text{AgOTf, L-proline, EtOH, 60 °C, 16 h}} 8b
\end{align*}
\]

Additionally, we are able to replace ketones with indoles in this process, which allows one to isolate 1-(3-indolyl)-1,2-dihydroisoquinolines in a single one-pot process (Scheme, eq. 2). Since initiation of this work, Yamamoto and Wu have independently reported the use of indoles in the same type of process under slightly modified reaction conditions.\(^{12}\) By employing the reaction conditions optimized for ketones using a sublibrary of indoles 9, we have been able to isolate 1-(3-indolyl)-1,2-dihydroisoquinolines in moderate to good yields in most cases, broadening the scope of the previously reported 1,2-dihydroisoquinoline synthesis.

The sublibraries of ketones, anilines and indoles used for the synthesis of 1,2-dihydroisoquinolines 8 are presented in Figure 2.
Figure 2. Ketone $6\{1-5\}$, aniline $7\{1-4\}$ and indole $9\{1-6\}$ sublibraries

The data for the 1,2-dihydroisoquinolines $8\{1-30\}$ prepared, but not subjected to further diversification, is shown in Table 2.

Table 2. Library Data for Compounds $8\{1-30\}$

<table>
<thead>
<tr>
<th>product</th>
<th>3</th>
<th>6 or 9</th>
<th>7</th>
<th>yield (%)a</th>
<th>purity (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8{1}$</td>
<td>$3{1}$</td>
<td>$6{4}$</td>
<td>$7{1}$</td>
<td>33</td>
<td>96</td>
</tr>
<tr>
<td>$8{2}$</td>
<td>$3{1}$</td>
<td>$9{1}$</td>
<td>$7{1}$</td>
<td>69</td>
<td>98</td>
</tr>
<tr>
<td>$8{3}$</td>
<td>$3{2}$</td>
<td>$6{1}$</td>
<td>$7{1}$</td>
<td>43</td>
<td>99</td>
</tr>
<tr>
<td>$8{4}$</td>
<td>$3{2}$</td>
<td>$9{4}$</td>
<td>$7{1}$</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>$8{5}$</td>
<td>$3{3}$</td>
<td>$6{5}$</td>
<td>$7{2}$</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>$8{6}$</td>
<td>$3{5}$</td>
<td>$9{1}$</td>
<td>$7{2}$</td>
<td>76</td>
<td>95</td>
</tr>
<tr>
<td>$8{7}$</td>
<td>$3{6}$</td>
<td>$9{3}$</td>
<td>$7{2}$</td>
<td>29</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 2 continued.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8{8}</td>
<td>3{7}</td>
<td>6{3}</td>
<td>7{1}</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{9}</td>
<td>3{7}</td>
<td>9{5}</td>
<td>7{2}</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{10}</td>
<td>3{8}</td>
<td>6{1}</td>
<td>7{1}</td>
<td>56</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{11}</td>
<td>3{8}</td>
<td>6{1}</td>
<td>7{3}</td>
<td>56</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{12}</td>
<td>3{8}</td>
<td>6{2}</td>
<td>7{1}</td>
<td>56</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{13}</td>
<td>3{8}</td>
<td>6{4}</td>
<td>7{1}</td>
<td>72</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{14}</td>
<td>3{11}</td>
<td>6{5}</td>
<td>7{2}</td>
<td>15<sup>b</sup></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{15}</td>
<td>3{11}</td>
<td>9{1}</td>
<td>7{1}</td>
<td>24</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{16}</td>
<td>3{12}</td>
<td>6{1}</td>
<td>7{1}</td>
<td>56</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{17}</td>
<td>3{12}</td>
<td>6{1}</td>
<td>7{3}</td>
<td>66</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{18}</td>
<td>3{12}</td>
<td>6{2}</td>
<td>7{1}</td>
<td>72</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{19}</td>
<td>3{12}</td>
<td>6{4}</td>
<td>7{1}</td>
<td>60</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{20}</td>
<td>3{12}</td>
<td>9{2}</td>
<td>7{1}</td>
<td>63</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{21}</td>
<td>3{12}</td>
<td>9{1}</td>
<td>7{1}</td>
<td>72</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{22}</td>
<td>3{13}</td>
<td>6{2}</td>
<td>7{1}</td>
<td>77</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{23}</td>
<td>3{14}</td>
<td>6{1}</td>
<td>7{1}</td>
<td>59</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{24}</td>
<td>3{14}</td>
<td>6{1}</td>
<td>7{3}</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{25}</td>
<td>3{14}</td>
<td>6{2}</td>
<td>7{1}</td>
<td>77</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{26}</td>
<td>3{14}</td>
<td>6{4}</td>
<td>7{1}</td>
<td>44</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{27}</td>
<td>3{15}</td>
<td>6{1}</td>
<td>7{1}</td>
<td>78</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{28}</td>
<td>3{15}</td>
<td>6{1}</td>
<td>7{3}</td>
<td>98</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{29}</td>
<td>3{15}</td>
<td>6{2}</td>
<td>7{1}</td>
<td>74</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8{30}</td>
<td>3{15}</td>
<td>6{4}</td>
<td>7{1}</td>
<td>53</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aIsolated yield after column chromatography. ^bIsolated yield after preparative HPLC. ^cUV purity determined at 214 nm after preparative HPLC.

1,2-Dihydroisoquinolines 8{31-51}, containing halogen atoms that can be further subjected to palladium-catalyzed couplings, have been isolated and purified by column
chromatography. All of the 1,2-dihydroisoquinolines 8{31-51}, except 8{39} and 8{45}, which were used crude in the next step, were fully characterized using HRMS, as well as 1H and 13C NMR spectroscopy (see the Supporting Information for the experimental details). In most cases, moderate to good yields of the 1,2-dihydroisoquinolines 8{31-51} have been obtained. The results are summarized in Figure 3.

As can be seen from both Table 2 and Figure 3, this process is generally functional group tolerant and allows one to obtain diversely-substituted 1,2-dihydroisoquinolines in 9-98% yields. The major limitation of this procedure is that it does not tolerate strong electron-withdrawing groups in the alkyne portion of the 2-(1-alkynyl)benzaldehydes 3. For example, in the reactions of compound 3{7}, bearing a nitro group, compounds 8{8} and 8{9} were not detected in the crude reaction mixtures, and compound 8{39} was obtained in only an 11% yield. By employing indoles 9 instead of ketones 6 in this process, good yields from the unsubstituted indole 9{1} have been obtained. This process exhibits good tolerance of various functional groups in positions 1 and 5 of the indole; thus, compounds 8{20}, 8{50} and 8{51} were obtained in 63, 46 and 75% yields, respectively. The presence of functional groups in position 2 of the indole significantly lowered the yields of the corresponding products; thus, compounds 8{4} and 8{7} were obtained in only 9 and 29% yields, respectively.

2.3.3. Diversification

Finally, the 1,2-dihydroisoquinolines 8{31-51} can be further elaborated using well known palladium-mediated processes, such as Suzuki-Miyaura13 and Sonogashira11 couplings (Scheme 3).
Figure 3. Halogen-containing 1,2-dihydroisoquinolines 8\{31–51\}
Scheme 3. Diversification of 1,2-dihydroisoquinolines 8{31-51}a

aMethod A (Sonogashira coupling): 3 mol % PdCl$_2$(PPh$_3$)$_2$, 3 mol % CuI, Et$_3$N, alkyne 10 (1.2 equiv), 60 °C, 40 min under microwave irradiation. Method B (Suzuki-Miyaura coupling): 5 mol % Pd(PPh$_3$)$_4$, 1M Cs$_2$CO$_3$ (2 equiv), boronic acid 11 (1.2 equiv), 1:1 EtOH/DMF, 120 °C, 20 min under microwave irradiation.

Sonogashira coupling of the 1,2-dihydroisoquinolines 8{31-51} with various terminal alkynes 10 nicely provides the corresponding alkyne products 12a{I-22} using Et$_3$N as the solvent under microwave irradiation for 40 min at 60 °C (Scheme 3). The Suzuki-Miyaura coupling of the 1,2-dihydroisoquinolines 8{31-51} with various arylboronic acids 11
proceeded smoothly to give the desired products 12b{1-53}. The reactions were carried out in a 1:1 ethanol/DMF mixture with the addition of 1M aqueous Cs₂CO₃ solution at 120 °C under microwave irradiation for 20 min. The sublibraries of commercially available terminal alkynes 10 and boronic acids 11, containing heterocycles and polar functionality to incorporate drug-like moieties into the resulting coupling products were chosen based on their commercial availability and the Lipinski compliance calculations mentioned above (Figure 4).

![Chemical structures](image)

Figure 4. Terminal alkyne 10{1-5} and boronic acid 11{1-11} sublibraries

Fluorine atom-containing 2-(1-alkynyl)benzaldehydes 3{6}, 3{10}, 3{15}, aniline 7{3} and arylboronic acid 11{7} have been chosen because the resulting fluorine-containing 1,2-dihydroisoquinolines and Suzuki-Miyaura coupling products are of considerable interest.
due to the many versatile applications of fluorine-containing compounds in industry and medicine. The results for the Sonogashira and Suzuki-Miyaura couplings performed on the 1,2-dihydroisoquinolines 8{31-51} are summarized in Table 3.

Table 3. Library Data for Compounds 12a{1-22} and 12b{1-53}

<table>
<thead>
<tr>
<th>product</th>
<th>8</th>
<th>10 or 11</th>
<th>yield (%)<sup>a</sup></th>
<th>purity (%)<sup>c</sup></th>
<th>product</th>
<th>8</th>
<th>10 or 11</th>
<th>yield (%)<sup>a</sup></th>
<th>purity (%)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>12a{1}</td>
<td>8{33}</td>
<td>10{1}</td>
<td>65</td>
<td>100</td>
<td>12b{17}</td>
<td>8{38}</td>
<td>11{1}</td>
<td>15<sup>b</sup></td>
<td>100</td>
</tr>
<tr>
<td>12a{2}</td>
<td>8{34}</td>
<td>10{1}</td>
<td>99</td>
<td>100</td>
<td>12b{18}</td>
<td>8{38}</td>
<td>11{2}</td>
<td>38<sup>b</sup></td>
<td>100</td>
</tr>
<tr>
<td>12a{3}</td>
<td>8{35}</td>
<td>10{2}</td>
<td>69</td>
<td>-</td>
<td>12b{19}</td>
<td>8{38}</td>
<td>11{3}</td>
<td>34<sup>b</sup></td>
<td>100</td>
</tr>
<tr>
<td>12a{4}</td>
<td>8{35}</td>
<td>10{3}</td>
<td>96</td>
<td>100</td>
<td>12b{20}</td>
<td>8{38}</td>
<td>11{8}</td>
<td>66</td>
<td>100</td>
</tr>
<tr>
<td>12a{5}</td>
<td>8{35}</td>
<td>10{1}</td>
<td>84</td>
<td>100</td>
<td>12b{21}</td>
<td>8{39}</td>
<td>11{3}</td>
<td>45</td>
<td>98</td>
</tr>
<tr>
<td>12a{6}</td>
<td>8{36}</td>
<td>10{1}</td>
<td>89</td>
<td>100</td>
<td>12b{22}</td>
<td>8{40}</td>
<td>11{2}</td>
<td>86</td>
<td>96</td>
</tr>
<tr>
<td>12a{7}</td>
<td>8{36}</td>
<td>10{2}</td>
<td>54</td>
<td>100</td>
<td>12b{23}</td>
<td>8{40}</td>
<td>11{3}</td>
<td>68</td>
<td>100</td>
</tr>
<tr>
<td>12a{8}</td>
<td>8{36}</td>
<td>10{3}</td>
<td>75</td>
<td>99</td>
<td>12b{24}</td>
<td>8{40}</td>
<td>11{4}</td>
<td>76</td>
<td>97</td>
</tr>
<tr>
<td>12a{9}</td>
<td>8{37}</td>
<td>10{3}</td>
<td>31<sup>b</sup></td>
<td>100</td>
<td>12b{25}</td>
<td>8{40}</td>
<td>11{6}</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>12a{10}</td>
<td>8{37}</td>
<td>10{1}</td>
<td>62</td>
<td>100</td>
<td>12b{26}</td>
<td>8{40}</td>
<td>11{10}</td>
<td>52</td>
<td>98</td>
</tr>
<tr>
<td>12a{11}</td>
<td>8{37}</td>
<td>10{2}</td>
<td>58</td>
<td>100</td>
<td>12b{27}</td>
<td>8{40}</td>
<td>11{11}</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>12a{12}</td>
<td>8{40}</td>
<td>10{1}</td>
<td>84</td>
<td>98</td>
<td>12b{28}</td>
<td>8{41}</td>
<td>11{1}</td>
<td>41</td>
<td>99</td>
</tr>
<tr>
<td>12a{13}</td>
<td>8{42}</td>
<td>10{1}</td>
<td>69</td>
<td>98</td>
<td>12b{29}</td>
<td>8{41}</td>
<td>11{2}</td>
<td>84</td>
<td>94</td>
</tr>
<tr>
<td>12a{14}</td>
<td>8{43}</td>
<td>10{1}</td>
<td>75</td>
<td>100</td>
<td>12b{30}</td>
<td>8{42}</td>
<td>11{1}</td>
<td>26<sup>b</sup></td>
<td>100</td>
</tr>
<tr>
<td>12a{15}</td>
<td>8{46}</td>
<td>10{3}</td>
<td>94</td>
<td>100</td>
<td>12b{31}</td>
<td>8{42}</td>
<td>11{3}</td>
<td>64</td>
<td>98</td>
</tr>
<tr>
<td>12a{16}</td>
<td>8{46}</td>
<td>10{4}</td>
<td>77</td>
<td>100</td>
<td>12b{32}</td>
<td>8{42}</td>
<td>11{10}</td>
<td>48<sup>b</sup></td>
<td>100</td>
</tr>
<tr>
<td>12a{17}</td>
<td>8{49}</td>
<td>10{5}</td>
<td>100</td>
<td>98</td>
<td>12b{33}</td>
<td>8{43}</td>
<td>11{3}</td>
<td>58</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 3 continued.

<table>
<thead>
<tr>
<th>12a{18}</th>
<th>8{49}</th>
<th>10{1}</th>
<th>12°</th>
<th>100</th>
<th>12b{34}</th>
<th>8{43}</th>
<th>11{8}</th>
<th>42°</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>12a{19}</td>
<td>8{49}</td>
<td>10{4}</td>
<td>25</td>
<td>93</td>
<td>12b{35}</td>
<td>8{43}</td>
<td>11{11}</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>12a{20}</td>
<td>8{50}</td>
<td>10{1}</td>
<td>21°</td>
<td>100</td>
<td>12b{36}</td>
<td>8{44}</td>
<td>11{2}</td>
<td>36°</td>
<td>92</td>
</tr>
<tr>
<td>12a{21}</td>
<td>8{50}</td>
<td>10{5}</td>
<td>100</td>
<td>100</td>
<td>12b{37}</td>
<td>8{44}</td>
<td>11{4}</td>
<td>69</td>
<td>98</td>
</tr>
<tr>
<td>12a{22}</td>
<td>8{51}</td>
<td>10{1}</td>
<td>11°</td>
<td>100</td>
<td>12b{38}</td>
<td>8{44}</td>
<td>11{5}</td>
<td>71</td>
<td>98</td>
</tr>
<tr>
<td>12b{1}</td>
<td>8{31}</td>
<td>11{5}</td>
<td>70</td>
<td>95</td>
<td>12b{39}</td>
<td>8{44}</td>
<td>11{7}</td>
<td>13°</td>
<td>99</td>
</tr>
<tr>
<td>12b{2}</td>
<td>8{32}</td>
<td>11{10}</td>
<td>28°</td>
<td>98</td>
<td>12b{40}</td>
<td>8{44}</td>
<td>11{9}</td>
<td>16°</td>
<td>95</td>
</tr>
<tr>
<td>12b{3}</td>
<td>8{32}</td>
<td>11{7}</td>
<td>16°</td>
<td>93</td>
<td>12b{41}</td>
<td>8{44}</td>
<td>11{10}</td>
<td>27°</td>
<td>92</td>
</tr>
<tr>
<td>12b{4}</td>
<td>8{32}</td>
<td>11{5}</td>
<td>91</td>
<td>99</td>
<td>12b{42}</td>
<td>8{45}</td>
<td>11{1}</td>
<td>21°</td>
<td>100</td>
</tr>
<tr>
<td>12b{5}</td>
<td>8{33}</td>
<td>11{2}</td>
<td>100</td>
<td>100</td>
<td>12b{43}</td>
<td>8{45}</td>
<td>11{3}</td>
<td>43°</td>
<td>100</td>
</tr>
<tr>
<td>12b{6}</td>
<td>8{33}</td>
<td>11{6}</td>
<td>63</td>
<td>100</td>
<td>12b{44}</td>
<td>8{45}</td>
<td>11{8}</td>
<td>16°</td>
<td>>99</td>
</tr>
<tr>
<td>12b{7}</td>
<td>8{34}</td>
<td>11{2}</td>
<td>49°</td>
<td>97</td>
<td>12b{45}</td>
<td>8{46}</td>
<td>11{1}</td>
<td>63</td>
<td>100</td>
</tr>
<tr>
<td>12b{8}</td>
<td>8{35}</td>
<td>11{2}</td>
<td>89</td>
<td>100</td>
<td>12b{46}</td>
<td>8{46}</td>
<td>11{3}</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>12b{9}</td>
<td>8{35}</td>
<td>11{6}</td>
<td>91</td>
<td>100</td>
<td>12b{47}</td>
<td>8{46}</td>
<td>11{8}</td>
<td>58°</td>
<td>100</td>
</tr>
<tr>
<td>12b{10}</td>
<td>8{35}</td>
<td>11{7}</td>
<td>48</td>
<td>100</td>
<td>12b{48}</td>
<td>8{47}</td>
<td>11{4}</td>
<td>50</td>
<td>96</td>
</tr>
<tr>
<td>12b{11}</td>
<td>8{36}</td>
<td>11{2}</td>
<td>77</td>
<td>100</td>
<td>12b{49}</td>
<td>8{48}</td>
<td>11{4}</td>
<td>77</td>
<td>94</td>
</tr>
<tr>
<td>12b{12}</td>
<td>8{36}</td>
<td>11{6}</td>
<td>100</td>
<td>99</td>
<td>12b{50}</td>
<td>8{49}</td>
<td>11{4}</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>12b{13}</td>
<td>8{36}</td>
<td>11{10}</td>
<td>100</td>
<td>99</td>
<td>12b{51}</td>
<td>8{50}</td>
<td>11{6}</td>
<td>36°</td>
<td>100</td>
</tr>
<tr>
<td>12b{14}</td>
<td>8{37}</td>
<td>11{2}</td>
<td>42°</td>
<td>100</td>
<td>12b{52}</td>
<td>8{50}</td>
<td>11{7}</td>
<td>18°</td>
<td>100</td>
</tr>
<tr>
<td>12b{15}</td>
<td>8{37}</td>
<td>11{4}</td>
<td>55</td>
<td>100</td>
<td>12b{53}</td>
<td>8{51}</td>
<td>11{10}</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>12b{16}</td>
<td>8{37}</td>
<td>11{10}</td>
<td>22°</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Isolated yield after column chromatography.
 * Isolated yield after preparative HPLC.
 * UV purity determined at 214 nm after preparative HPLC.
Under our reaction conditions, microwave irradiation has been shown not only to dramatically reduce the reaction times, but to provide higher yields of both the desired alkyne products 12a{1-22} and the Suzuki-Miyaura coupling products 12b{1-53} when compared to conventional heating methods. These processes have been performed in parallel on approximately a ~35-60 mg scale, starting from 1,2-dihydroisoquinolines 8{31-51}. All of the crude products 12a and 12b were isolated by either column chromatography or preparative HPLC. The purity of the reaction mixtures has been analyzed by TLC, LC-MS, and HPLC. We have used Lipinski’s rule of five10 as a general guide for bioavailability, because compounds with poor bioavailability face more of a challenge in becoming successful clinical candidates. According to Lipinski’s rules, the favorable drug candidates should have a molecular weight less than 500, clogP less than 5, the number of hydrogen bond donors less than 5 and acceptors less than 10, and the number of rotatable bonds less than 10. These parameters were calculated for each of the library members using the SYBYL15 program. The majority of the 105 1,2-dihydroisoquinolines 8{1-30}, 12a{1-22} and 12b{1-53} synthesized satisfy these requirements.

3.4. CONCLUSIONS

In summary, a simple and efficient method for the parallel synthesis of multi-substituted 1,2-dihydroisoquinolines 8 and 12 has been developed employing a one-pot, three-component AgOTf and L-proline-cocatalyzed reaction of 2-(1-alkynyl)benzaldehydes, amines and ketones or indoles. Palladium-catalyzed couplings, such as Suzuki-Miyaura and Sonogashira cross-couplings have been used to further diversify the 1,2-dihydroisoquinolines
8, providing pure 5+ mg samples of each library compound. The average purity of the 105 members of this library is 94.1% and the average yield is 55.7%. The elaborated, multi-substituted 1,2-dihydroisoquinolines 8{1-30}, 12a{1-22} and 12b{1-53} have been added to the collection of the Kansas University NIH Center for Chemical Methodologies and Library Development (KU CMLD) and will be submitted to the National Institutes of Health Molecular Library Screening Center Network (MLSCN) for evaluation by a broad range of assays.

3.5. ACKNOWLEDGEMENTS

We thank the National Institute of General Medical Sciences (GM070620 and GM079593) and the National Institutes of Health Kansas University Chemical Methodologies and Library Development Center of Excellence (GM069663) for support of this research; Johnson Matthey, Inc. and Kawaken Fine Chemicals Co. Ltd. for donations of palladium catalysts; and Frontier Scientific and Synthonix for donations of boronic acids; and Dr. Akhilesh Verma for the preparation and characterization of 2-(1-alkynyl)benzaldehydes 3{12}-3{15}.

3.6. EXPERIMENTAL

The \(^1\)H (400 MHz) and \(^{13}\)C NMR (100 MHz) spectra were recorded in CDCl\(_3\) as the solvent using tetramethylsilane (TMS) as an internal standard, unless otherwise stated.
Chemical shifts are reported in δ units (ppm) by assigning the TMS resonance in the 1H NMR spectrum as 0.00 ppm and the CDCl$_3$ resonance in the 13C NMR spectrum as 77.23 ppm. All coupling constants, J, are reported in Hertz (Hz). Analytical thin layer chromatography (TLC) was performed using commercially prepared 60-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm). All melting points are uncorrected. High resolution mass spectra (HRMS) were obtained using a Waters/Micromass LCT Premier TOF using EI at a voltage of 70 eV. Commercially available reagents were used without further purification, unless otherwise stated. The anhydrous organic solvents (e.g. Et$_2$O, EtOAc, CHCl$_3$, MeOH, EtOH, CH$_3$CN, DMF, hexane, toluene, etc.) were purchased from commercial sources and used as received. The palladium catalysts were donated by Johnson Matthey Inc. and Kawaken Fine Chemicals Co. Ltd. The boronic acids were donated by Frontier Scientific and Synthonix Co. Ltd. All microwave irradiation reactions were carried out on a Biotage-EXP Microwave synthesis system, operating at a frequency of 2450 MHz with continuous irradiation power from 0-300 W in 2 mL oven-dried Biotage microwave vials sealed with an aluminum/Teflon® crimp top, which can be exposed to a maximum of 250 °C and 20 bar internal pressure. The reaction temperature was measured by an IR sensor on the outer surface of the process vial.

3.6.2. General procedure for preparation of the 2-(1-alkynyl)benzaldehydes 3.
These compounds were prepared according to a procedure reported previously by our group.\(^1\) To a solution of the corresponding 2-bromoarencarboxaldehyde (0.54 mmol) and alkyne (0.65 mmol) in Et\(_3\)N (2.2 mL) was added PdCl\(_2\)(PPh\(_3\))\(_2\) (0.011 mmol, 2 mol \%) and the mixture was stirred for 5 min. Then CuI (0.0054 mmol, 1 mol \%) was added and the reaction mixture was heated to 50 °C under a nitrogen atmosphere for 4-16 h. After completion, the resulting mixture was concentrated under reduced pressure and subjected to column chromatography on silica gel using ethyl acetate/hexanes as the eluent.

2-[(4-Methoxyphenyl)ethynyl]benzaldehyde (3\{1\})

\[\begin{array}{c}
\text{O} \\
\text{H} \\
\text{Me}
\end{array}\]

This compound was obtained as a cream colored solid in a 99\% yield: mp 47-49 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.84 (s, 3H), 6.91 (d, \(J = 8.7\) Hz, 2H), 7.42 (dd, \(J = 7.7, 7.7\) Hz, 1H), 7.50 (d, \(J = 8.7\) Hz, 2H), 7.59 (m, 2H), 7.93 (d, \(J = 7.8\) Hz, 1H), 10.65 (s, 1H). The \(^1\)H NMR spectral data is in good agreement with the literature data.\(^{16}\)

2-[(3,5-Dimethoxyphenyl)ethynyl]benzaldehyde (3\{2\})

\[\begin{array}{c}
\text{O} \\
\text{H} \\
\text{Me}
\end{array}\]

This compound was obtained as a yellow solid in a 99\% yield: mp 76-77 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.82 (s, 6H), 6.51 (d, \(J = 2.2\) Hz, 1H), 6.71 (d, \(J = 2.2\) Hz, 2H), 7.46 (t, \(J = 7.5\) Hz, 1H), 7.59 (t, \(J = 7.5\) Hz, 1H), 7.65 (d, \(J = 7.3\) Hz, 1H), 7.95 (d, \(J = 7.8\) Hz, 1H), 10.65 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 55.7, 84.6, 96.5, 102.8, 109.6,
123.8, 126.9, 127.5, 128.9, 133.5, 133.9, 136.1, 160.9, 191.9; HRMS (EI) calcd for C_{17}H_{14}O_{3} 266.09431, found 266.09490.

2-[(3,5-Dimethoxyphenyl)ethynyl]-5-methoxybenzaldehyde (3{3})

![Chemical structure]

This compound was obtained as a yellow solid in a 85% yield: mp 118-119 °C; \(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.81 (s, 6H), 3.89 (s, 3H), 6.49 (t, \(J = 2.2\) Hz, 1H), 6.69 (d, \(J = 2.2\) Hz, 2H), 7.15 (dd, \(J = 2.7, 8.6\) Hz, 1H), 7.43 (d, \(J = 2.6, 1H\)), 7.57 (d, \(J = 8.6\) Hz, 1H), 10.61 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 55.7, 55.9, 84.6, 95.1, 102.5, 109.5, 110.1, 119.7, 121.9, 124.1, 134.8, 137.5, 160.0, 160.9, 191.8; HRMS (EI) calcd for C_{18}H_{16}O_{4} 296.10491, found 296.10490.

5-Bromo-2-[(3,5-dimethoxyphenyl)ethynyl]benzaldehyde (3{4})

![Chemical structure]

This compound was prepared from the corresponding methyl ester by LiAlH\(_4\) reduction to the alcohol and PCC oxidation. To a solution of 1.02 g (2.72 mmol) of the starting material in ethyl ether (30 mL) was slowly added 1.25 g (3.26 mmol) of LiAlH\(_4\) and the reaction mixture was allowed to stir at room temperature for 3 h. Then brine was added and the layers were separated. The organic layer was dried over MgSO\(_4\), filtered and
concentrated *in vacuo*. The crude product was dissolved in methylene chloride (14 mL) and 0.70 g (3.26 mmol) of pyridinium chlorochromate (PCC) was added. The reaction mixture was stirred for 10 h. After a standard work-up procedure, aldehyde 3\{4\} was obtained as a colorless solid in a 68% yield: mp 126-127 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.81 (s, 6H), 6.51 (s, 1H), 6.69 (d, \(J = 2.1\) Hz, 2H), 7.50 (d, \(J = 8.2\) Hz, 1H), 7.69 (dd, \(J = 1.9, 8.2\) Hz, 1H), 8.05 (d, \(J = 1.8\) Hz, 1H), 10.54 (s, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 55.7, 83.7, 97.6, 102.9, 109.6, 117.7, 123.4, 125.6, 130.5, 134.8, 136.9, 137.1, 160.9, 190.4; HRMS (EI) calcd for C\(_{17}\)H\(_{13}\)O\(_3\)Br 344.00480, found 344.00569.

2-[(3-Methoxyphenyl)ethynyl]benzaldehyde (3\{5\})

This compound was obtained as a colorless oil in a 78% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.84 (s, 3H), 6.95 (dd, \(J = 1.5, 8.3\) Hz, 1H), 7.08 (s, 1H), 7.16 (d, \(J = 7.6\) Hz, 1H), 7.29 (t, \(J = 7.9\) Hz, 1H), 7.46 (t, \(J = 7.5\) Hz, 1H), 7.59 (t, \(J = 7.2\) Hz, 1H), 7.64 (d, \(J = 7.6\) Hz, 1H), 7.95 (d, \(J = 7.6\) Hz, 1H), 10.65 (s, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 55.6, 84.9, 96.5, 115.9, 116.6, 123.5, 124.4, 126.9, 127.5, 128.8, 129.8, 133.4, 136.1, 159.7, 191.9; HRMS (EI) calcd for C\(_{16}\)H\(_{12}\)O\(_2\) 236.08373, found 236.08409.
5-Fluoro-2-[(3-methoxyphenyl)ethynyl]benzaldehyde (3{6})

This compound was obtained as a yellow solid in a 100% yield: mp 81-83 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.09 (s, 3H), 6.95 (dd, $J = 2.2$, 8.2 Hz, 1H), 7.07 (s, 1H), 7.15 (d, $J = 7.6$ Hz, 1H), 7.27-7.33 (m, 2H), 7.60-7.67 (m, 2H), 10.60 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 55.6, 83.8, 96.2, 113.8, 114.1, 115.9, 116.6, 121.5, 121.7, 123.1, 123.3, 124.4, 129.9, 135.4, 135.5, 137.9, 138.1, 159.7, 161.4, 163.9, 190.6 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{16}$H$_{11}$O$_2$F 254.07433, found 254.07509.

2-[(4-Nitrophenyl)ethynyl]benzaldehyde (3{7})

This compound was obtained under slightly modified reaction conditions. To a solution of 2-bromobenzaldehyde (0.25 mmol) in DMF (4 mL) was added PdCl$_2$(PPh$_3$)$_2$ (0.0075 mmol, 3 mol %) and Cul (0.0050 mmol, 2 mol %) and the reaction mixture stirred for 2 min. Then the vial was sealed, flushed with argon and 1Pr$_2$NH (0.14 mL) was added and the reaction mixture was heated to 70 °C. Then the alkyne (0.3 mmol) in 1 mL of DMF was added dropwise over 5 min and the solution was stirred at 70 °C for 2 h. After completion of the reaction, the resulting mixture was concentrated under reduced pressure and subjected to column chromatography on silica gel using ethyl acetate/hexanes as the eluent. The product was obtained as an orange solid in a 65% yield: mp 129-131 °C; 1H
NMR (400 MHz, CDCl$_3$) δ 7.55 (t, $J = 7.5$ Hz, 1H), 7.62-7.73 (m, 4H), 7.98 (d, $J = 7.8$ Hz, 1H), 8.26 (d, $J = 8.7$ Hz, 2H), 10.60 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 90.1, 93.9, 123.9, 125.3, 128.1, 129.3, 129.8, 132.6, 133.7, 134.1, 136.2, 147.6, 191.1; HRMS (EI) calcd for C$_{15}$H$_9$NO$_3$ 251.05824, found 251.05877.

2-[(3-Thiophenyl)ethynyl]benzaldehyde (3{8})

This compound was obtained as a yellow oil in a 68% yield: 1H NMR (400 MHz, CDCl$_3$) δ 7.22 (d, $J = 4.9$ Hz, 1H), 7.32 (m, 1H), 7.42 (t, $J = 7.5$ Hz, 1H), 7.53-7.62 (m, 2H), 7.93 (d, $J = 7.8$ Hz, 1H), 10.61 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 84.7, 91.7, 121.6, 125.9, 127.0, 127.4, 128.7, 129.9, 133.3, 133.9, 135.9, 191.8; HRMS (EI) calcd for C$_{13}$H$_9$OS 212.02958, found 212.03001.

5-Methoxy-2-[(3-thiophenyl)ethynyl]benzaldehyde (3{9})

This compound was obtained as an off-white solid in an 87% yield: mp 74-76 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.87 (s, 3H), 7.12 (dd, $J = 2.7$, 8.6 Hz, 1H), 7.20 (d, $J = 4.9$ Hz, 1H), 7.33 (dd, $J = 3.1$, 4.8 Hz, 1H), 7.41 (d, $J = 2.6$ Hz, 1H), 7.54 (t, $J = 6.3$ Hz, 2H), 10.57 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 55.8, 84.6, 90.2, 109.9, 119.7, 121.9, 125.9, 129.3, 128.9, 129.8, 134.6, 137.3, 159.9, 191.7; HRMS (EI) calcd for C$_{14}$H$_{10}$O$_2$S 242.04015, found 242.04058.
5-Fluoro-2-[(3-thiophenyl)ethynyl]benzaldehyde (3{10})

This compound was obtained as a yellow solid in an 89% yield: mp 72-74 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.21 (dd, $J = 1.0$, 4.9 Hz, 1H), 7.28 (td, $J = 2.8$, 8.3 Hz, 1H), 7.34 (dd, $J = 3.0$, 4.9 Hz, 1H), 7.58-7.63 (m, 3H), 10.55 (d, $J = 3.2$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 83.6, 91.4, 113.7, 113.9, 121.3, 121.4, 121.6, 123.1, 126.0, 129.8, 129.9, 135.2, 135.3, 137.8, 137.9, 161.2, 163.7, 190.6 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{13}$H$_7$OSF 230.02016, found 230.02063.

4,5-Dioxolyl-2-[(3-thiophenyl)ethynyl]benzaldehyde (3{11})

This compound was obtained as a colorless solid in a 90% yield: mp 118-119 °C; 1H NMR (400 MHz, CDCl$_3$) δ 6.04 (s, 2H), 6.94 (s, 1H), 7.17 (d, $J = 4.9$ Hz, 1H), 7.31 (m, 2H), 7.54 (br s, 1H), 10.40 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 84.5, 90.4, 102.4, 105.9, 111.8, 121.4, 123.5, 125.8, 129.5, 129.6, 132.4, 148.6, 152.3, 189.9; HRMS (EI) calcd for C$_{14}$H$_8$O$_3$S 256.01941, found 256.02003.

2-[(3-Tolyl)ethynyl]benzaldehyde (3{12})

This compound was obtained as a yellow solid in an 81% yield: mp 36-37 °C; 1H NMR (300 MHz, CDCl$_3$) δ 2.38 (s, 3H), 7.19-7.65 (m, 8H), 7.95 (d, $J = 6.0$ Hz,
1H), 10.66 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.5, 84.8, 96.8, 122.4, 127.5, 128.6, 128.7, 128.9, 130.2, 132.5, 133.4, 133.9, 166.6, 191.9; HRMS (EI) calcd for C$_{16}$H$_{12}$O$_2$ 220.08880, found 221.09611.

5-Nitro-2-(phenylethynyl)benzaldehyde (3{13})

This compound was obtained as a yellow solid in an 89% yield: mp 111-112 °C; 1H NMR (300 MHz, CDCl$_3$) δ 7.42-7.46 (m, 3H), 7.61 (dd, $J = 6.8, 1.6$ Hz, 2H), 7.81 (d, $J = 8.0$ Hz, 1H), 8.40 (dd, $J = 7.9, 1.8$ Hz, 1H), 8.75 (d, $J = 2.4$ Hz, 1H), 10.65 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 83.8, 101.9, 121.4, 122.9, 127.9, 128.9, 130.3, 132.2, 132.6, 134.6, 136.7, 147.5, 189.5; HRMS (EI) calcd for C$_{15}$H$_{19}$NO$_3$ 251.05821, found 252.06553.

5-Bromo-2-[(4-methoxyphenyl)ethynyl]benzaldehyde (3{14})

This compound was obtained as a white solid in a 56% yield: mp 98-100 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.83 (s, 3H), 6.89 (d, $J = 8.7$ Hz, 2H), 7.49-7.45 (m, 3H), 7.65 (dd, $J = 2.3, 8.2$ Hz, 1H), 8.03 (d, $J = 2.0$ Hz, 1H), 10.53 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 55.3, 82.5, 97.9, 114.1, 114.2, 124.2, 126.2, 130.2, 133.2, 134.0, 134.3, 136.6, 160.4, 190.4; HRMS calcd for C$_{18}$H$_{11}$BrO$_2$ 315.1613, found 315.1633.
5-Fluoro-2-(phenylethynyl)benzaldehyde (3{15})

![Chemical structure](attachment:image.png)

This compound was obtained as a yellow solid in an 84% yield: mp 51-52 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.30 (td, \(J = 6.3, 2.1\) Hz, 1H), 7.37-7.40 (m, 3H), 7.54-7.66 (m, 4H), 10.60 (d, \(J = 2.4\) Hz, 1H); the \(^1\)H NMR spectral data is in good agreement with the literature data.\(^{17}\)

3.6.3. General procedure for preparation of the 1,2-dihydroisoquinolines 8a

These compounds were prepared according to a procedure reported previously by Wu and co-workers.\(^{18}\) To a solution of the corresponding 2-(1-alkynyl)benzaldehyde 3 (1.08 mmol), aniline 7 (1.08 mmol) and ketone 6 (5.38 mmol) in EtOH (5.4 mL) were added AgOTf (0.108 mmol, 10 mol %) and \(L\)-proline (0.108 mmol, 10 mol %) and the mixture was stirred at 50-60 °C under a nitrogen atmosphere for 16 h. After completion of the reaction, the resulting mixture was concentrated under reduced pressure, quenched with water (30 mL), extracted with EtOAc (2 \(\times\) 30 mL) and dried over Na\(_2\)SO\(_4\) (anhydrous). The solvent was evaporated and the reaction mixture was subjected to column chromatography on silica gel using ethyl acetate/hexanes as the eluent.
3.6.4. Data for the 1,2-dihydroisoquinolines subjected to further elaboration

Compound 8{31}

![Chemical structure of Compound 8{31}]

This compound was obtained as a yellow oil in a 55% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.00 (s, 3H), 2.21 (s, 3H), 2.41 (dd, $J = 4.7$, 16.9 Hz, 1H), 3.15 (dd, $J = 8.9$, 17.0 Hz, 1H), 5.40 (dd, $J = 4.7$, 8.9 Hz, 1H), 6.69 (s, 1H), 6.76 (d, $J = 8.8$ Hz, 2H), 6.94 (t, $J = 6.8$ Hz, 2H), 7.04 (t, $J = 7.3$ Hz, 2H), 7.10-7.25 (m, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 21.7, 31.9, 47.2, 50.7, 55.4, 60.8, 85.4, 113.4, 124.4, 124.5, 124.9, 125.3, 127.2, 127.7, 127.8, 128.7, 129.3, 131.6, 132.4, 137.1, 137.6, 138.4, 140.1, 147.0, 207.3; HRMS (EI) calcd for C$_{25}$H$_{20}$INO 477.05900, found 478.06620.

Compound 8{32}

![Chemical structure of Compound 8{32}]

This compound was obtained as a yellow solid in a 55% yield: mp 159-161 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.08 (s, 3H), 2.48 (dd, $J = 4.6$, 17.0 Hz, 1H), 3.24 (dd, $J = 9.2$, 16.9 Hz, 1H), 3.73 (s, 3H), 5.47 (dd, $J = 4.6$, 9.1 Hz, 1H), 6.70 (s, 1H), 6.78 (d, $J = 8.8$ Hz, 2H), 6.85 (d, $J = 8.7$ Hz, 2H), 6.99 (d, $J = 7.4$ Hz, 1H), 7.10 (td, $J = 1.6$, 7.2 Hz, 1H), 7.18-7.24 (m, 2H), 7.32 (d, $J = 8.7$ Hz, 2H), 7.39 (d, $J = 8.7$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 31.9, 47.1, 55.4, 60.8, 85.4, 111.8, 114.2, 124.5, 124.6, 126.2, 126.9,
127.7, 128.4, 129.5, 131.8, 132.2, 137.5, 139.7, 147.1, 159.8, 207.3; HRMS (EI) calcd for
C$_{25}$H$_{22}$INO$_2$ 495.06952, found 495.07023.

Compound 8{33}

This compound was obtained as a yellow solid in a 49% yield: mp 175-177 °C; 1H NMR (400 MHz, CDCl$_3$) δ 0.87 (dd, $J = 2.9$, 7.8 Hz, 2H), 1.10 (dd, $J = 2.8$, 4.4 Hz, 2H), 1.84 (m, 1H), 2.54 (dd, $J = 4.3$, 16.4 Hz, 1H), 3.38 (dd, $J = 9.6$, 16.4 Hz, 1H), 3.77 (s, 3H), 5.50 (dd, $J = 4.2$, 9.6 Hz, 1H), 6.70 (s, 1H), 6.81 (dd, $J = 8.9$, 10.9 Hz, 4H), 7.02 (d, $J = 7.4$ Hz, 1H), 7.13 (td, $J = 10.0$, 7.5 Hz, 1H), 7.22-7.27 (m, 2H), 7.34 (d, $J = 8.8$ Hz, 2H), 7.42 (d, $J = 8.8$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 11.5, 11.7, 22.3, 46.7, 55.5, 61.2, 85.3, 111.9, 114.1, 124.6, 124.7, 125.3, 126.9, 127.8, 128.6, 129.6, 131.9, 132.4, 137.6, 139.8, 147.2, 159.9, 209.7; HRMS (EI) calcd for C$_{27}$H$_{24}$INO$_2$ 521.08517, found 521.08653.

Compound 8{34}

This compound was obtained as a yellow solid in a 67% yield: mp 144-146 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.12 (s, 3H), 2.51 (dd, $J = 4.6$, 17.0 Hz, 1H), 3.24 (dd, $J = 9.1$, 16.9 Hz, 1H), 3.74 (s, 3H), 5.49 (dd, $J = 4.6$, 9.0 Hz, 1H), 6.76-6.80 (m, 2H), 6.86 (d, $J = 8.6$ Hz, 2H), 7.02-7.07 (m, 3H), 7.13-7.28 (m, 4H), 7.35 (d, $J = 8.6$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 31.9, 47.3, 55.4, 60.7, 85.6, 112.8, 113.6, 114.0, 119.7, 124.4,
124.9, 125.4, 127.4, 127.8, 129.8, 131.5, 132.5, 137.7, 138.7, 139.9, 147.0, 159.9, 207.3;
HRMS (EI) calcd for C_{25}H_{22}INO_{2} 495.06952, found 495.07074.

Compound 8{35}

![Chemical structure](image)

This compound was obtained as a yellow solid in a 63% yield: mp 129-131 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.12 (s, 3H), 2.50 (dd, J = 4.5, 17.3 Hz, 1H), 3.23 (dd, J = 8.9, 17.3 Hz, 1H), 3.72 (s, 3H), 5.45 (dd, J = 4.6, 8.8 Hz, 1H), 6.74-6.77 (m, 3H), 6.85 (d, J = 8.6 Hz, 2H), 6.92 (t, J = 8.5 Hz, 1H), 7.00 (s, 1H), 7.05 (d, J = 7.7 Hz, 2H), 7.14-7.23 (m, 2H), 7.35 (d, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 31.8, 46.9, 55.3, 60.3, 85.8, 112.3, 112.5, 112.6, 113.9, 114.6, 114.8, 119.5, 124.3, 126.3, 126.5, 127.7, 129.8, 134.3, 134.4, 137.7, 138.4, 139.3, 146.8, 159.9, 160.8, 163.3, 206.8 (extra peaks due to the ¹³C-¹⁹F coupling); HRMS (EI) calcd for C_{25}H_{21}FINO_{2} 513.06010, found 513.06164.

Compound 8{36}

![Chemical structure](image)

This compound was obtained as a yellow solid in a 57% yield: mp 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.12 (s, 3H), 2.49 (dd, J = 4.5, 17.0 Hz, 1H), 3.23 (dd, J = 9.2, 16.9 Hz, 1H), 3.71 (s, 6H), 5.47 (dd, J = 4.5, 9.1 Hz, 1H), 6.35 (t, J = 2.1 Hz, 1H), 6.63 (d, J = 2.2 Hz, 2H), 6.79 (s, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 7.3 Hz, 1H),
7.14 (td, \(J = 1.5, 7.2 \text{ Hz}, 1\text{H} \)), 7.20-7.27 (m, 2H), 7.35 (d, \(J = 8.7 \text{ Hz}, 2\text{H} \)); \(^{13}\text{C} \text{ NMR} (100 \text{ MHz, CDCl}\text{\textsubscript{3}}) \delta 31.9, 47.2, 55.5, 60.7, 85.6, 100.6, 105.4, 113.6, 124.3, 124.9, 125.3, 127.4, 127.8, 131.4, 132.5, 137.7, 139.4, 139.9, 147.1, 161.0, 207.2; HRMS (EI) calcd for \(\text{C}_{26}\text{H}_{24}\text{INO}_{3} \) 525.08009, found 525.08176.

\textbf{Compound 8\{37\}}

![Compound 8\{37\} structure]

This compound was obtained as a yellow oil in a 45\% yield: \(^1\text{H} \text{ NMR} (400 \text{ MHz, CDCl}\text{\textsubscript{3}}) \delta 2.13 (s, 3\text{H}), 2.47 (dd, \(J = 3.9, 17.1 \text{ Hz}, 1\text{H} \)), 3.23 (dd, \(J = 9.3, 17.0 \text{ Hz}, 1\text{H} \)), 3.70 (s, 6\text{H}), 3.73 (s, 3\text{H}), 5.42 (dd, \(J = 4.1, 8.9 \text{ Hz}, 1\text{H} \)), 6.33 (s, 1\text{H}), 6.43 (d, \(J = 8.1 \text{ Hz}, 1\text{H} \)), 6.59 (s, 1\text{H}), 6.62 (s, 2\text{H}), 6.78 (br s, 2\text{H}), 6.87 (d, \(J = 8.3 \text{ Hz}, 2\text{H} \)), 7.18 (d, \(J = 8.3 \text{ Hz}, 1\text{H} \)), 7.36 (m, 3\text{H}); \(^{13}\text{C} \text{ NMR} (100 \text{ MHz, CDCl}\text{\textsubscript{3}}) \delta 31.9, 47.1, 55.4, 55.5, 60.7, 85.3, 100.2, 104.9, 110.6, 113.6, 117.4, 123.9, 124.5, 126.4, 134.3, 137.6, 137.9, 139.5, 147.3, 159.4, 160.9, 207.2; HRMS (EI) calcd for \(\text{C}_{27}\text{H}_{26}\text{INO}_{4} \) 555.09065, found 555.09221.

\textbf{Compound 8\{38\}}

![Compound 8\{38\} structure]

This compound was obtained as a yellow solid in a 63\% yield: mp 177-179 °C; \(^1\text{H} \text{ NMR} (400 \text{ MHz, CDCl}\text{\textsubscript{3}}) \delta 2.70 (dd, \(J = 4.2, 15.6 \text{ Hz}, 1\text{H} \)), 3.57 (s, 6\text{H}),
3.72 (dd, $J = 10.1$, 15.6 Hz, 1H), 5.64 (dd, $J = 4.2$, 10.1 Hz, 1H), 6.27 (t, $J = 2.2$ Hz, 1H), 6.40 (dd, $J = 1.7$, 3.6 Hz, 1H), 6.51 (d, $J = 2.2$ Hz, 2H), 6.82 (m, 3H), 7.05-7.35 (m, 7H), 7.49 (d, $J = 1.1$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 42.4, 55.3, 61.8, 85.8, 100.8, 105.3, 112.6, 113.3, 118.5, 124.3, 124.9, 125.3, 127.4, 127.9, 131.5, 132.1, 137.6, 139.1, 140.0, 147.0, 147.1, 152.9, 160.7, 187.4; HRMS (EI) calcd for C$_{29}$H$_{24}$INO$_4$ 577.07500, found 577.07660.

Compound 8{40}

![Structure 8{40}](image)

This compound was obtained as a yellow solid in a 49% yield: mp 169-171 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.07 (s, 3H), 2.45 (dd, $J = 4.6$, 16.7 Hz, 1H), 3.23 (dd, $J = 9.3$, 16.7 Hz, 1H), 5.41 (dd, $J = 4.6$, 9.3 Hz, 1H), 6.78 (s, 1H), 6.85 (d, $J = 8.7$ Hz, 2H), 6.99 (d, $J = 7.4$ Hz, 1H), 7.10-7.24 (m, 6H), 7.36 (d, $J = 8.7$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 32.1, 47.2, 61.0, 85.6, 112.6, 123.4, 124.2, 124.9, 125.4, 126.1, 127.2, 127.8, 131.3, 132.2, 135.4, 137.6, 139.2, 147.2, 207.4; HRMS (EI) calcd for C$_{22}$H$_{18}$INOS 471.01538, found 471.01680.

Compound 8{41}

![Structure 8{41}](image)

This compound was obtained as a colorless solid in a 65% yield: mp 153-155 °C; 1H NMR (400 MHz, CDCl$_3$) δ 0.85 (dd, $J = 3.9$, 7.7 Hz, 2H), 1.08 (t, $J = 4.0$ Hz,
2H), 1.84 (m, 1H), 2.52 (dd, J = 4.3, 16.1 Hz, 1H), 3.36 (dd, J = 9.7, 16.1 Hz, 1H), 5.44 (dd, J = 4.3, 9.7 Hz, 1H), 6.77 (s, 1H), 6.83 (d, J = 8.6 Hz, 2H), 7.02 (d, J = 7.4 Hz, 1H), 7.12-7.27 (m, 6H), 7.37 (d, J = 8.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 11.4, 11.7, 22.4, 46.8, 61.4, 85.5, 112.6, 123.6, 124.2, 124.8, 125.4, 125.9, 126.3, 127.2, 127.8, 131.4, 132.3, 135.5, 137.6, 139.3, 147.2, 209.6; HRMS (EI) calcd for C24H20INOS 497.03103, found 497.03223.

Compound 8{42}

![Chemical Structure](image)

This compound was obtained as a yellow oil in a 47% yield: 1H NMR (400 MHz, CDCl3) δ 2.11 (s, 3H), 2.45 (dd, J = 4.4, 16.8 Hz, 1H), 3.25 (dd, J = 9.5, 16.7 Hz, 1H), 3.74 (s, 3H), 5.37 (dd, J = 4.4, 9.5 Hz, 1H), 6.58 (d, J = 2.2 Hz, 1H), 6.76-6.80 (m, 2H), 6.85 (d, J = 8.8 Hz, 2H), 7.08 (s, 1H), 7.15-7.20 (m, 2H), 7.32 (d, J = 7.6 Hz, 2H), 7.37 (d, J = 8.9 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 31.2, 47.2, 55.6, 61.2, 85.4, 110.6, 112.7, 113.8, 122.7, 124.0, 124.5, 125.9, 126.1, 126.3, 133.4, 134.0, 137.7, 139.4, 147.4, 159.3, 207.5; HRMS (EI) calcd for C25H22INO2 501.02595, found 501.02726.

Compound 8{43}

![Chemical Structure](image)

This compound was obtained as a colorless solid in a 75% yield: mp 155-157 °C; 1H NMR (400 MHz, CDCl3) δ 2.71 (dd, J = 4.3, 15.2 Hz, 1H), 3.72 (dd, J =
10.1, 15.2 Hz, 1H), 5.53 (dd, J = 4.3, 9.9 Hz, 1H), 6.42 (m, 1H), 6.75-6.82 (m, 4H), 6.88 (d, J = 1.4 Hz, 1H), 6.94 (td, J = 1.3, 8.3 Hz, 1H), 7.04 (d, J = 5.0 Hz, 1H), 7.10-7.12 (m, 2H), 7.20-7.25 (m, 1H), 7.35 (d, J = 8.6 Hz, 2H), 7.48 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 42.1, 61.9, 85.9, 111.5, 112.4, 112.6, 114.7, 114.9, 118.6, 123.6, 124.2, 125.7, 126.1, 126.3, 126.4, 127.7, 133.7, 133.8, 135.0, 137.7, 138.7, 146.9, 147.2, 152.9, 160.7, 163.2, 187.3 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{25}$H$_{17}$FNO$_2$S 541.00087, found 541.00204.

Compound 8{44}

This compound was obtained as a yellow oil in a 59% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.15 (s, 3H), 2.49 (dd, J = 4.7, 16.9 Hz, 1H), 3.24 (dd, J = 9.1, 16.9 Hz, 1H), 3.65 (s, 3H), 5.39 (dd, J = 4.7, 9.0 Hz, 1H), 6.62 (d, J = 8.9 Hz, 2H), 6.68 (s, 1H), 6.98 (d, J = 8.9 Hz, 2H), 7.13 (d, J = 8.2 Hz, 1H), 7.17 (d, J = 1.6 Hz, 1H), 7.20-7.27 (m, 3H), 7.34 (dd, J = 1.9, 8.1 Hz, 1H), 7.49 (dd, J = 1.4, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 31.9, 47.5, 55.5, 61.3, 110.6, 114.2, 119.9, 124.5, 126.0, 127.6, 128.4, 128.5, 128.7, 130.6, 130.9, 133.4, 137.3, 140.5, 141.9, 155.7, 207.1; HRMS (EI) calcd for C$_{25}$H$_{22}$BrNO$_2$ 447.08338, found 447.08396.
Compound 8{46}

This compound was obtained as a yellow solid in a 73% yield: mp 188-190 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.12 (s, 3H), 2.49 (dd, J = 4.6, 16.9 Hz, 1H), 3.24 (dd, J = 9.1, 16.9 Hz, 1H), 5.39 (dd, J = 4.6, 9.1 Hz, 1H), 6.76 (m, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.93 (t, J = 8.5 Hz, 1H), 7.14 (m, 1H), 7.18-7.24 (m, 3H), 7.40 (d, J = 8.9 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 31.9, 47.0, 60.7, 85.9, 111.8, 112.5, 112.7, 113.7, 114.7, 114.9, 117.6, 123.5, 124.2, 126.0, 126.2, 126.3, 126.4, 127.7, 134.1, 134.2, 135.0, 137.8, 139.1, 147.1, 160.8, 163.3, 206.9 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{22}$H$_{17}$FINOS 489.00596, found 489.00696.

Compound 8{47}

This compound was obtained as a yellow oil in an 86% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.08 (t, J = 7.3 Hz, 3H), 1.25 (s, 3H), 2.35-2.41 (m, 2H), 2.55 (dd, J = 4.8, 17.1 Hz, 1H), 3.28 (dd, J = 8.9, 17.1 Hz, 1H), 5.62 (dd, J = 4.8, 8.9 Hz, 1H), 6.77 (s, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.28-7.40 (m, 5H), 7.45 (dd, J = 2.9, 6.5 Hz, 2H), 7.95 (d, J = 1.9 Hz, 1H), 8.12 (dd, J = 2.2, 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 7.8, 29.7, 37.8, 45.7, 60.8, 87.1, 111.0, 121.2, 123.4, 124.8, 125.2, 127.8, 129.0, 129.6, 132.1, 136.2, 137.9, 138.0, 144.7, 146.2, 146.3, 146.4, 150.7, 209.0.
Compound 8{48}

![Chemical structure](image)

This compound was obtained as a yellow oil in a 65% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.06 (t, $J = 7.2$ Hz, 3H), 2.35-2.38 (m, 2H), 2.49 (dd, $J = 4.7$, 16.9 Hz, 1H), 3.23 (dd, $J = 9.2$, 16.9 Hz, 1H), 5.50 (dd, $J = 4.6$, 9.1 Hz, 1H), 6.78 (br s, 2H), 6.85 (d, $J = 8.5$ Hz, 2H), 6.90 (td, $J = 2.2$, 8.6 Hz, 1H), 7.21-7.29 (m, 4H), 7.36 (d, $J = 8.5$ Hz, 2H), 7.44 (d, $J = 6.6$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 7.8, 37.9, 45.8, 56.9, 60.5, 85.7, 112.3, 112.5, 112.6, 114.6, 114.8, 124.4, 124.5, 126.4, 126.5, 127.0, 127.9, 128.8, 128.9, 134.4, 134.5, 136.8, 137.7, 139.3, 139.4, 146.8, 160.9, 163.3, 209.7 (extra peaks due to the 13C-19F coupling).

3.6.5. Data for selected 1,2-dihydroisoquinolines 8

Compound 8{5}

![Chemical structure](image)

This compound was obtained as a yellow oil in a 15% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.80 (dd, $J = 4.3$, 15.8 Hz, 1H), 3.57 (s, 6H), 3.75 (m, 4H), 3.80 (s, 3H), 5.76 (dd, $J = 4.2$, 9.7 Hz, 1H), 6.26 (s, 1H), 6.46 (dd, $J = 1.6$, 3.4 Hz, 1H), 6.49 (s, 2H), 6.69 (s, 1H), 6.82 (dd, $J = 2.4$, 8.4 Hz, 1H), 6.85 (s, 1H), 7.06 (d, $J = 8.7$ Hz, 2H), 7.14 (d, $J = 3.3$ Hz, 1H), 7.23 (d, $J = 8.4$ Hz, 1H), 7.53 (s, 1H), 7.75 (d, $J = 8.8$ Hz, 2H); 13C NMR
(100 MHz, CDCl$_3$) δ 42.2, 51.9, 55.3, 55.6, 60.9, 100.6, 104.9, 110.6, 113.7, 113.9, 114.2, 118.6, 120.7, 123.0, 124.5, 126.6, 130.6, 134.6, 137.5, 139.3, 147.2, 151.3, 153.0, 159.5, 160.9, 167.1, 187.3; HRMS (EI) calcd for C$_{32}$H$_{29}$NO$_7$ 539.19439, found 539.19565.

Compound 8{27}

This compound was obtained as a yellow oil in a 78% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.07 (s, 3H), 2.44 (dd, J = 4.9, 16.9 Hz, 1H), 3.17 (dd, J = 8.9, 16.9 Hz, 1H), 3.57 (s, 3H), 5.32 (dd, J = 4.9, 8.9 Hz, 1H), 6.54-6.56 (m, 2H), 6.63 (s, 1H), 6.69 (dd, J = 2.5, 8.7 Hz, 1H), 6.86 (td, J = 2.6, 8.6 Hz, 1H), 6.89-6.92 (m, 2H), 7.12-7.19 (m, 4H), 7.43 (dd, J = 1.3, 8.1 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 32.0, 47.4, 55.5, 61.4, 110.8, 112.5, 112.7, 114.2, 114.4, 114.6, 124.2, 124.4, 125.9, 126.0, 127.4, 127.5, 128.3, 128.6, 133.6, 133.7, 137.4, 140.6, 155.5, 160.6, 163.1, 207.3 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{25}$H$_{22}$FNO$_2$ 388.17130, found 388.17033.

3.6.6. General procedure for preparation of the 1-(3-indolyl)-1,2-dihydroisoquinolines 8b

To a solution of the corresponding 2-(1-alkynyl)benzaldehyde 3 (1.08 mmol), aniline 7 (1.08 mmol) and indole 9 (1.08 mmol) in EtOH (5.4 mL) were added AgOTf (0.108 mmol, 10 mol %) and L-proline (0.108 mmol, 10 mol %) and the mixture was stirred at 50-60 °C under a nitrogen atmosphere for 16 h.
After completion of the reaction, the resulting mixture was concentrated under reduced pressure, quenched with water (30 mL), extracted with EtOAc (2 × 30 mL) and dried over Na₂SO₄ (anhydrous). The solvent was evaporated and the reaction mixture was subjected to column chromatography on silica gel using ethyl acetate/hexanes as the eluent.

3.6.7. Data for 1-(3-indolyl)-1,2-dihydroisoquinolines subjected to further elaboration

Compound 8{49}

!Image

This compound was obtained as an orange solid in a 69% yield: mp 125-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 6.57 (s, 1H), 6.60 (s, 1H), 6.85 (d, J = 7.7 Hz, 2H), 6.91-6.96 (m, 2H), 7.09-7.20 (m, 7H), 7.42 (d, J = 7.6 Hz, 2H), 7.77 (s, 1H), 8.01 (d, J = 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 61.4, 84.9, 111.8, 113.1, 113.3, 114.5, 114.8, 117.2, 119.2, 120.1, 122.5, 123.5, 123.7, 125.7, 125.9, 126.2, 126.3, 126.5, 128.2, 133.9, 134.1, 135.7, 136.7, 137.8, 139.2, 147.1, 160.5, 162.9 (extra peaks due to the ¹³C-¹⁹F coupling); HRMS (EI) calcd for C₂₇H₁₅FIN₂S 548.02194, found 548.02312.
Compound 8{50}

This compound was obtained as a yellow solid in a 46% yield: mp 170-172 °C; 1H NMR (400 MHz, CDCl$_3$) δ 6.30 (s, 1H), 6.75 (s, 2H), 6.89 (d, $J = 8.8$ Hz, 2H), 6.97-7.05 (m, 2H), 7.11-7.19 (m, 3H), 7.29 (dd, $J = 5.5$, 8.3 Hz, 1H), 7.35-7.50 (m, 5H), 8.30 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 60.3, 84.4, 101.8, 111.8, 111.9, 112.4, 112.5, 112.6, 114.1, 114.3, 116.4, 116.7, 120.4, 122.9, 123.0, 123.8, 124.2, 124.9, 125.6, 125.7, 125.8, 126.0, 126.1, 126.7, 127.7, 127.8, 132.9, 134.9, 137.3, 138.1, 138.4, 146.4, 159.9, 162.4 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{28}$H$_{17}$F1N$_3$S 573.01719, found 573.01856.

Compound 8{51}

This compound was obtained as a yellow oil in a 75% yield: 1H NMR (400 MHz, CDCl$_3$) δ 3.72 (s, 3H), 3.81 (s, 3H), 6.18 (s, 1H), 6.55 (s, 1H), 6.61 (s, 1H), 6.74 (s, 1H), 6.79 (d, $J = 8.6$ Hz, 2H), 6.86 (d, $J = 8.6$ Hz, 2H), 7.11-7.21 (m, 5H), 7.42-7.47 (m, 3H), 7.75 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 55.5, 56.1, 61.8, 84.3, 101.7, 111.7, 112.3, 112.4, 112.8, 113.5, 117.4, 122.9, 123.3, 124.3, 125.2, 125.7, 126.2, 126.3, 126.5,
131.9, 133.9, 134.3, 137.8, 139.6, 147.5, 154.2, 158.9; HRMS (EI) calcd for C_{29}H_{23}IN_{2}O_{2}S 590.05249, found 590.05457.

3.6.8. Data for selected 1-(3-indolyl)-1,2-dihydroisoquinolines

Compound 8[2]

![Compound 8[2] structure]

This compound was obtained as an orange oil in a 69% yield: 1H NMR (400 MHz, CDCl$_3$) δ 3.68 (s, 3H), 3.71 (s, 3H), 6.29 (s, 1H), 6.51 (s, 1H), 6.67-6.74 (m, 5H), 7.04 (d, $J = 8.7$ Hz, 2H), 7.14-7.28 (m, 7H), 7.44 (d, $J = 8.5$ Hz, 2H), 7.93 (s, 1H), 8.12 (d, $J = 7.5$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 55.3, 55.6, 62.3, 110.1, 111.6, 113.8, 114.2, 118.9, 119.5, 119.8, 122.1, 123.3, 123.9, 124.3, 125.9, 126.0, 126.1, 127.3, 129.1, 130.7, 131.8, 132.6, 136.6, 141.4, 141.9, 154.9, 159.4; HRMS (EI) calcd for C$_{31}$H$_{26}$N$_2$O$_2$ 458.19942, found 458.20049.

Compound 8[7]

![Compound 8[7] structure]

This compound was obtained as a yellow oil in a 29% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.30 (s, 3H), 3.55 (s, 3H), 3.81 (s, 3H), 6.29 (s, 1H), 6.51 (s, 1H), 6.63 (s, 1H), 6.69 (d, $J = 7.8$ Hz, 1H), 6.76 (d, $J = 9.0$ Hz, 1H), 6.85 (s, 1H), 6.90 (t, $J = 7.4$ Hz, 1H), 6.96 (d, $J = 7.6$ Hz, 1H), 7.01-7.11 (m, 5H), 7.20 (dd, $J = 5.6, 8.2$ Hz, 1H), 7.28 (d, $J = 10.2$ Hz,
1H), 7.76 (d, J = 8.5 Hz, 3H), 7.89 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 12.9, 51.9, 55.3, 60.8, 110.6, 112.4, 112.7, 113.3, 113.5, 113.9, 114.6, 114.8, 115.6, 119.5, 119.8, 120.2, 120.8, 121.7, 122.8, 126.3, 126.4, 127.2, 127.9, 129.6, 130.4, 131.8, 135.1, 135.2, 135.4, 139.5, 141.1, 152.4, 159.8, 160.8, 163.3, 167.1 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{33}$H$_{27}$N$_2$FO$_3$ 518.20056, found 518.20193.

Compound 8{20}

![Chemical structure of Compound 8{20}]

This compound was obtained as a yellow oil in a 63% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.23 (s, 3H), 3.55 (s, 3H), 3.66 (s, 3H), 6.29 (s, 1H), 6.58 (s, 2H), 6.66 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 7.6 Hz, 1H), 7.02-7.06 (m, 3H), 7.13-7.28 (m, 8H), 7.36 (s, 1H), 8.13 (d, J = 5.9 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.7, 32.9, 55.6, 62.2, 109.7, 111.3, 111.4, 114.2, 117.6, 119.3, 119.6, 121.7, 123.8, 124.5, 125.2, 126.1, 127.3, 127.9, 128.0, 128.2, 128.6, 128.7, 132.2, 132.4, 137.4, 137.9, 138.3, 141.5, 142.3, 154.9; HRMS (EI) calcd for C$_{32}$H$_{28}$N$_2$O 456.22015, found 456.22151.

Compound 8{21}

![Chemical structure of Compound 8{21}]

This compound was obtained as a yellow oil in a 72% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.22 (s, 3H), 3.66 (s, 3H), 6.29 (s, 1H), 6.56 (s, 1H), 6.66 (d, J = 8.9
Hz, 2H), 6.73 (s, 1H), 6.95 (d, J = 7.5 Hz, 1H), 7.01-7.05 (m, 3H), 7.12-7.29 (m, 8H), 7.36 (s, 1H), 7.85 (s, 1H), 8.11 (d, J = 8.2 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.7, 55.6, 62.2, 111.4, 111.5, 111.6, 114.2, 119.1, 119.6, 119.8, 122.1, 123.3, 123.4, 123.8, 124.5, 125.2, 125.8, 126.1, 126.3, 127.4, 128.3, 128.5, 128.7, 131.9, 132.4, 141.4, 142.3, 154.9; HRMS (EI) calcd for C$_{31}$H$_{26}$N$_2$O 442.20450, found 442.20575.

3.6.9. General procedure for the microwave-assisted Sonogashira coupling to prepare 1,2-dihydroisoquinolines 12a{1-22}

The 1,2-dihydroisoquinolines 8 (0.8-1.2 mmol), the alkyne 10 (1.2 equiv), 2 mol % PdCl$_2$(PPh$_3$)$_2$, 1 mol % CuI and Et$_3$N (1.0-2.0 mL) were mixed in a 0.5-2.0 mL Biotage microwave vial equipped with a magnetic stirrer. The vessel was placed in the microwave reactor and irradiated so as to ramp the temperature up from room temperature to 60 °C and then held at that temperature for 30 min. The mixture was then cooled down and the solvent
was evaporated. The reaction mixture was purified by either column chromatography or preparative HPLC to afford the corresponding products 12a{1-22}.

3.6.10. Data for selected 1,2-dihydroisoquinolines prepared via Sonogashira coupling

Compound 12a{2}

![Image of compound 12a{2}]

This compound was obtained as a yellow oil in a 99% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.12 (s, 3H), 2.54-2.59 (m, 3H), 3.23 (dd, $J = 8.7$, 16.8 Hz, 1H), 3.73-3.75 (m, 5H), 5.55 (dd, $J = 5.0$, 8.6 Hz, 1H), 6.76-6.78 (m, 2H), 6.98 (d, $J = 8.7$ Hz, 3H), 7.04-7.07 (m, 2H), 7.12-7.28 (m, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 24.1, 31.9, 47.4, 55.4, 60.5, 61.4, 82.7, 85.4, 112.8, 113.3, 114.0, 116.6, 119.7, 121.9, 124.9, 125.4, 127.3, 127.8, 129.7, 131.6, 132.2, 132.6, 138.9, 139.9, 146.9, 159.9, 207.3; HRMS (El) calcd for C$_{29}$H$_{27}$NO$_3$ 437.19908, found 437.20032.

Compound 12a{12}

![Image of compound 12a{12}]

This compound was obtained as a yellow oil in an 84% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.10 (s, 3H), 2.53 (dd, $J = 4.9$, 16.5 Hz, 1H), 2.62 (t, $J = 6.2$ Hz, 2H), 3.22 (dd, $J = 8.9$, 16.6 Hz, 1H), 3.4 (t, $J = 6.2$ Hz, 2H), 5.48 (dd, $J = 5.0$, 8.9 Hz, 1H), 6.77 (s, 1H), 6.98 (d, $J = 8.6$ Hz, 2H), 7.03 (d, $J = 7.5$ Hz, 1H), 7.12-7.23 (m, 8H); 13C NMR (100 MHz, CDCl$_3$) δ 24.1, 32.1, 47.3, 60.9, 61.4, 82.7, 85.5, 112.4, 116.8, 121.8, 123.4,
Compound 12a{16}

This compound was obtained as a yellow oil in a 77% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.14 (s, 3H), 2.55 (dd, J = 4.7, 16.9 Hz, 1H), 3.26 (dd, J = 8.9, 16.9 Hz, 1H), 3.66 (br s, 3H), 5.48 (dd, J = 4.8, 8.7 Hz, 1H), 6.78-6.81 (m, 2H), 6.95 (t, J = 8.5 Hz, 1H), 7.05 (d, J = 8.2 Hz, 2H), 7.15 (s, 1H), 7.21-7.27 (m, 5H), 7.47-7.68 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 29.9, 31.9, 46.9, 60.3, 111.9, 112.5, 112.7, 114.7, 114.9, 115.7, 121.7, 123.4, 126.0, 126.3, 126.4, 127.6, 127.7, 128.6, 128.7, 132.1, 132.2, 132.3, 134.4, 134.5, 134.8, 139.1, 147.6, 160.8, 163.3, 206.9 (extra peaks due to 13C-19F coupling); HRMS (EI) calcd for C$_{28}$H$_{23}$NO$_2$S 413.14501, found 413.14440.

Compound 12a{22}

This compound was obtained as a yellow oil in a 42% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.25 (s, 1H), 2.65 (t, J = 6.2 Hz, 2H), 3.78 (br s, 5H), 3.84 (s, 3H), 6.28 (s, 1H), 6.65 (d, J = 8.8 Hz, 2H), 6.80 (s, 1H), 6.84 (dt, J = 2.4, 8.3 Hz, 2H), 7.04 (d, J = 8.6 Hz, 1H), 7.05-7.12 (m, 3H), 7.19-7.23 (m, 4H), 7.47 (s, 1H), 7.83 (s, 1H); 13C
NMR (100 MHz, CDCl$_3$) δ 24.1, 55.6, 56.1, 61.4, 61.5, 82.8, 85.3, 101.6, 111.8, 112.3, 112.6, 113.3, 115.7, 117.6, 120.8, 122.8, 124.2, 124.3, 125.2, 126.1, 126.3, 125.5, 131.9, 132.4, 133.9, 134.3, 139.7, 144.8, 147.3, 154.2, 158.9; HRMS (EI) calcd for C$_{33}$H$_{28}$N$_2$O$_3$S 532.18210, found 532.18323.

3.6.11. General procedure for the microwave-assisted Suzuki-Miyaura coupling to prepare 1,2-dihydroisoquinolines 12b{I-5I}.

![Chemical structure](image)

To a 2 mL microwave vial was added the appropriate 1,2-dihydroisoquinoline 8 (0.8-1.2 mmol), boronic acid 11 (1.2 equiv), 1M Cs$_2$CO$_3$ (0.2-0.4 mL) and 5 mol % Pd(PPh$_3$)$_4$ in 1:1 DMF/ethanol. The solution was vigorous stirred for 5 min at room temperature, flushed with argon, and then heated to 120°C under microwave irradiation for 20 min. Upon cooling to room temperature, the resulting reaction mixture was diluted with satd aq Na$_2$SO$_4$ and extracted with EtOAc. The combined organic layers were dried over MgSO$_4$, concentrated,
and purified by either column chromatography or preparative HPLC to afford the corresponding product.

3.6.12. Data for selected 1,2-dihydroisoquinolines prepared via Suzuki-Miyaura coupling

Compound 12b{8}

![Chemical structure of Compound 12b]

This compound was obtained as a yellow oil in an 89% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.17 (s, 3H), 2.58 (dd, $J = 4.6, 17.3$ Hz, 1H), 3.30 (dd, $J = 8.9, 17.3$ Hz, 1H), 3.75 (s, 3H), 5.59 (dd, $J = 4.6, 8.9$ Hz, 1H), 6.79-6.82 (m, 3H), 6.96 (td, $J = 2.4, 8.6$ Hz, 1H), 7.06 (s, 1H), 7.10 (d, $J = 7.8$ Hz, 1H), 7.19-7.27 (m, 4H), 7.33 (d, $J = 8.6$ Hz, 2H), 8.81 (s, 2H), 9.10 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 31.8, 47.0, 55.4, 60.2, 112.4, 112.5, 112.7, 113.1, 114.1, 114.7, 119.6, 122.7, 126.5, 126.6, 127.5, 127.7, 127.8, 129.9, 133.9, 134.6, 134.7, 138.7, 139.3, 147.9, 154.5, 157.0, 160.1, 160.9, 163.4, 206.8 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{29}$H$_{24}$FN$_3$O$_2$ 465.18525, found 465.18637.

Compound 12b{10}

![Chemical structure of Compound 12b]

This compound was obtained as a yellow oil in a 48% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.38 (t, $J = 7.1$ Hz, 3H), 2.17 (s, 3H), 2.59 (dd, $J = 4.7, 17.3$ Hz,
92

1H), 3.28 (dd, J = 8.8, 17.3 Hz, 1H), 3.75 (s, 3H), 4.38 (q, J = 7.1 Hz, 2H), 5.59 (dd, J = 4.9, 8.5 Hz, 1H), 6.78-6.83 (m, 3H), 6.95 (t, J = 7.3 Hz, 1H), 7.05 (s, 1H), 7.09 (d, J = 7.7 Hz, 1H), 7.10-7.29 (m, 6H), 7.35 (d, J = 8.6 Hz, 2H), 7.90 (t, J = 7.9 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 14.5, 31.9, 47.1, 55.4, 60.2, 61.4, 112.5, 112.7, 112.8, 114.0, 114.6, 114.7, 114.8, 114.9, 116.8, 116.9, 117.6, 119.6, 121.9, 122.4, 123.9, 126.5, 126.6, 127.7, 127.8, 127.9, 129.9, 132.1, 132.6, 134.6, 134.7, 147.2, 147.3, 147.7, 160.0, 160.9, 161.2, 163.4, 163.8, 164.5, 164.6, 206.9 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C$_{34}$H$_{29}$F$_2$NO$_4$ 553.20645, found 553.20818.

Compound 12b

This compound was obtained as a yellow oil in a 100% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.16 (s, 3H), 2.57 (dd, J = 4.7, 16.7 Hz, 1H), 3.27 (dd, J = 8.9, 16.8 Hz, 1H), 3.73 (s, 6H), 3.85 (s, 3H), 3.87 (s, 6H), 5.58 (dd, J = 4.8, 8.9 Hz, 1H), 6.36 (s, 1H), 6.64 (s, 2H), 6.71 (d, J = 2.1 Hz, 2H), 6.80 (s, 1H), 7.06 (d, J = 7.4 Hz, 1H), 7.12-7.30 (m, 7H); 13C NMR (100 MHz, CDCl$_3$) δ 32.1, 47.5, 55.5, 56.3, 60.9, 61.1, 100.6, 104.2, 105.5, 113.1, 113.2, 122.4, 124.9, 125.5, 127.3, 127.5, 127.7, 131.6, 132.6, 135.1, 136.9, 139.9, 140.4, 146.7, 153.5, 160.9, 207.4; HRMS (EI) calcd for C$_{35}$H$_{33}$NO$_6$ 565.24643, found 565.24819.
Compound 12b{20}

This compound was obtained as a yellow oil in a 66 % yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.79 (dd, \(J = 4.0, 15.4\) Hz, 1H), 3.60 (s, 6H), 3.77 (dd, \(J = 10.0, 15.4\) Hz, 1H), 5.76 (dd, \(J = 4.0, 9.8\) Hz, 1H), 6.29 (s, 1H), 6.46 (s, 1H), 6.57 (s, 2H), 6.85 (s, 1H), 7.11-7.19 (m, 5H), 7.25-7.32 (m, 4H), 7.50 (d, \(J = 8.1\) Hz, 2H), 7.55 (s, 1H), 7.79 (d, \(J = 7.9\) Hz, 2H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 42.6, 55.4, 61.8, 100.8, 105.5, 112.7, 113.3, 118.6, 122.6, 125.0, 125.4, 126.8, 127.4, 127.6, 127.9, 128.0, 131.4, 131.7, 132.4, 133.5, 139.6, 140.3, 144.4, 147.2, 147.4, 153.2, 160.8, 169.3, 187.6; HRMS (EI) calcd for C\(_{36}\)H\(_{30}\)N\(_2\)O\(_5\) 570.21546, found 570.121675.

Compound 12b{22}

This compound was obtained as a colorless solid in an 86% yield: mp 188-190 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.14 (s, 3H), 2.53 (dd, \(J = 4.6, 16.8\) Hz, 1H), 3.31 (dd, \(J = 9.3, 16.8\) Hz, 1H), 5.56 (dd, \(J = 4.6, 9.2\) Hz, 1H), 6.83 (s, 1H), 7.06 (d, \(J = 7.4\) Hz, 1H), 7.16 (td, \(J = 1.9, 7.2\) Hz, 1H), 7.17-7.28 (m, 7H), 7.35 (d, \(J = 8.7\) Hz, 2H), 8.83 (s, 2H), 9.10 (s, 1H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 32.1, 47.3, 60.9, 112.9, 122.7, 123.5,
Compound 12b{26}

This compound was obtained as a yellow solid in a 52% yield: mp 175-177 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.12 (s, 3H), 2.54 (dd, \(J = 4.9, 16.4\) Hz, 1H), 3.26 (dd, \(J = 9.1, 16.5\) Hz, 1H), 5.50 (dd, \(J = 4.9, 8.9\) Hz, 1H), 6.78 (s, 1H), 6.99 (t, \(J = 3.8\) Hz, 1H), 7.05 (t, \(J = 8.1\) Hz, 3H), 7.13-7.24 (m, 8H), 7.36 (d, \(J = 8.6\) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 32.2, 47.5, 61.1, 112.1, 115.5, 117.6, 122.4, 122.5, 123.5, 124.1, 124.8, 125.5, 125.9, 126.5, 127.2, 127.8, 128.6, 131.6, 132.3, 135.9, 139.6, 144.5, 146.8, 207.6; HRMS (EI) calcd for C\(_{26}\)H\(_{21}\)N\(_3\)OS 423.13965, found 423.14054.

Compound 12b{29}

This compound was obtained as a colorless oil in an 84% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.87 (dt, \(J = 2.9, 7.2\) Hz, 2H), 1.10 (t, \(J = 4.2\) Hz, 2H), 1.87 (m, 1H), 2.58 (dd, \(J = 4.2, 16.2\) Hz, 1H), 3.42 (dd, \(J = 9.7, 16.2\) Hz, 1H), 5.58 (dd, \(J = 4.2, 9.7\) Hz, 1H), 6.82 (s, 1H), 7.06 (d, \(J = 7.3\) Hz, 1H), 7.15 (td, \(J = 1.9, 7.0\) Hz, 1H), 7.13-7.27 (m, 7H), 7.32 (d, \(J = 8.6\) Hz, 2H), 8.81 (s, 2H), 9.09 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 11.5, 11.7, 22.4, 46.8, 61.2, 112.9, 122.6, 123.6, 124.9, 125.4, 126.1, 127.3, 127.4, 127.5,
127.9, 131.5, 132.6, 134.0, 135.5, 139.5, 148.3, 154.4, 156.9, 209.6; HRMS (El) calcd for
C_{28}H_{23}N_{3}O_{5} 449.15532, found 449.15623.

Compound 12b{33}

\[
\text{This compound was obtained as a yellow oil in a 58\% yield: } ^1H \\
\text{NMR (400 MHz, CDCl}_3 \text{) } \delta 2.77 \text{ (dd, } J = 4.5, 15.2 \text{ Hz, } 1H), 3.78 \text{ (dd, } J = 10.0, 15.2 \text{ Hz, } 1H), \\
4.03 \text{ (s, } 3H), 5.66 \text{ (dd, } J = 4.5, 10.0 \text{ Hz, } 1H), 6.46 \text{ (dd, } J = 1.7, 3.6 \text{ Hz, } 1H), 6.83 \text{ (s, } 1H), 6.86 \text{ (dd, } J = 2.5, 8.6 \text{ Hz, } 1H), 6.94-7.00 \text{ (m, } 2H), 7.09-7.17 \text{ (m, } 5H), 7.24-7.28 \text{ (m, } 3H), 7.52 \text{ (d, } J = 1.0 \text{ Hz, } 1H), 8.59 \text{ (s, } 2H); \\
^13C \text{ NMR (100 MHz, CDCl}_3 \text{) } \delta 42.3, 55.2, 61.9, 111.6, 112.5, \\
112.7, 114.8, 115.0, 118.6, 122.7, 123.6, 125.8, 126.2, 126.4, 126.5, 127.0, 127.8, 127.9, \\
128.0, 128.4, 133.9, 134.0, 135.3, 139.0, 147.2, 147.3, 153.1, 157.0, 160.9, 163.3, 164.9, \\
187.4, 112.0, 122.4, 122.5, 123.5, 125.0, 126.2, 127.4, 127.7, 131.1, 131.4, 132.5, 139.5, \\
143.0, 148.2, 148.9, 164.8, 187.4 \text{ (extra peaks due to the } ^13C-{^{19}}F \text{ coupling); HRMS (El) calcd} \\
\text{for } C_{30}H_{22}FN_{3}O_{5}S 523.13658, \text{ found } 523.13767.
\]

Compound 12b{37}

\[
\text{This compound was obtained as a yellow solid in a 69\% yield: } \text{mp } 91-93 \, ^\circ \text{C; } ^1H \text{ NMR (400 MHz, CDCl}_3 \text{) } \delta 2.14 \text{ (s, } 3H), 2.56 \text{ (dd, } J = 4.7, 16.7 \text{ Hz, } 1H), \\
2.83 \text{ (dd, } J = 12.0, 16.7 \text{ Hz, } 2H), 3.06 \text{ (m, } 3H), 4.09 \text{ (s, } 3H), 5.20 \text{ (s, } 1H), 5.51 \\
\text{ (dd, } J = 4.7, 10.0 \text{ Hz, } 1H), 6.00 \text{ (dd, } J = 1.7, 3.6 \text{ Hz, } 1H), 6.35 \text{ (dd, } J = 2.5, 10.0 \text{ Hz, } 1H), 6.53 \\
\text{ (dd, } J = 1.7, 10.0 \text{ Hz, } 1H), 6.79 \text{ (dd, } J = 1.7, 15.2 \text{ Hz, } 1H), 6.85 \text{ (dd, } J = 1.7, 15.2 \text{ Hz, } 1H), 6.94 \\
\text{ (m, } 2H), 7.09-7.17 \text{ (m, } 5H), 7.24-7.28 \text{ (m, } 3H), 7.52 \text{ (d, } J = 1.0 \text{ Hz, } 1H), 8.59 \text{ (s, } 2H); \\
^13C \text{ NMR (100 MHz, CDCl}_3 \text{) } \delta 42.3, 55.2, 61.9, 111.6, 112.5, \\
112.7, 114.8, 115.0, 118.6, 122.7, 123.6, 125.8, 126.2, 126.4, 126.5, 127.0, 127.8, 127.9, \\
128.0, 128.4, 133.9, 134.0, 135.3, 139.0, 147.2, 147.3, 153.1, 157.0, 160.9, 163.3, 164.9, \\
187.4, 112.0, 122.4, 122.5, 123.5, 125.0, 126.2, 127.4, 127.7, 131.1, 131.4, 132.5, 139.5, \\
143.0, 148.2, 148.9, 164.8, 187.4 \text{ (extra peaks due to the } ^13C-{^{19}}F \text{ coupling); HRMS (El) calcd} \\
\text{for } C_{30}H_{22}FN_{3}O_{5}S 523.13658, \text{ found } 523.13767.
\]
3.29 (dd, J = 9.1, 16.6 Hz, 1H), 3.65 (s, 3H), 3.83 (s, 3H), 5.48 (dd, J = 4.7, 8.9 Hz, 1H), 6.63 (d, J = 8.9 Hz, 2H), 6.76 (s, 1H), 6.93 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H), 7.20-7.32 (m, 5H), 7.43-7.48 (m, 3H), 7.53 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 32.1, 47.9, 55.5, 61.9, 111.4, 114.2, 114.4, 123.7, 124.3, 125.0, 125.8, 127.5, 127.9, 128.2, 128.6, 130.5, 132.4, 133.5, 137.7, 139.5, 140.9, 141.1, 155.4, 159.2, 207.7; HRMS (EI) calcd for C32H29NO3 477.23038, found 477.23188.

Compound 12b

This compound was obtained as a yellow oil in a 61 % yield: 1H NMR (400 MHz, CDCl3) δ 0.90 (d, J = 7.8 Hz, 2H), 1.1 (d, J = 3.9 Hz, 2H), 1.88 (br s, 1H), 2.75 (dd, J = 4.2, 16.7 Hz, 1H), 3.43 (dd, J = 8.8, 16.6 Hz, 1H), 3.72 (s, 6H), 3.81 (s, 3H), 5.75 (dd, J = 4.6, 8.4 Hz, 1H), 6.36 (s, 1H), 6.66 (s, 2H), 6.87 (s, 1H), 7.13 (d, J = 8.1 Hz, 2H), 7.32-7.35 (m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.82 (d, J = 8.2 Hz, 1H), 8.55 (s, 1H), 8.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 11.6, 11.8, 22.2, 46.8, 51.9, 55.5, 60.2, 100.7, 105.6, 113.6, 115.5, 120.9, 123.3, 123.7, 123.9, 124.1, 125.8, 126.6, 130.7, 131.3, 133.9, 134.2, 136.2, 136.9, 139.2, 140.4, 148.2, 148.6, 151.0, 161.1, 167.1, 208.9; HRMS (EI) calcd for C37H32N2O5 560.23111, found 560.23277.
Compound 12b{52}

This compound was obtained as a yellow solid in a 42% yield: mp 136-138 °C; 1H NMR (400 MHz, acetone-d$_6$) δ 1.39 (t, $J = 6.0$ Hz, 3H), 4.39 (m, 2H), 6.36 (s, 1H), 6.72 (d, $J = 9.4$ Hz, 2H), 6.95 (d, $J = 8.1$ Hz, 1H), 7.02 (t, $J = 8.5$ Hz, 1H), 7.16-7.47 (m, 12H), 8.40 (s, 1H), 8.47 (s, 1H); 13C NMR (100 MHz, acetone-d$_6$) δ 15.1, 61.8, 62.2, 103.7, 113.8, 113.9, 114.3, 114.5, 114.6, 115.4, 115.7, 115.8, 115.9, 118.2, 118.3, 118.9, 121.8, 123.0, 123.1, 123.2, 124.7, 125.7, 126.2, 127.2, 127.5, 127.7, 127.8, 127.9, 128.0, 128.1, 129.1, 130.0, 130.1, 132.8, 133.2, 133.3, 133.8, 135.7, 135.8, 137.2, 137.3, 140.2, 140.9, 148.2, 148.3, 149.4, 161.9, 162.3, 164.4, 164.8, 164.9, 165.0 112.2, 115.5, 117.6, 114.0, 116.6, 119.7, 121.9, 127.2, 128.3, 128.8, 128.9, 130.6, 130.8, 134.1, 136.8, 137.8, 140.6, 135.9, 139.6, 144.5, 207.6 (extra peaks due to the 13C-19F coupling); HRMS (El) calcd for C$_{37}$H$_{25}$F$_2$N$_3$O$_2$S 613.16355, found 613.16556.

3.7. REFERENCES

15. SYBYL, version 8.0; The Tripos Associate: St. Louis, MO, 2007.

CHAPTER 4

Efficient Microwave-assisted One-pot Three-component Synthesis of Indoles under Sonogashira Conditions

Reproduced from Tetrahedron, 2009, 65, 8908-8915, with permission from Elsevier
Copyright © 2009

Yu Chen, Nataliya A. Markina, and Richard C. Larock*

Department of Chemistry, Iowa State University, Ames, IA 50011

4.1. ABSTRACT

A microwave-assisted, one-pot, three-component coupling reaction for the synthesis of indoles has been developed. The reaction is carried out in two steps under standard Sonogashira coupling conditions from an N-substituted/N,N-disubstituted 2-iodoaniline and a terminal alkyne, followed by the addition of acetonitrile and an aryl iodide. A variety of polysubstituted indoles have been prepared in moderate to excellent yields using the present method.

4.2. INTRODUCTION

The indole nucleus is a ubiquitous heterocyclic structure found in numerous natural and synthetic compounds with a wide variety of biological activities and considerable pharmaceutical importance. The synthesis of indoles, therefore, has attracted enormous
attention from synthetic organic chemists and a substantial number of methods for the preparation of indoles have been developed. Among the methods developed so far, palladium-catalyzed indole syntheses have received extraordinary attention due to the relatively mild reaction conditions employed in these processes and the fact that they usually tolerate a wide variety of functional groups, thus avoiding protecting group chemistry. High regioselectivities and chemical yields are also generally achieved. Flynn previously demonstrated a one-pot, two-step synthesis of indoles by consecutive Sonogashira and Cacchi reactions (Scheme 1). However, only one example of this process was reported.

Scheme 1. One-pot synthesis of indoles by Flynn

Lu and co-workers later on reported a one-pot, three-component synthesis of indoles by the same Sonogashira/Cacchi process in which they replaced the aryl iodide in the Cacchi cyclization with an aryl bromide (Scheme 2). However, a significant substituent effect in the three starting components was observed on the rate of reaction. Sluggish reactions were observed, especially when an electron-withdrawing group was present at the para-position of either the iodide or the amide moiety of the starting material as in 2'-ido-trifluoroacetanilide.
Scheme 2. One-pot synthesis of indoles by Lu

It is noteworthy that microwave technology has recently attracted more and more attention from synthetic organic chemists due to the many advantages microwave irradiation affords over conventional heating in chemical transformations, particularly the enormous acceleration of the reaction rate, significant energy savings, as well as high chemical yields and cleaner reactions.\(^8\) Our group has been interested in developing new methodologies for the synthesis of functionalized indoles for almost two decades. We have previously developed a palladium-catalyzed heteroannulation reaction of internal alkynes and 2-iodoanilines known as the Larock indole synthesis;\(^9\) and the electrophilic cyclization of \(N,N\)-dialkyl-2-(1-alkynyl)anilines induced by halide,\(^{10}\) sulfur or selenium electrophiles to generate indoles.\(^{11}\) As a continuation of our long-term interest in indole synthesis, we hereby report a microwave-assisted, one-pot, three-component reaction to synthesize 2,3-disubstituted indoles under Sonogashira coupling conditions.

4.3. RESULTS AND DISCUSSION

Our group previously developed synthetic protocols for the preparation of 3-iodo-,\(^{10}\) 3-sulfenyl-, and 3-selenylindoles\(^{11}\) by the electrophilic cyclization of \(N,N\)-dialkyl-2-(1-alkynyl)anilines by iodine or sulfenyl/selenyl chlorides. While preparing the starting \(N,N\)-
dialkyl-2-(1-alkynyl)anilines for this process, we discovered an interesting solvent effect during the Sonogashira coupling process. When the coupling of \(N,N\)-dialkyl-2-iodoanilines and terminal alkynes was carried out in \(\text{Et}_3\text{N}\), the corresponding internal alkynes were generally obtained as a single product in high chemical yield. On the other hand, in the presence of a polar solvent, such as \(\text{CH}_3\text{CN}\) or DMF, with only 10 equiv of \(\text{Et}_3\text{N}\) present, a significant amount of an indole was obtained, alongside the desired \(N,N\)-dialkyl-2-(1-alkynyl)anilines. The indole is apparently generated by the palladium-catalyzed cyclization of the Sonogashira coupling product and any unreacted \(N,N\)-dialkyl-2-iodoaniline.

Cacchi has previously developed a similar cyclization between 2-(1-alkynyl)trifluoroacetanilides and aryl iodides in the presence of inorganic bases, such as \(\text{K}_2\text{CO}_3\) or \(\text{Cs}_2\text{CO}_3\).\(^{5a,d,e,g}\) In the Cacchi reaction, the reaction outcome was influenced by both the base and the nature of the nitrogen nucleophile. Employing \(\text{Et}_3\text{N}\) as the base gave only low yields. On the other hand, a trifluoroacetamido group plays a key role in this cyclization. When a free amino or acetamido group is used, no cyclization occurs and only the starting alkynes are recovered. In our case, due to the high nucleophilicity of the \(N,N\)-dialkylamino moiety, intramolecular cyclization takes place more readily.

In our view, this one-pot cyclization approach provides an ideal protocol for parallel library synthesis. Thus, a one-pot, three-component coupling reaction was carried out using \(N,N\)-dimethyl-2-iodoaniline, phenylacetylene and ethyl 4-iodobenzoate (Table 1, entry 1). The Sonogashira coupling took place smoothly in \(\text{Et}_3\text{N}\) at room temperature, while efficient further cyclization required a higher reaction temperature (60 °C) and the addition of a polar solvent, such as \(\text{CH}_3\text{CN}\). When a more bulky alkyne, such as 3,5-dimethoxyphenylacetylene,
and an electron-rich aryl iodide, such as 2-iodothiophene, were employed in this coupling, a considerably longer reaction time was needed for complete cyclization (Table 1, entry 2).

Table 1. One-pot synthesis of indoles under Sonogashira coupling conditions

![Chemical structure](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>1</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>Ar</th>
<th>time (h)</th>
<th>3</th>
<th>% yield<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1a</td>
<td>H</td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td>5</td>
<td>4</td>
<td>3a</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>Br</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>3j</td>
<td>83</td>
</tr>
</tbody>
</table>

^a Representative procedure: Step 1) 2-Iodoaniline 1 (0.500 mmol), terminal alkyne 2 (0.525 mmol), PdCl₂(PPh₃)₂ (0.015 mmol), CuI (0.010 mmol), and 3 mL of Et₃N were mixed in a sealed 4-dram vial. The reaction was stirred at room temperature for the indicated time. Step 2) Aryl iodide (0.550 mmol) and 3 mL of CH₃CN were added to the reaction mixture of Step 1. The resulting mixture was stirred at 60 °C for the indicated time. ^b Isolated yields of indole product after column chromatography.

In order to enhance the reaction rate of this one-pot coupling/cyclization process for the purpose of developing a high-throughput parallel synthetic protocol, microwave technology has been employed. To our delight, the entire process was dramatically accelerated by
microwave irradiation. Both of the reactions were completed in less than an hour in yields comparable to those obtained previously.

Encouraged by these results, we next explored the scope of this one-pot, two-step approach to substituted indoles. Both the Sonogashira coupling and cyclization take place smoothly when electron-rich aryl acetylenes are used (Table 2; entries 2, 4 and 6). A longer reaction time is necessary for complete conversion for both the Sonogashira and cyclization steps, when an electron-deficient aryl acetylene is employed (Table 2, entry 3). Smooth couplings were also observed when aliphatic acetylenes are employed (Table 2; entries 5, 7 and 8). When 2-methoxyphenylacetylene is used, the steric bulkiness induced by the 2-methoxy group requires a longer reaction time for cyclization (Table 2, entry 9). A free hydroxyl group in the alkyne is not well accommodated by this coupling process as only a 33% yield of the desired indole product was obtained (Table 2, entry 16).

No significant electronic effect has been observed in either the 2-iodoanilines or the aryl iodides employed. Both electron-withdrawing and electron-releasing groups are readily accommodated in these two components. An extra equivalent of aryl iodide was employed in the coupling processes utilizing \(N,N\)-dimethyl-4-bromo-2-iodoaniline in order to suppress any interference by the bromo moiety in the cyclization step (Table 2, entries 10-13). Both benzyl bromide and allyl acetate have been examined in this coupling process in place of the aryl iodide. However, none of the desired cyclization product was obtained in either case. The two alkyl groups present on the aniline nitrogen play a crucial role in the success of the overall process. Only Sonogashira coupling product was obtained when either 2-iodoaniline
or \(N \)-methyl-2-iodoaniline were employed, which is in good agreement with our previous experience with such Sonogashira processes\(^{10,11} \)

Besides \(N,N \)-dialkyl-2-iodoanilines, 2'-iodo-trifluoroacetanilides can also be employed in the current microwave-irradiated process (Table 2, entries 18-24). As described earlier using conventional heating, the addition of an inorganic base is necessary for the success of this cyclization. In addition, a slightly higher reaction temperature is needed for efficient cyclization.

Table 2. Microwave-assisted, one-pot synthesis of indoles under Sonogashira coupling conditions\(^a\)

<table>
<thead>
<tr>
<th>entry</th>
<th>1</th>
<th>R(^1)</th>
<th>R(^2)</th>
<th>R(^3)</th>
<th>R(^4)</th>
<th>Ar</th>
<th>time (min)</th>
<th>3</th>
<th>% yield(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>C(_6)H(_5)</td>
<td></td>
<td>20</td>
<td>30</td>
<td>3a</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>CO(_2)Et</td>
<td></td>
<td></td>
<td>3b</td>
</tr>
<tr>
<td>3</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>CO(_2)Et</td>
<td></td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>CO(_2)Et</td>
<td></td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2: Microwave-assisted, one-pot synthesis of indoles under Sonogashira coupling conditions.

\(^{a}\) Reaction conditions: 3 mol % PdCl\(_2\)(PPh\(_3\))\(_2\), 2 mol % CuI, Et\(_3\)N, MW (300 W), 60 °C.

\(^{b}\) Yield determined by NMR.
Table 2 continued.

<table>
<thead>
<tr>
<th>5</th>
<th>1a</th>
<th>Me</th>
<th>Me</th>
<th>H</th>
<th></th>
<th>20</th>
<th>30</th>
<th>3e</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>20</td>
<td>30</td>
<td>3f</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>20</td>
<td>30</td>
<td>3g</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>20</td>
<td>30</td>
<td>3h</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>1a</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>20</td>
<td>50</td>
<td>3i</td>
<td>87</td>
</tr>
<tr>
<td>10<sup>c</sup></td>
<td>1b</td>
<td>Me</td>
<td>Me</td>
<td>4-Br</td>
<td></td>
<td>20</td>
<td>30</td>
<td>3j</td>
<td>74</td>
</tr>
<tr>
<td>11<sup>c</sup></td>
<td>1b</td>
<td>Me</td>
<td>Me</td>
<td>4-Br</td>
<td></td>
<td>20</td>
<td>30</td>
<td>3k</td>
<td>76</td>
</tr>
<tr>
<td>12<sup>c</sup></td>
<td>1b</td>
<td>Me</td>
<td>Me</td>
<td>4-Br</td>
<td></td>
<td>20</td>
<td>30</td>
<td>3l</td>
<td>85</td>
</tr>
<tr>
<td>13<sup>c</sup></td>
<td>1b</td>
<td>Me</td>
<td>Me</td>
<td>4-Br</td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td>20</td>
<td>30</td>
<td>3m</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>1c</td>
<td>Me</td>
<td>Me</td>
<td>4-Me</td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td>30</td>
<td>30</td>
<td>3n</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>1c</td>
<td>Me</td>
<td>Me</td>
<td>4-Me</td>
<td></td>
<td>30</td>
<td>30</td>
<td>3o</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>1c</td>
<td>Me</td>
<td>Me</td>
<td>4-Me</td>
<td></td>
<td>30</td>
<td>30</td>
<td>3p</td>
<td>33</td>
</tr>
</tbody>
</table>
Table 2 continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>4-\text{CO}_2\text{Me}</th>
<th></th>
<th></th>
<th></th>
<th>30</th>
<th>30</th>
<th>3q</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1d</td>
<td>Me</td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>3q</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td>1e</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>3q</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>1f</td>
<td>H</td>
<td>4-Me</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>3q</td>
<td>70</td>
</tr>
<tr>
<td>21</td>
<td>1f</td>
<td>H</td>
<td>4-Me</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>3q</td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>1f</td>
<td>H</td>
<td>4-Me</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>3q</td>
<td>70</td>
</tr>
<tr>
<td>23</td>
<td>1g</td>
<td>H</td>
<td>4-\text{CO}_2\text{Me}</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>3q</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>1g</td>
<td>H</td>
<td>4-\text{CO}_2\text{Me}</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>3q</td>
<td>70</td>
</tr>
</tbody>
</table>

\(^a\) Representative procedure: Step 1) 2-Iodoaniline 1 (0.500 mmol), terminal alkyne 2 (0.525 mmol), PdCl\(_2\)(PPh\(_3\))\(_2\) (0.015 mmol), CuI (0.010 mmol), and 3 mL of Et\(_3\)N were mixed in a sealed 20 mL microwave vial. The reaction was stirred at 60 °C under microwave (300 W) irradiation for the indicated time. Step 2) Aryl iodide (0.550 mmol) and 3 mL of CH\(_3\)CN were added to the reaction mixture of Step 1. The resulting mixture was stirred at 90 °C under microwave irradiation (300 W) for the indicated time. \(^b\) Isolated yields of indole product after column chromatography. \(^c\) An extra equivalent of aryl iodide was employed in Step 2). \(^d\) Step 2) was carried out at 100 °C with the addition of Cs\(_2\)CO\(_3\) (3 equiv).
As mentioned above, this overall process involves two steps (Scheme 3). The first step is a Sonogashira coupling to generate the \(N,N \)-dialkyl-2-(1-alkynyl)aniline \(\text{A} \). The aryl iodide is added upon completion of the Sonogashira coupling. Oxidative addition of the aryl iodide to Pd(0) affords an electrophilic ArPdI species, which activates the alkyne triple bond of \(\text{A} \) by coordination to form a \(\pi \)-palladium complex \(\text{B} \), which subsequently undergoes intramolecular trans-aminopalladation by a 5-endo-dig cyclization, affording the indole-containing Pd(II) intermediate \(\text{C} \). The 2,3-disubstituted indole is generated after reductive elimination.

Scheme 3. A proposed mechanism for the one-pot, two-step indole synthesis.

4.4. CONCLUSIONS

In summary, an efficient, microwave-assisted, one-pot, three-component reaction for the synthesis of polysubstituted indoles has been developed. A variety of functionalities, such as nitro, ester, hydroxyl, cyano, and halide groups are tolerated in this
coupling/cyclization process. The desired indoles have been obtained in moderate to excellent overall yields. This protocol provides an ideal synthetic approach for the parallel synthesis of an indole library. Further examination of the current reaction conditions for a one-pot, four-component synthesis of indoles, as well as other biologically interesting heterocycles, is underway in our laboratory.

4.5. ACKNOWLEDGEMENTS

We thank the National Institute of General Medical Sciences (GM070620 and GM079593) and the National Institutes of Health Kansas University Center of Excellence for Chemical Methodologies and Library Development (P50 GM069663) for financial support of this project. We also thank Johnson Matthey, Inc. and Kawaken Fine Chemicals Co., Ltd. for donations of palladium catalysts.

4.6. EXPERIMENTAL

4.6.1. General remarks

All reactions were carried out in sealed 20 mL oven-dried Biotage microwave vials. All commercially obtained chemicals were used as received without further purification unless otherwise indicated. The 1H NMR and 13C NMR spectra were recorded at 400 MHz and 100 MHz respectively, using CDCl$_3$, acetone-d_6 or DMSO-d_6 as solvents. The chemical shifts of the 1H NMR and 13C NMR spectra are reported relative to the residual signal of CDCl$_3$ (δ 7.26 ppm for the 1H NMR and δ 77.23 ppm for the 13C NMR), acetone-d_6 (2.05 ppm for the 1H NMR and δ 29.92 ppm for the 13C NMR) or DMSO-d_6 (2.50 ppm for the 1H
NMR and δ 39.51 ppm for the 13C NMR). The high resolution mass spectra were recorded on a double focusing magnetic sector mass spectrometer using EI at a voltage of 70 eV. The melting points are uncorrected.

4.6.2. General procedure for preparation of the N,N-dimethyl-2-iodoanilines

These compounds were prepared according to a procedure reported by Cadogan.12 To a solution of the corresponding 2-iodoaniline (2.0 mmol) and iodomethane (0.85 g, 6.0 mmol) in DMF (10 mL) was added K$_2$CO$_3$ (0.55 g, 4.0 mmol). The resulting mixture was stirred at room temperature for 48 h. Water (10 mL) was added to the reaction mixture and the resulting solution was extracted with diethyl ether (3 × 10 mL). The organic layers were combined and washed with water to remove any remaining DMF and dried over anhydrous MgSO$_4$. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel using ethyl acetate/hexanes as the eluent.

N,N-Dimethyl-2-iodoaniline (1a)

\[
\begin{align*}
\text{NMe}_2
\end{align*}
\]

This compound was obtained as a yellow oil in an 81% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.76 (s, 6H), 6.77 (dt, $J = 7.6$, 1.5 Hz, 1H), 7.09 (dd, $J = 7.8$, 1.5 Hz, 1H), 7.31 (dt, $J = 7.6$, 1.5 Hz, 1H), 7.84 (dd, $J = 7.8$, 1.5 Hz, 1H). The 1H NMR spectral data are in good agreement with the literature data.10a
N,N-Dimethyl-4-bromo-2-iodoaniline (1b)

![Chemical structure of 1b]

This compound was obtained as a light red oil in an 81% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.72 (s, 6H), 6.92 (d, $J = 8.5$ Hz, 1H), 7.40 (dd, $J = 8.5$, 2.4 Hz, 1H), 7.94 (d, $J = 2.4$ Hz, 1H). The 1H NMR spectral data are in good agreement with the literature data.\(^{11}\)

N,N,4-Trimethyl-2-iodoaniline (1c)

![Chemical structure of 1c]

This product was obtained as an orange liquid in a 91% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.26 (s, 3H), 2.72 (s, 6H), 6.99 (d, $J = 8.1$ Hz, 1H), 7.12 (d, $J = 8.1$ Hz, 1H), 7.68 (s, 1H). The 1H NMR spectral data are in good agreement with the literature.\(^{10b}\)

4.6.3. Preparation of methyl 4-dimethylamino-3-iodobenzoate (1d)

![Chemical structure of 1d]

This compound was prepared according to a procedure reported by Larock.\(^{13}\) The product was obtained as a colorless oil in a 44% yield: 1H NMR (400 MHz, CDCl$_3$) δ 2.82 (s, 6H), 3.85 (s, 3H), 6.98 (d, $J = 8.4$ Hz, 1H), 7.92 (dd, $J = 8.4$, 2.0 Hz, 1H), 8.46 (d, $J = 2.0$ Hz, 1H). The 1H NMR spectral data are in good agreement with the literature data.\(^{13}\)

4.6.4. General procedure for preparation of the N-trifluoroacetyl-2-iodoanilines

These compounds were prepared according to a procedure reported by Srinivasan.\(^{14}\) To a solution of the corresponding 2-iodoaniline (4.3 mmol) and triethylamine (0.63 mL, 4.55 mmol) in THF (11 mL) at -15 °C was slowly added trifluoroacetic anhydride (0.6 mL, 4.3 mmol) in 6.5 mL of THF. The resulting mixture was stirred for 1 h and then allowed to
warm to room temperature and stirred for 16 h. The reaction mixture was then poured into a separatory funnel containing water (115 mL) and extracted with ethyl acetate (3 × 50 mL). The organic layers were dried over anhydrous MgSO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel using ethyl acetate/hexanes as the eluent.

N-Trifluoroacetyl-2-iodoaniline (1e)

![Chemical structure](image)

This product was obtained as a white solid in a 96% yield: mp 105-107 °C; \(^1\)H NMR (400 MHz, CDCl₃) δ 6.98 (t, J = 7.0 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.84 (d, J = 7.9 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.29 (s, 1H). The \(^1\)H NMR spectral data are in good agreement with the literature data.\(^{15}\)

N-Trifluoroacetyl-2-iodo-4-methylaniline (1f)

![Chemical structure](image)

This product was obtained as a pink solid in a 95% yield: mp 84-85 °C; \(^1\)H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 7.19 (d, J = 8.1 Hz, 1H), 7.66 (s, 1H), 8.01 (d, J = 8.3 Hz, 1H), 8.21 (s, 1H).

Methyl 4-(N-trifluoroacetamino)-3-iodobenzoate (1g)

![Chemical structure](image)

This product was obtained as a white solid in an 88% yield: mp 87-88 °C; \(^1\)H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 8.06 (dd, J = 1.9, 8.6 Hz, 1H), 8.34 (d, J = 8.6 Hz, 1H), 8.50 (m, 2H). The \(^1\)H NMR spectral data are in good agreement with the literature data.\(^{16}\)
4.6.5. General procedure for the microwave-assisted, one-pot synthesis of 1-methylindoles

The 2-iodoaniline 1 (0.500 mmol), a terminal alkyne 2 (0.525 mmol), PdCl$_2$(PPh$_3$)$_2$ (0.015 mmol), CuI (0.010 mmol), and 3 mL of Et$_3$N were mixed in a sealed 20 mL microwave vial. The reaction mixture was stirred at 60 °C under microwave (300 W) irradiation for 20 min or until disappearance of the starting material as monitored by thin layer chromatography. To the reaction mixture was added the aryl iodide (0.550 mmol) and 3 mL of CH$_3$CN at room temperature. The resulting mixture was then stirred at 90 °C under microwave irradiation for 30 min or until disappearance of the starting material as monitored by thin layer chromatography. The reaction mixture was diluted by 10 mL of diethyl ether and washed with brine (10 mL). The aqueous phase was extracted with diethyl ether (2 × 5 mL). The organic layers were combined and dried over anhydrous MgSO$_4$. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel using ethyl acetate/hexanes as the eluent.

Ethyl 3-[1-methyl-2-(thiophen-3-yl)-1H-indol-3-yl]benzoate (3d)

This product was obtained as a yellow oil in a 78% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.34 (t, $J = 7.1$ Hz, 3H), 3.69 (s, 3H), 4.33 (q, $J = 7.1$ Hz, 2H), 7.00 (dd, $J = 1.2$, 4.9 Hz, 1H), 7.17-7.22 (m, 2H), 7.28-7.35 (m, 3H), 7.39 (d, $J = 8.2$ Hz, 1H), 7.45 (dd, $J = 6.2$, 1.4 Hz, 1H), 7.76 (d, $J = 7.9$ Hz, 1H), 7.88 (d, $J = 7.7$ Hz, 1H), 8.08 (s, 1H); 13C NMR
(100 MHz, CDCl$_3$) δ 14.5, 31.1, 60.9, 109.8, 114.8, 119.4, 120.6, 122.6, 126.0, 126.3, 126.8, 126.9, 128.4, 129.6, 130.7, 130.9, 131.76, 133.2, 134.1, 135.8, 137.4, 166.9; HRMS (EI) calcd for C$_{22}$H$_{19}$NO$_2$S 361.11370, found 361.11422.

Ethyl 3-(1,5-dimethyl-2-phenyl-1H-indol-3-yl)benzoate (3n)

This product was obtained as a yellow oil in a 68% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.33 (t, J = 7.1 Hz, 3H), 2.48 (s, 3H), 3.63 (s, 3H), 4.31 (q, J = 7.1 Hz, 2H), 7.13 (dd, J = 8.3, 1.1 Hz, 1H), 7.29 (d, J = 8.3 Hz, 4H), 7.36 (m, 3H), 7.40 (dt, J = 7.7, 1.3 Hz, 1H) 7.56 (s, 1H), 7.84 (dt, J = 7.8, 1.3 Hz, 1H), 8.07 (t, J = 1.3 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 14.5, 21.8, 31.1, 60.9, 109.5, 113.8, 119.0, 124.1, 126.7, 127.1, 128.30, 128.33, 128.6, 129.9, 130.6, 131.0, 131.2, 131.9, 134.3, 135.9, 138.4, 166.9; HRMS (EI) calcd for C$_{25}$H$_{23}$NO$_2$ 369.1729, found 369.1732.

3-(4-Chlorophenyl)-2-(4-methoxyphenyl)-1,5-dimethyl-1H-indole (3o)

This product was obtained as a colorless solid in a 94% yield: mp 165-167 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.46 (s, 3H), 3.61 (s, 3H), 3.82 (s, 3H), 6.90 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.2 Hz, 1H), 7.19-7.22 (m, 6H), 7.27 (d, J = 8.3 Hz, 1H), 7.51 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.8, 31.1, 55.5, 109.5, 113.3, 114.2, 118.9, 123.9,
116

124.0, 127.1, 128.5, 129.8, 131.0, 131.1, 132.4, 134.3, 135.9, 138.1, 159.7; HRMS (EI) calcd for C₂₃H₂₆ClNO 361.1233, found 361.1241.

2-((3-(3,4-Dimethoxyphenyl))-1,5-dimethyl-1H-indol-2-yl)ethanol (3p)

This product was obtained as a light brown oil in a 33% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.66 (br s, 1H), 2.42 (s, 3H), 3.11 (t, \(J = 6.8\) Hz, 2H), 3.74 (s, 3H), 3.81 (t, \(J = 6.8\) Hz, 2H), 3.88 (s, 3H), 3.92 (s, 3H), 6.96 (d, \(J = 8.2\) Hz, 1H), 7.01 (dd, \(J = 8.1\), 1.8 Hz, 1H), 7.05 (d, \(J = 8.2\) Hz, 2H), 7.22 (d, \(J = 8.3\) Hz, 1H), 7.36 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.6, 28.5, 30.2, 56.1, 62.4, 108.9, 111.6, 113.6, 115.4, 118.8, 122.2, 123.3, 127.7, 128.3, 129.2, 133.4, 135.4, 147.7, 149.0; HRMS (EI) calcd for C\(_{20}\)H\(_{23}\)O\(_3\) 325.1678, found 325.1685.

Methyl 2-(3-methoxyphenyl)-1-methyl-3-(thiophen-3-yl)-1H-indole-5-carboxylate (3q)

This product was obtained as a yellow oil in a 70% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.67 (s, 3H), 3.75 (s, 3H), 3.94 (s, 3H), 6.87 (s, 1H), 6.86 (m, 3H), 7.18-7.27 (m, 1H), 7.30-7.42 (m, 3H), 8.00 (d, \(J = 8.6\) Hz, 1H), 8.57 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 31.3, 52.0, 55.4, 109.4, 111.8, 114.5, 116.5, 121.8, 122.3, 122.8, 123.4, 123.8, 124.9, 126.6, 128.8, 129.8, 132.8, 134.5, 138.9, 139.7, 159.7, 168.2; HRMS (EI) calcd for C\(_{22}\)H\(_{19}\)NO\(_3\)S 377.1086, found 377.1095.
4.6.6. General procedure for the microwave-assisted, one-pot synthesis of 1H-indoles

In an oven-dried 20 mL microwave vial, N-trifluoroacetyl-2-iodoaniline (0.6 mmol) was dissolved in Et₃N (4 mL), then PdCl₂(PPh₃)₂ (12.6 mg, 0.018 mmol, 3 mol %), CuI (2.3 mg, 0.012 mmol, 2 mol %) and the alkyne (0.63 mmol) were added. The vial was flushed with Ar, sealed and stirred at 60 °C under microwave irradiation for 20-30 min. The resulting mixture was dissolved in CH₃CN (4 mL), ArI (0.66 mmol) and Cs₂CO₃ (586 mg, 1.8 mmol) were added, and the vial was flushed with Ar, sealed and stirred at 100 °C under microwave irradiation for 30 min. To the reaction mixture were added ethyl acetate (10 mL) and brine (10 mL) and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over anhydrous MgSO₄ and concentrated under vacuum to afford the crude product, which was purified by flash chromatography on silica gel using ethyl acetate/hexanes as eluent.

Ethyl 3-(2-phenyl-1H-indol-3-yl)benzoate (3r)

![Chemical Structure](image)

This product was obtained as a yellow solid in a 93% yield: mp 145-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.34 (t, J = 7.1 Hz, 3H), 4.34 (q, J = 7.1 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 7.22-7.29 (m, 4H), 7.37-7.43 (m, 4H), 7.54 (d, J = 7.7 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 8.21 (s, 1H), 8.41 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.5, 61.1, 111.2, 114.1, 119.6, 120.8, 123.0, 127.6, 128.0, 128.4, 128.7, 128.8, 128.9, 131.0, 131.3, 132.5, 134.8, 134.9, 135.7, 136.1, 167.0; HRMS (EI) calcd for C₂₃H₁₉NO₂ 341.1416, found 341.1426.
2-(3-Methoxyphenyl)-3-(4-methoxyphenyl)-1H-indole (3s)

This product was obtained as a yellow oil in an 82% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.62 (s, 3H), 3.79 (s, 3H), 6.79 (ddd, \(J = 8.3, 2.6, 0.9\) Hz, 1H), 6.89-6.99 (m, 4H), 7.09-7.22 (m, 3H), 7.32-7.37 (m, 3H), 7.62 (d, \(J = 7.9\) Hz, 1H), 8.19 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 55.3, 55.4, 111.1, 113.5, 113.6, 114.2, 115.0, 119.8, 120.5, 122.8, 127.5, 129.1, 129.9, 131.4, 133.7, 134.2, 135.9, 158.3, 159.7; HRMS (EI) calcd for C\(_{22}\)H\(_{19}\)NO\(_2\) 329.1416, found 329.1425.

2-(4-Methoxyphenyl)-5-methyl-3-(3-nitrophenyl)-1H-indole (3t)

This product was obtained as an orange oil in an 88% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.43 (s, 3H), 3.77 (s, 3H), 6.83 (d, \(J = 8.7\) Hz, 2H), 7.06 (d, \(J = 7.8\) Hz, 1H), 7.20-7.28 (m, 3H), 7.40-7.46 (m, 2H), 7.65 (d, \(J = 7.7\) Hz, 1H), 8.06 (d, \(J = 8.2\) Hz, 1H), 8.23 (s, 1H), 8.30 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.8, 55.4, 110.9, 111.3, 114.6, 118.3, 120.9, 124.5, 124.6, 124.7 128.4, 129.4, 129.7, 130.4, 134.2, 135.6, 136.4, 137.7, 148.7, 159.7; HRMS (EI) calcd for C\(_{22}\)H\(_{18}\)N\(_2\)O\(_3\) 358.1317, found 358.1325.
4-(5-Methyl-3-phenyl-1H-indol-2-yl)benzonitrile (3u)

![Structure](image)

This product was obtained as a yellow solid in a 66% yield: mp 219-221 °C; \(^1\)H NMR (400 MHz, acetone-\(d_6\)) \(\delta\) 2.37 (s, 3H), 7.02 (d, \(J = 8.2\) Hz, 1H), 7.29-7.39 (m, 7H), 7.59 (s, 4H), 10.53 (s, 1H); \(^1^3\)C NMR (100 MHz, acetone-\(d_6\)) \(\delta\) 21.6, 110.7, 111.8, 116.7, 117.9, 119.0, 119.5, 125.5, 127.1, 128.9, 129.2, 129.4, 130.6, 132.5, 132.6, 135.6, 135.8, 138.0; HRMS (EI) calcd for C\(_{22}\)H\(_{16}\)N\(_2\) 308.1313, found 308.1323.

3-(4-Chlorophenyl)-5-methyl-2-(thiophen-3-yl)-1H-indole (3v)

![Structure](image)

This product was obtained as a light brown oil in a 67% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.41 (s, 3H), 7.00 (d, \(J = 4.7\) Hz, 1H), 7.05 (d, \(J = 8.0\) Hz, 1H), 7.22-7.27 (m, 3H), 7.34 (s, 1H), 7.37 (s, 4H), 8.14 (s, 1H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.7, 110.7, 113.5, 119.0, 122.1, 124.6, 126.3, 127.1, 128.9, 130.1, 130.4, 130.5, 131.7, 132.3, 133.5, 133.9, 134.1; HRMS (EI) calcd for C\(_{19}\)H\(_{14}\)ClNS 323.0535, found 323.0542.

Methyl 3-(3-methoxyphenyl)-2-phenyl-1H-indole-5-carboxylate (3w)

![Structure](image)

This product was obtained as an ivory solid in a 76% yield: mp 211-213 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 3.70 (s, 3H), 3.83 (s, 3H), 6.87 (s, 1H), 6.93 (d, \(J\)
= 7.9 Hz, 2H), 7.34-7.42 (m, 4H), 7.49 (d, J = 7.0 Hz, 2H), 7.53 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.5 Hz, 1H), 8.15 (s, 1H), 12.01 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$) δ 51.7, 54.9, 111.5, 111.9, 114.2, 114.8, 115.4, 121.1, 122.1, 122.9, 127.6, 127.9, 128.2, 128.5, 129.9, 131.7, 135.7, 135.8, 138.5, 159.4, 167.0; HRMS (EI) calcd for C$_{23}$H$_{19}$NO$_3$ 357.1365, found 357.1374.

Methyl 3-[4-(ethoxycarbonyl)phenyl]-2-(4-methoxyphenyl)-1H-indole-5-carboxylate (3x)

This product was obtained as an ivory solid in a 60% yield: mp 264-266 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ 1.33 (t, J = 7.0 Hz, 3H), 3.78 (s, 3H), 3.83 (s, 3H), 4.33 (q, J = 7.0 Hz, 2H), 6.98 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.1 Hz, 2H), 8.16 (s, 1H), 12.04 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$) δ 14.2, 51.7, 55.2, 60.6, 111.4, 112.3, 114.2, 114.8, 120.5, 121.3, 122.9, 127.2, 127.5, 129.6, 129.7, 136.8, 138.6, 139.9, 159.3, 165.6, 166.9; HRMS (EI) calcd for C$_{26}$H$_{23}$NO$_5$ 429.1576, found 429.1588.

4.7. REFERENCES

CHAPTER 5

Efficient Microwave-assisted One-pot Three-component Synthesis of 2,3-Disubstituted Benzofurans under Sonogashira Conditions. Approaches Towards Total Syntheses Amurensin H, Gnetuhainin B, and Gnetuhainin F

Manuscript to be submitted to *Tetrahedron*

Nataliya A. Markina, Yu Chen, and Richard C. Larock

Department of Chemistry, Iowa State University, Ames, IA, 50011

5.1. ABSTRACT

An efficient one-pot method for the synthesis of 2,3-disubstituted benzo[\(b\)]furans from commercially available 2-iodophenols, terminal acetylenes and aryl iodides has been developed utilizing Sonogashira reaction conditions. After an initial Sonogashira coupling of the 2-iodophenol with a terminal alkyne, cyclization involving the aryl iodide provides the 2,3-disubstituted benzo[\(b\)]furan in good to excellent yields. The use of microwave irradiation shortens the reaction times and minimizes the side products. This methodology is especially useful for the construction of libraries of highly substituted benzo[\(b\)]furans and their analogues.

5.2. INTRODUCTION

Benzo[\(b\)]furans have been studied extensively due to the high potential biological and pharmaceutical activity of this ring system.\(^1\) Thus, numerous synthetic methods to access this
important scaffold have been developed. Among others, Pd-catalyzed reactions have proven to be highly efficient and convenient for the synthesis and functionalization of benzo[b]furans. Several review articles and books have been published that summarize previous and recent developments in this area. In 1996, while developing a method for the synthesis of 2-substituted benzo[b]furans, Cacchi and co-workers reported that 2-alkynylphenol 1 in the presence of vinylic triflate 2 and a palladium catalyst can undergo a cyclization to the corresponding 2,3-disubstituted benzo[b]furan 3 in a 60% yield (Scheme 1).

Scheme 1. Synthesis of a 2,3-disubstituted benzofuran from a 2-alkynylphenol

Cacchi and co-workers proposed that this process most likely proceeds through a vinylic palladium intermediate, generated *in situ* from the vinylic triflate via oxidative addition to Pd(0) (Scheme 2). This “R3PdX” species can act as a Lewis acid and coordinate with the triple bond of the 2-alkynylphenol 4 to form an alkyne-organopalladium complex 5, which thus facilitates nucleophilic attack of the oxygen atom across the activated carbon-carbon triple bond to form the oxypalladation adduct 6, which, after reductive elimination, forms the 2,3-disubstituted benzo[b]furan 7 and regenerates the Pd(0) catalyst.
Scheme 2. Proposed reaction mechanism

To access the starting 2-alkynylphenols, a 3-step route has been employed in most cases. First, the OH group is protected with an appropriate protecting group (e.g. acetyl), then the Sonogashira coupling is conducted, and, following deprotection of the phenol, the desired 2-alkynylphenol is obtained, generally in moderate yields. The major problem with the direct Sonogashira reaction between a 2-iodophenol and a terminal alkyne is that the coupling is often inefficient. In addition, if basic reaction conditions are employed, 3H-benzofurans are often formed as products, instead of the desired 2-alkynylphenol.

In order to transform the Cacchi’s process into a three-component process, Flynn and co-workers employed MeMgCl as an additive to mask the phenol oxygen of the iodophenol (8). They were then able to conduct an efficient Sonogashira coupling and subsequent cyclization to a benzofuran (10) without isolating the corresponding 2-alkynylphenol (9) (Scheme 4). A number of highly substituted benzofurans 10 have been obtained in moderate to good yields using this approach. The authors applied their methodology to the
synthesis of (±)-frondosin B and its analogues, and benzo[b]furan-containing inhibitors of tubulin polymerization. However, this method has not been found suitable for the construction of libraries of 2,3-substituted benzofurans, due to the highly reactive nature of the MeMgCl reagent and its incompatibility with a large number of functional groups.

Scheme 4. A one-pot approach to benzofurans using MeMgCl

\[
\begin{align*}
\text{R}^1 \text{I} & \quad + \quad \equiv \text{R}^2 \\
\text{R}^1 \text{OH} & \quad \xrightarrow{\text{1. MeMgCl, THF, } 0\,^\circ\text{C}} \quad \xrightarrow{\text{2. cat. Pd(PPh}_3)_4, 65\,^\circ\text{C, } 2\,\text{h}} \quad \text{OMgCl} \\
\text{R}^1 \text{OH} & \quad \xrightarrow{\text{1. cool to } 18\,^\circ\text{C}} \quad \xrightarrow{\text{2. } \text{R}^3\text{X}} \quad \xrightarrow{\text{3. DMSO, } 95\,^\circ\text{C, } 4-19\,\text{h}} \quad \text{R}^1 \text{OH} \quad \text{R}^2
\end{align*}
\]

\[\text{R}^3 = \text{Ar, Vinylic, Allyl} \quad \text{X} = \text{Br, I} \quad 45-81\% \]

In 2004, Hu, Fathi, and Yang, in order to access a 210 member library of 2,3-disubstituted benzofurans 13, optimized the method developed by Cacchi starting from 2-alkynylphenols 11, and, after their optimization studies, found more efficient conditions for the formation of 2,3-diaryl-substituted benzo[b]furans from 2-alkynylphenols (12) and aryl iodides (Scheme 5). However, considering the 3-step route required for synthesis of the 2-alkynylphenols 12, the average yields of the final benzofurans 13 (over 4 steps) were only moderate.

Scheme 5. Library of 2,3-disubstituted benzofurans

\[
\begin{align*}
\text{R}^1 \text{I} & \quad \xrightarrow{\text{1. Ac}_2\text{O/Py}} \quad \xrightarrow{\text{2. cat. PdCl}_2(\text{PPh}_3)_2, \text{cat. Cul}} \quad \xrightarrow{\text{3. NH}_4\text{OH, MeOH/THF}} \quad \text{R}^1 \text{OH} \\
\text{R}^2 & \quad \xrightarrow{\text{1. cool to } 18\,^\circ\text{C}} \quad \xrightarrow{\text{2. } \text{R}^3\text{X}} \quad \xrightarrow{\text{3. } \text{ArI, K}_2\text{CO}_3, \text{MeCN}} \quad \text{R}^1 \text{OH} \quad \text{R}^2
\end{align*}
\]

\[\text{R}^3 = \text{Ar, HetAr} \quad 13, 52 - 87\% \]
During the course of our own investigations into methodology for the synthesis of 2,3-disubstituted indoles under Sonogashira conditions, we have found that 2-iodophenols can also participate in an analogous process, providing an efficient and convenient new route to 2,3-disubstituted benzofurans. This finding encouraged us to proceed with our own optimization studies of this process.

5.3. RESULTS AND DISCUSSION

5.3.1. Optimization of the reaction conditions

The 2-iodophenol 14, phenyl acetylene (15), and ethyl 4-iodobenzoate (17) have been employed as starting materials under the reaction conditions we developed for the synthesis of indoles, providing the benzofuran 18 in a 51% yield (Scheme 6). In order to improve the yield, optimization of the reaction conditions has been carried out as reported in Table 1.

Scheme 6. Model reaction

Table 1. Optimization of the reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>time (min)</th>
<th>temp. (°C)</th>
<th>solvent</th>
<th>ratio 14:15:17</th>
<th>catalyst</th>
<th>yield 18 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>60</td>
<td>Et₃N</td>
<td>1:1:0.5:1.1</td>
<td>2 mol % PdCl₂(PPh₃)₂, 1 mol % CuI</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>60</td>
<td>Et₃N</td>
<td>1:1:0.5:1.1</td>
<td>2 mol % Pd(PPh₃)₃, 1 mol % CuI</td>
<td>23</td>
</tr>
</tbody>
</table>
Table 1 continued.

3	15	60	Et₃N	MeCN	1:1.05:1.1	2 mol % Pd(dppe)$_2$ 1 mol % CuI	10
4	15	60	Et₃N	MeCN	1:1.05:1.1	2 mol % Pd(OAc)$_2$ 4 mol % PPh$_3$ 1 mol % CuI	6
5	15	60	Et₃N	MeCN	1:1.05:1.1	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	53
6	15	60	Pr$_2$NH	MeCN	1:1.05:1.1	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	50
7	15	60	Et₃N	DMF	1:1.05:1.0	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	34
8	15	60	Et₃N	THF	1:1.05:1.0	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	29
9	15	60	Et₃N	Toluene	1:1.05:1.0	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	15
10	25	80	Et₃N	MeCN	1:1.05:1.0	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	20
11	15	25	Et₃N	MeCN	1:1.05:1.0	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	53
12	30	25	Et₃N	MeCN	1:1.05:1.0	2 mol % PdCl$_2$(PPh$_3$)$_2$ 1 mol % CuI	73
13	30	25	Et₃N	MeCN	1:1.05:1.0	3 mol % PdCl$_2$(PPh$_3$)$_2$ 2 mol % CuI	86
14	30	25	NMM/Et₃N	MeCN	1:1.2:1.0	3 mol % PdCl$_2$(PPh$_3$)$_2$ 2 mol % CuI	89
15	30	25	THF/Et₃N	MeCN	1:1.2:1.0	3 mol % PdCl$_2$(PPh$_3$)$_2$ 2 mol % CuI	96

*Unless otherwise noted, all of the reactions were carried out under microwave irradiation on a 1.0 mmol scale in microwave-resistant vials. *Isolated yields after column chromatography. *When the first step of the reaction was carried out at 25 °C, much cleaner reaction mixtures were obtained than at 60 °C. *0.5 ML of N-methylmorpholine (NMM)/1.5 mL of Et₃N using anhydrous solvents under argon. *0.5 ML of THF/1.0 mL of Et₃N, and CuI were added as a solution in 0.5 mL of Et₃N using anhydrous solvents under argon.
Our initial examination of a number of palladium catalysts (Table 1, entries 1-4) indicated that bis(triphenylphosphine)palladium dichloride provided the best results. Changing the base from triethylamine to diisopropylamine (entries 5 vs 6) did not improve the yield of the desired benzofuran 18. A study of the effect of various solvents on the second cyclization step revealed that DMF afforded product 18 in a 34% yield (entry 7), whereas THF and toluene were less efficient, providing only 29% and 15% yields, respectively (entries 8 and 9). Thus, acetonitrile proved to be the best solvent for this transformation. An increase in the temperature of the first step of the reaction to 80 °C decreased the yield of the desired product to 20% (entry 10), whereas conducting the first step at room temperature did not affect the yield of the product and the reaction was found to be cleaner based on TLC analysis when compared to the same reaction at 60 °C. Increasing the reaction time of the first step at room temperature to 30 minutes improved the yield of benzofuran 18 to 73% (entry 12). Furthermore, slightly increasing the catalyst loading and finding the best Pd/Cu catalyst ratio (3 mol % and 2 mol % respectively) improved the yield of benzofuran 18 to 86% (entry 13).

After the initial evaluation of the scope had been performed, the solubility of many iodophenols in triethylamine was found to be insufficient. The first step of the process was inefficient, leading to the exclusive formation of coupling products of the aryl iodides with the terminal alkyne and affording only low yields of the cyclized benzofurans. Thus, additional evaluation of the solvents for the first step has been performed.

In this methodology, the choice of solvents plays a crucial role. For the first step, the ideal solvent needs to be suitable for an efficient Sonogashira reaction, but should not
promote cyclization of the 2-alkynylphenol, which will result in formation of the undesired 3H-benzofuran. The second step, on the other hand, requires a solvent, which will promote the cyclization. We therefore tried to add additional reagents to the triethylamine to improve the solubility of the iodophenols, but retain reaction conditions favorable for the Sonogashira coupling. Solvents, like acetonitrile and DMF, solubilized the iodophenols well, but were not suitable for the first step, since they promote the cyclization pathway. The best additives were found to be N-methylmorpholine (NMM) (entry 14) and THF. Eventually, the ratio of 3/1 triethylamine/THF afforded the best results and was chosen as our optimized conditions. After we discovered that the reaction was sensitive to the palladium/copper ratio, we again looked at this factor. We subsequently found that due to the very low amounts of CuI needed, it was better to add the exact amount of CuI desired as a 7.5M solution in Et$_3$N. When running the reaction under an inert atmosphere and anhydrous conditions, this allowed us to increase the yield of the desired benzofuran product 18 to 96% (entry 15).

4.3.3. Evaluation of the reaction scope and limitations

After “optimal” conditions for the formation of benzo[b]furan 18 were found, an evaluation of the reaction scope was performed (Table 2).

Table 2. Scope of the reaction

<table>
<thead>
<tr>
<th>entry</th>
<th>iodophenol</th>
<th>acetylene</th>
<th>aryl iodide</th>
<th>product</th>
<th>yielda (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>15</td>
<td>17</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>
Table 2 continued.

<table>
<thead>
<tr>
<th></th>
<th>Chemical Structure</th>
<th>15</th>
<th>17</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>60<sup>b</sup></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>12+88<sup>c</sup></td>
</tr>
</tbody>
</table>
Table 2 continued.

<table>
<thead>
<tr>
<th></th>
<th>Scheme</th>
<th>7</th>
<th>15</th>
<th>17</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58<sup>c</sup></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>69<sup>d</sup></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>trace<sup>e</sup></td>
</tr>
</tbody>
</table>
Table 2 continued.

<table>
<thead>
<tr>
<th>13</th>
<th>21</th>
<th>44</th>
<th>27</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>14</td>
<td>46</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>48</td>
<td>17</td>
<td>63f</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>50</td>
<td>17</td>
<td>tracec</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>15</td>
<td>PhI</td>
<td>87</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>15</td>
<td>53</td>
<td>53b</td>
</tr>
</tbody>
</table>
Table 2 continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>![Chemical Structure 55]</th>
<th>![Chemical Structure 56]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>14</td>
<td>15</td>
<td>![Chemical Structure 57]</td>
<td>![Chemical Structure 58]</td>
<td>84</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>15</td>
<td>![Chemical Structure 59]</td>
<td>![Chemical Structure 60]</td>
<td>98</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
<td>15</td>
<td>![Chemical Structure 61]</td>
<td>![Chemical Structure 62]</td>
<td>75</td>
</tr>
<tr>
<td>22</td>
<td>14</td>
<td>15</td>
<td>![Chemical Structure 63]</td>
<td>![Chemical Structure 64]</td>
<td>74</td>
</tr>
<tr>
<td>23</td>
<td>14</td>
<td>15</td>
<td>![Chemical Structure 65]</td>
<td>![Chemical Structure 66]</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td>39</td>
<td>![Chemical Structure 67]</td>
<td>![Chemical Structure 68]</td>
<td>73</td>
</tr>
</tbody>
</table>
Table 2 continued.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>14</td>
<td>15</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>26</td>
<td>14</td>
<td>15</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>27</td>
<td>O2NOH</td>
<td>15</td>
<td>69</td>
<td>72</td>
</tr>
<tr>
<td>28</td>
<td>19</td>
<td>73</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>29</td>
<td>14</td>
<td>15</td>
<td>76</td>
<td>77</td>
</tr>
</tbody>
</table>

a Isolated yields after column chromatography. *b* This compound was prepared on a large scale and recrystallized, what might have contributed to the lower yield. *c* A substantial quantity of aryl iodide 17 remained unreactive. *d* 1.0 Equiv. of alkyne was employed. *e* The reaction afforded a complex mixture; for an alternative route to 43, see Scheme 7. *f* 1.0 Equiv. of alkyne was employed and the first step of the process was run at 60 °C. *g* A small amount of product was observed as part of an inseparable complex mixture. *h* The second step of the process was conducted at 80 °C with the addition of Pd(PPh₃)₄.
First, several different iodophenols have been investigated under our optimized reaction conditions (Table 2, entries 1-7). The electron-rich methoxy-containing phenol 19, and the electron-poor ester-containing phenol 21 afforded the expected benzo[\(b\)]furans 20 and 22 in 91% and 92% yields, respectively (entries 1 and 2). When the 6-allyl-2-iodophenol 23 was employed, product 24 was formed, albeit in a lower 53% yield (entry 3). The presence of a bromine atom \(\text{para}\) to the hydroxy group was well tolerated and the bromo-containing benzo[\(b\)]furans 26 and 28 were isolated in 84% and 60% yields, respectively (entries 4 and 5). Even though the addition of THF greatly improved the solubility of many of the starting \(o\)-iodophenols, some substrates (\textit{e.g.} 5-iodovanillin, 7-iodo-8-hydroxyquinoline-5-sulfonic acid, and 5-iodouracil) still exhibited insufficient solubility in the Et\(_3\)N/THF mixture to afford good results. The poor solubility prevented the first coupling step from proceeding in acceptable yield and thus sharply reducing the yield of the three-component coupling product and increasing the number of side products.

When 5-hydroxy-6-iodopicoline (29) was employed, the desired product 31 was isolated, but in only 12% yield (entry 6). The 3\(H\)-furo[2,3-\(b\)]pyridine 31 was isolated as a major product in 88% yield. The flavone-derived iodophenol 32 failed to produce the desired three-component coupling product and afforded compound 33 in a 58% yield, along with unreacted aryl iodide 17 (entry 7).

In order to continue our evaluation of the scope of this process, various terminal alkynes have been studied (entries 8-16). Alkynes bearing electron-donating groups, such as 34, 36 and 38, were well tolerated, providing benzofurans 35, 37 and 39 in 94%, 93% and 83% yields, respectively (entries 8-10). The alkyne 40, containing an electron-withdrawing
aldehyde group in the position ortho to the alkyne functionality was also tolerated, providing the product 41 in a 69% yield (entry 11). However, when a stronger electron-withdrawing cyano groups (42) was present in the alkyne, no cyclization product was observed (entry 12). Instead a complex reaction mixture, containing the 3H-benzofuran 79, the coupling product of 42 with 17, as well as trace amounts of other products was obtained. This result can be rationalized by examining the nucleophilicity of the alkyne moiety. When an electron-withdrawing group is present, the electron density on the carbon-carbon triple bond is decreased, thus promoting cyclization of the OH group, without interception by the desired arylpalladium iodide species. In the case of 4-cyanoethynylbenzene (42), by using the corresponding TMS-protected phenol 78 and adding TBAF during the second step of the sequence, we were able to obtain the desired benzo[b]furan product 43 in a 53% yield (Scheme 7).

Scheme 7. An alternative route employing 4-cyanoethynylbenzene

The use of 1-ethynylcyclohexene (44) afforded the desired benzo[b]furan 45 in an 52% yield (entry 13). The heterocycle-containing terminal alkynes 46 and 48 were also well tolerated under our reaction conditions, providing thiophenyl- and methylimidazolyl-substituted benzofurans 47 and 49 in 100% and 63% yields respectively (entries 14 and 15). Unfortunately, aliphatic acetylenes [e.g. 1-pentyne (50)] led to formation of the desired
benzo[b]furan 51 in only trace amounts and afforded a complex reaction mixture (entry 16). The major side product in this case was the coupling product of the terminal alkyne 50 with the aryl iodide 17, which suggests an inefficiency in the Sonogashira coupling step. Various attempts to modify the reaction conditions failed to improve the outcome of this reaction.

Finally, we examined the scope of the aryl iodides that can be used in this process under our optimized reaction conditions. Starting with iodobenzene, 2,3-diphenylbenzo[b]furan (52) was obtained in an 87% yield (entry 17). When 4-idoanisole (53) was employed, only a 22% yield of benzofuran 54 was obtained under our optimized conditions. However, using a slightly lower temperature (80 °C) and an additional loading of the Pd catalyst in the second step improved the yield of the product 54 to 53% (entry 18).

Surprisingly, the presence of an electron-donating methoxy group in the meta-position of the aryl iodide 55 was well tolerated and afforded the desired heterocycle 56 in an 84% yield (entry 19). Aryl iodides with electron-withdrawing groups, such as 4-iodobenzonitrile (57) and 4-iodonitrobenzene (59), also afforded the corresponding benzofurans 58 and 60 in 98% and 75% yields, respectively (entries 20 and 21). Placing the nitro group in the position ortho to the iodine did not affect the efficiency of the process, providing benzo[b]furan 62 in a 74% yield (entry 22). 4-Chloriodobenzene (63) afforded the benzo[b]furan 64 in an excellent 96% yield (entry 23). The product 66 has been obtained in a 73% yield by employing 3-ethynylthiophene (46) and p-iodoacetophenone (65) (entry 24). Various heterocyclic aryl and vinylic iodides have been examined under our standard reaction conditions, providing the corresponding heterocyclic products in moderate to good yields (entries 25-28). N-Tosyl 3-iodoindole (67) afforded the desired product 68 in a 58% yield (entry 25). When employing
2-iodochromene (69), the bis-heterocyclic product 70 was obtained, albeit in only a 43% yield (entry 26). When 2-ido-5-nitrophenol (71) was employed as a starting material with the same substrate, only a 24% yield of the benzofuran 72 could be obtained (entry 27), probably due to the electron-withdrawing effect of the nitro group, which ends up in a position para to the alkyne triple bond after the initial Sonogashira coupling. To our delight, the highly substituted 2-fluoro-3-formyl-4-iodopyridine (74) coupled with 6-methoxy-2-iodophenol (19) and 3-tolyl acetylene (73) to afford the highly substituted benzofuran 75 in a 65% yield (entry 28). Finally, the vinylic halide 2-ido-4,4-dimethylcyclohex-2-enone (76) was allowed to react with o-iodophenol and phenyl acetylene to generate the corresponding heterocycle 77, albeit in only a 34% yield (entry 29).

5.3.3. Study of the additional processes and further diversification

Recently, several processes describing Heck-type Pd(0) or Rh(I)-catalyzed reactions of 2-alkynylphenols with alkenes have been reported.9 We were interested in knowing if our methodology could provide such a Heck-type transformation to afford 3-alkenylbenzofurans in a one-pot fashion from 2-iodophenol (14). Gratifyingly, by employing butyl acrylate and slightly modifying our reaction conditions for the second step, we were able to obtain the olefinic product 80 in a 56% yield (Scheme 8).

Scheme 8. Synthesis of benzofurans from iodophenols, alkynes and alkenes

![Scheme 8](image-url)
The alkyne 1-ethynylcyclohexene (44) also afforded the desired product 81 in a 70% yield.

We have also investigated the possibility of employing aryl boronic acids (analogous to a Suzuki-Miyaura coupling)10 and terminal alkynes (analogous to a Sonogashira coupling)11 in the same process. However, there was no evidence for formation of the expected 2,3-disubstituted benzo[\textit{b}]furans in the two cases we examined using our standard reaction conditions. The major product in both cases was the corresponding 3\textit{H}-benzofuran. This does not mean that there are no reaction conditions under which the desired Sonogashira/Suzuki-Miyaura process won’t occur.

We have also attempted Pd-catalyzed couplings with the 5-bromobenzofurans 26 and 28 prepared by our benzofuran synthesis to illustrate how our benzofurans can be further diversified to provide a large variety of multisubstituted benzofurans for drug testing. Thus, Suzuki-Miyaura10 and Mizoroki-Heck10 couplings proceeded smoothly, affording the products 82 and 83 in 83% and 81% yields, respectively (Scheme 9).

Scheme 9. Pd-catalyzed diversification
5.3.4. Approaches towards the total syntheses of Amurensin H, Gnetuhainin B, and Gnetuhainin F

We envisioned that our three-component approach could be a useful tool for the synthesis of selected benzo[b]furan-containing natural products. Amurensin H, Gnetuhainin B and Gnetuhainin F were chosen as targets (Figure 1).

![Figure 1. Structures of Amurensin H, and Gnetuhainins B and F](image)

Compounds 84-86 belong to a class of oligostilbenes, known for their multiple biological activities.\(^1\) Amurensin H (84) was isolated from *Vitis amurensis* and shows significant anti-inflammatory activity.\(^2\) It was found suitable for the treatment of chronic obstructive pulmonary disease.\(^3\) Two synthetic pathways have been reported for the total synthesis of benzofuran 84. One involves the oxidative coupling of resveratrol,\(^4\) and the other involved the cyclization of *ortho*- (benzyloxy)benzophenones using a phosphazene reagent.\(^5\) Gnetuhainin B (85) and Gnetuhainin F (86) were isolated from *Gnetum hainanense*
species, a traditional Chinese medicine herb.17,18 Compound 3 has been prepared through oxidative coupling in 9 steps starting from methyl 3,5-di(benzyloxy)benzoate in 9.8\% overall yield.19 No total synthesis of Gnetuhainin B has been reported.

Scheme 10. Proposed retrosynthetic pathway towards benzofurans 84 and 85
We envisioned that structurally similar benzofurans 84 and 85 could be obtained from the corresponding methoxy analogues 87 and 88 (Scheme 10). Compounds 87 and 88 could be obtained by the Pd-catalyzed couplings of boronic acid 93 with compounds 89 or 90 or by a Wittig reaction of 94 with 91 or 92. Precursors 89-92 could be prepared using our 3-component method, starting from iodophenols 95 or 96, commercially available alkynes 34 or 97, and aryl iodode 98.

First, we attempted the synthesis of iodophenol 95 (Scheme 11). Iodination of 3,5-dimethoxybromobenzene (99) afforded compound 101 in a quantitative yield. However, all of our attempts to selectively demethylate the methoxy group next to the iodine atom failed. Even demethylation of both methoxy groups using known reagents (e.g. BBr₃, HI) did not prove to be possible, resulting in complex reaction mixtures with the predominant product being 3,5-dihydroxybromobenzene.

Scheme 11. Unsuccessful approach toward phenols 95 and 96

![Scheme 11](image)

We then decided to proceed with the synthesis of iodophenol 96 suitable for the Wittig route. In this case, starting with compound 100, we were able to obtain compound 102 in an 87% yield (Scheme 11). However, all attempts to demethylate compound 102 failed as well. As an alternative, we decided to investigate the possible selective lithiation of compound 103 (Scheme 12). With the good C-H activating ability of a diethylcarbamate group and a MOM directing group being ~ 1000 times more reactive than a OMe group, we expected the
exclusive lithiation of compound 103 at position 2, which followed by iodination would result in the formation of the desired compound 104. However, even running the lithiation reaction at -100 °C, we observed no selectivity and obtained an approximately 1:1 mixture of isomers 104 and 105 (Scheme 3). This might be attributed to the extremely good activating ability of the diethylcarbamide group, so that the difference between the OMOM and OMe groups does not affect the selectivity.

Scheme 12. Unsuccessful iodination of compound 103

![Scheme 12](image)

Due to complications with the selective iodination, we decided to pursue another strategy for the synthesis of phenol 96, where the iodine atom is introduced through deamination/iodination of an amino group. This method proved to be efficient, leading to the formation of iodophenol 108 in 57% yield from compound 107 (Scheme 13).

Scheme 13. Synthesis of iodophenol 108

![Scheme 13](image)

With compound 108 in hand, we decided to postpone the transformation of the CO₂Me group to the desired aldehyde and to try our three-component coupling using the compound 108. From our studies of the scope of our benzofuran synthesis, we knew that a
CO$_2$Me group is tolerated better than an aldehyde under our reaction conditions. Thus, this adjustment should be beneficial.

Unfortunately, when we tried to employ compound 108 in our three-component coupling, its solubility was insufficient. Thus, the first step was inefficient and no formation of the desired benzo[b]furan 110 was observed (Scheme 14). We then decided to change the CO$_2$Me group to a CO$_2$Hex group to improve the solubility and indeed the CO$_2$Hex analogue 109 had excellent solubility in the Et$_3$N/THF mixture. To our disappointment, however, the three-component coupling using compound 109 did not result in the formation of the desired benzo[b]furan product 111, producing instead a complex reaction mixture, mostly composed of apparent products of decomposition of the starting materials.

Scheme 14. Unsuccessful three-component coupling employing phenols 108 and 109

![Scheme 14](image)

The presence of an ester group right next to the iodine might be the reason for compounds 108 and 109 being ineffective in the Sonogashira reaction.

Although our efforts did not allow us to obtain the desired compounds 84 and 85, we are continuing to study alternative ways to complete this synthesis utilizing our three-component methodology.

For the synthesis of Gnetuhainin F (86), we envisioned a similar retrosynthetic strategy (Scheme 15). In this case, compound 86 might be obtained from protected compound 112.
Benzofuran 112 could hopefully be obtained by the Pd-catalyzed reactions of 113 with 115 or 116 or, alternatively, a Wittig or Horner-Wadsworth-Emmons reaction of 114 with 117 (or a Wittig reaction with the corresponding phosphonium salt).

Scheme 15. Retrosynthetic pathway towards benzofuran 86.
The three-component coupling could then be employed for the synthesis of 113 or 114 from phenols 118 or 119, alkyne 120 and aryl iodide 121.

As can be seen from Scheme 15, various protecting groups could be used for this transformation. Indeed, we found out that the choice of the protecting group plays a crucial role in the success of these reactions. Three most commonly used protecting groups have been studied: TBDMS, MOM and acetyl.

To study the possibility of the three-component coupling for the synthesis of 113 and 114, we started with the preparation of the required precursors 118-121 in a few steps from commercially available starting materials. Iodophenols 118 and 119 and TBDMS-, MOM- and acetyl-protected 120 and 121 have all been successfully obtained in good yields.20

When compounds 120 and 121 with PG = TBDMS were employed with iodophenol 118, our three-component coupling was possible, however not efficient, and afforded an inseparable mixture of the desired product 113a and the coupling product of the aryl iodide 121a and alkyne 120a (Scheme 16). In the case of PG = MOM, the three-component coupling didn’t prove to be efficient and none of the desired product 113b was observed. The case of PG = acetyl was found to be the most suitable using our reaction conditions. Our three-component methodology in this case proved to be efficient and afforded the desired product 113c in a 60% isolated yield.
Scheme 16. Three-component coupling for the synthesis of compounds 113

For the preparation of benzofuran 114, we chose compounds 120 and 121 with acetyl protecting groups. Due to the poor solubility of 5-iodovanillin (119) in our Et$_3$N/THF mixture, we decided to use the protected compound 122. When iodophenol 122 was employed in our three-component coupling with the acetyl-protected compounds 120 and 121, the desired benzofuran product 123 was formed in a 65% yield and then transformed to the corresponding aldehyde 114 in a 94% yield (Scheme 17).

Scheme 17. Synthesis of compound 114
After successful preparation of both compounds \textbf{113c} and \textbf{114}, we attempted their conversion to compound \textbf{112}. For compound \textbf{114}, a Horner-Wadsworth-Emmons reaction was chosen to prepare the \textit{E}-alkene moiety of Gnetuhainin F. Both acetyl- and MOM-protected compounds \textbf{117a} and \textbf{117b} have been prepared and employed under several reaction conditions described for this type of transformation in the literature, namely employing 1BuOK, 21BuLi or LiHMDS22 as a base. Unfortunately, none of the desired product \textbf{112} was obtained (Scheme 18). A complex mixture mainly composed of apparent decomposition/deacetylation products of \textbf{114} was obtained in all cases.

\textbf{Scheme 18}. Horner-Wadsworth-Emmons reaction of benzofuran \textbf{114}

![Scheme 18](image)

\textbf{i)} 1. \textbf{117a} or \textbf{117b}, 1BuOK, THF, 0 °C, 10 min; 2. -78 °C, then \textbf{114}, rt, 16 h. \textbf{ii)} 1. \textbf{117b}, 2BuLi, THF, 0 °C, 10 min; 2. -78 °C, then \textbf{114}, rt, 16 h. \textbf{iii)} 1. \textbf{117a}, LiHMDS, THF; 2. \textbf{114} 16 h

We then proceeded with further derivatization of compound \textbf{113c}. Suzuki coupling with unprotected boronic acid \textbf{116} (R =H) was employed. However, none of the desired product was formed (Scheme 19). In this case, the major complication of this reaction was also found to be partial deacetylation of the precursor \textbf{113}, obviously initiated by aqueous basic reaction conditions. This led to complex reaction mixtures and did not allow the desired compound \textbf{112} to be formed.
Scheme 19. Suzuki coupling of benzofuran 113c with boronic acid 116.

![Scheme 19](image)

We then turned to an investigation of the Heck reaction of compound 113c that would hopefully tolerate the acetyl groups. We prepared 3,5-diacetoxystyrene (115) and attempted a Heck reaction with compound 113c under reaction conditions employing NaHCO₃, K₂CO₃, or Et₃N as a base in combination with different ligands. However, only complicated reaction mixtures have been obtained (Scheme 20). This result is discouraging, since conditions i) in Scheme 20 have been suitable for the synthesis of acetyl-protected resveratrol starting from styrene 115 and 4-acetoxybromobenzene (see ref. 23).

Scheme 20. Suzuki coupling of benzofuran 113c with styrene 115.

![Scheme 20](image)

Even cleavage of the acetyl groups in compound 113c was found to be challenging, leading to complex mixtures. We are now continuing our search for the optimal combination
of reaction conditions and functional groups for the successful generation of benzofuran \textbf{112} from compounds \textbf{113c} and \textbf{114}.

\textbf{5.4. CONCLUSIONS}

A novel convenient multicomponent process for the synthesis of 2,3-disubstituted benzo[\textit{b}]furans under Sonogashira conditions has been developed and the scope of this process studied. Microwave irradiation has been employed, providing higher yields and shorter reaction times. This methodology has proven quite general and should prove a valuable tool in the synthesis of combinatorial libraries of benzofurans. Significant progress has been achieved in applying the developed methodology to the total synthesis of the oligostilbenes Amurensin H, Gnetuhainin B and Gnetuhainin F, but work remains to complete these syntheses.

\textbf{5.5. ACKNOWLEDGEMENTS}

We gratefully acknowledge the National Science Foundation and the National Institutes of Health Kansas University Center of Excellence in Chemical Methodology and Library Development (P50 GM069663) for their generous financial support of this project. We would also like to thank the research groups of Professors Nicola Pohl and George Kraus for allowing us to use their CEM microwave reactors for the room temperature experiments.
5.6. EXPERIMENTAL

5.6.1. General remarks

All microwave reactions were carried out in sealed oven-dried microwave vials. A Biotage microwave reactor was used for all experiments run at or above 60 °C. A CEM microwave reactor was used for the room temperature microwave reactions. The 1H and 13C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz, respectively. The chemical shifts of the 1H NMR and 13C NMR spectra are reported relative to the residual signal of CDCl$_3$ (δ 7.26 ppm for the 1H NMR and δ 77.23 ppm for the 13C NMR), acetone-d$_6$ (2.05 ppm for the 1H NMR and δ 29.92 ppm for the 13C NMR) or DMSO-d$_6$ (2.50 ppm for the 1H NMR and δ 39.51 ppm for the 13C NMR). All coupling constants (J) are reported in Hertz (Hz). All commercially obtained chemicals were used as received without further purification. Thin layer chromatography was performed using commercially prepared 60-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm). All melting points were obtained using an EZ-Melt automated melting point apparatus and are uncorrected. High resolution mass spectra (HRMS) were obtained using an Agilent QTOF 6540 mass spectrometer (ESI at a voltage of 70 eV). All mass spectra (MS) were obtained using a GCT-Agilent 6890 gas chromatograph/ mass spectrometer (EI at a voltage of 70 eV). All IR spectra were obtained using a Nicolet 380 FT-IR apparatus.

5.6.2. Preparation of the starting compounds for the three-component coupling.

A majority of the starting materials were purchased from commercial sources and used as received. The following compounds were prepared following the procedure described in the
literature: iodophenols 19, 24 23, 25 32, 26 and 71, 27 3-iodo-N-tosylindole (68), 28 3-iodo-4H-chromen-4-one (69), 29 2-iodo-4,4-dimethylcyclohexenone (76). 30

5.6.3. General procedure for the one-pot, three-component Sonogashira/Cacchi type coupling for the synthesis of benzofurans.

The 2-iodophenol (0.5 mmol) and dichlorobis(triphenylphosphine)palladium (10.5 mg, 3 mol %) were placed in a 5 mL microwave vial and purged with argon. Dry THF (0.5 mL) was added and the reaction mixture was stirred until the iodophenol completely dissolved. Then dry triethylamine (1.0 mL) and a 3.8M solution of CuI in dry triethylamine (0.5 mL) were added and the mixture allowed to stir for 10 min. Then 1.2 equiv. of the corresponding alkyne was added; the vial was capped, purged with argon and placed in the microwave reactor for 30 min at 25 °C. The corresponding aryl iodide (0.5 mmol) and dry acetonitrile (2 mL) were added and the reaction mixture was heated in the microwave reactor at 100 °C for 25 min. After cooling, the solvents were evaporated and column chromatography using ethyl acetate/hexane as the eluent afforded the desired products.

Ethyl 4-(2-phenylbenzofuran-3-yl)benzoate (18)

![Ethyl 4-(2-phenylbenzofuran-3-yl)benzoate (18)](image)

Yellow solid, 164.2 mg (96%): mp 100-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.42 (t, J = 7.1 Hz, 3H), 4.41 (q, J = 7.1 Hz, 2H), 7.21-7.26 (m, 1H), 7.26-7.36 (m, 4H), 7.49 (d, J = 7.3 Hz, 1H), 7.52-7.66 (m, 5H), 8.14 (d, J = 8.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 14.6, 61.3, 111.4, 116.7, 119.9, 123.3, 125.1, 127.4, 128.7, 128.9, 129.8, 129.8,
154

130.4, 131.6, 131.9, 137.9, 151.3, 154.2, 166.6; HRMS calc. for C_{23}H_{18}O_3 [M+H]^+ 342.1256, found 342.1260.

Ethyl 4-(7-methoxy-2-phenylbenzofuran-3-yl)benzoate (20)

Bright yellow solid, 169.6 mg (91%): mp 125-127 °C; ^1H NMR (400 MHz, CDCl₃) δ 1.44 (t, J = 7.1 Hz, 3H), 4.08 (s, 3H), 4.43 (q, J = 7.1 Hz, 2H), 6.87 (d, J = 7.9 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 7.28-7.36 (m, 3H), 7.59 (d, J = 8.0 Hz, 2H), 7.61-7.70 (m, 2H), 8.14 (d, J = 8.0 Hz, 2H); ^13C NMR (100 MHz, CDCl₃) δ 14.6, 56.4, 61.3, 107.4, 112.3, 117.0, 124.0, 127.5, 128.7, 128.9, 129.8, 129.9, 130.3, 130.3, 131.4, 137.9, 143.6, 145.6, 151.6, 166.6; HRMS calc. for C_{24}H_{20}O_4 [M+H]^+ 372.1362, found 373.1438.

Methyl 3-[4-(ethoxycarbonyl)phenyl]-2-phenylbenzofuran-5-carboxylate (22)

Colorless solid, 162.3 mg (92%): mp 186-187 °C; ^1H NMR (300 MHz, CDCl₃) δ 1.44 (t, J = 7.1 Hz, 3H), 3.92 (s, 3H), 4.44 (q, J = 7.1 Hz, 2H), 7.29-7.47 (m, 3H), 7.46-7.73 (m, 5H), 8.09 (d, J = 8.6 Hz, 1H), 8.17 (d, J = 8.2 Hz, 2H), 8.20 (s, 1H); ^13C NMR (75 MHz, CDCl₃) δ 14.6, 52.4, 61.4, 111.4, 117.1, 122.4, 125.8, 126.9, 127.4, 128.9, 129.4, 129.9, 129.9, 130.2, 130.6, 137.2, 152.7, 156.8, 166.5, 167.3; HRMS calc. for C_{25}H_{20}O_5 [M+H]^+ 401.1384, found 401.1395.

Ethyl 4-(7-allyl-2-phenylbenzofuran-3-yl)benzoate (24)
Colorless oil, 97.6 mg (53%): 1H NMR (300 MHz, CDCl$_3$) δ 1.38 (t, $J = 7.1$ Hz, 3H), 3.79 (d, $J = 6.7$ Hz, 2H), 4.39 (q, $J = 7.1$ Hz, 2H), 5.11-5.33 (m, 2H), 5.06-5.38 (m, 2H), 6.16 (ddt, $J = 16.8$, 10.0, 6.6 Hz, 1H), 7.11-7.40 (m, 6H), 7.53 (t, $J = 7.7$ Hz, 1H), 7.59-7.73 (m, 3H), 8.10 (dt, $J = 7.8$, 1.5 Hz, 1H), 8.23 (t, $J = 1.8$ Hz, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 14.5, 29.9, 30.2, 34.2, 61.3, 116.5, 117.0, 118.1, 123.5, 123.9, 125.1, 127.2, 128.7, 129.0, 129.3, 130.0, 130.7, 131.0, 131.6, 133.7, 134.5, 136.1, 150.9, 152.6, 166.6; HRMS calc. for C$_{26}$H$_{22}$O$_3$ [M+H]$^+$ 382.1563, found 382.1558.

Ethyl 4-(5-bromo-2-phenylbenzofuran-3-yl)benzoate (26)

Colorless solid, 176.8 mg (84%): mp 135-137 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.44 (t, $J = 7.1$ Hz, 3H), 4.43 (q, $J = 7.1$ Hz, 2H), 7.29-7.37 (m, 3H), 7.44 (d, $J = 1.0$ Hz, 2H), 7.56 (d, $J = 8.3$ Hz, 2H), 7.58-7.64 (m, 3H), 8.15 (d, $J = 8.2$ Hz, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 14.6, 61.4, 112.9, 116.3, 116.6, 122.7, 127.5, 128.0, 128.9, 129.4, 129.8, 129.9, 130.2, 130.6, 131.9, 137.2, 152.6, 153.0, 166.5; HRMS calc. for C$_{23}$H$_{17}$Br O$_3$ [M+H]$^+$ 421.0361, found 421.0434.

Ethyl 3-(5-bromo-2-phenylbenzofuran-3-yl)benzoate (28)
Colorless solid: mp 103-104 °C; 1H NMR (300 MHz, CDCl$_3$) δ 1.39 (t, $J = 7.1$ Hz, 3H), 4.40 (q, $J = 7.1$ Hz, 2H), 7.28-7.35 (m, 3H), 7.44 (d, $J = 1.2$ Hz, 2H), 7.50-7.71 (m, 5H), 8.12 (dt, $J = 7.6$, 1.4 Hz, 1H), 8.17 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 14.5, 61.4, 112.9, 116.2, 116.5, 122.7, 126.4, 127.2, 127.9, 128.8, 128.9, 129.2, 129.4, 129.5, 130.0, 130.9, 131.8, 132.3, 132.8, 134.4, 152.4, 152.9, 166.5; HRMS calc. for C$_{23}$H$_{18}$BrO$_3$ [M+H]$^+$ 421.0434, found 421.0440.

Ethyl 4-(5-methyl-2-phenylfuro[3,2-b]pyridin-3-yl)benzoate (30)

Brown oil, 20.1 mg (12%): 1H NMR (300 MHz, CDCl$_3$) δ 1.42 (t, $J = 7.1$ Hz, 3H), 2.66 (s, 3H), 4.37 (s, 2H), 7.13 (d, $J = 8.4$ Hz, 1H), 7.33-7.40 (m, 3H), 7.63-7.72 (m, 3H), 7.77 (d, $J = 7.9$ Hz, 2H), 8.13 (d, $J = 7.9$ Hz, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 14.6, 24.7, 61.2, 116.9, 118.4, 119.6, 126.4, 127.8, 128.9, 128.9, 129.6, 129.8, 130.2, 130.2, 136.2, 146.2, 147.3, 155.3, 166.8; HRMS calc. for C$_{23}$H$_{20}$NO$_3$ [M+H]$^+$ 358.1438, found 358.1445.
5-Methyl-2-phenylfuro[3,2-b]pyridine (31)

Brown solid, 91.7 mg (88%): mp 114-117 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.66 (s, 3H), 7.06 (d, $J = 8.4$ Hz, 1H), 7.15 (d, $J = 0.9$ Hz, 1H), 7.35-7.42 (m, 1H), 7.43-7.53 (m, 2H), 7.65 (d, $J = 8.8$ Hz, 1H), 7.82-7.96 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 24.5, 102.3, 118.3, 118.9, 125.4, 129.1, 129.6, 130.1, 146.8, 148.5, 154.8, 159.7; HRMS calc. for C$_{14}$H$_{12}$NO [M+H]$^+$ 210.0913, found 210.0914.

2,7-Diphenyl-9H-furo[3,2-f]chromen-9-one (33)

Beige solid, 98.4 mg (58%): mp 200-203 °C (decomposed); 1H NMR (300 MHz, CDCl$_3$) 1H NMR (400 MHz, CDCl$_3$) δ 6.88-6.96 (m, 1H), 7.34-7.42 (m, 1H), 7.42-7.58 (m, 6H), 7.79-7.83 (m, 1H), 7.92-7.96 (m, 4H), 8.09-8.11 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) 103.6, 108.0, 113.9, 116.9, 116.9, 125.3, 126.2, 126.3, 128.9, 129.1, 129.2, 130.0, 131.5, 131.9, 151.4, 153.8, 159.0, 162.8, 179.1; HRMS calc. for C$_{23}$H$_{15}$O$_3$ [M+H]$^+$ 339.1016, found 339.1020.

Ethyl 4-[2-(4-methoxyphenyl)benzofuran-3-yl]benzoate (35)

Yellow solid, 175.0 mg (94%): mp 125-127 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.41 (t, $J = 7.1$ Hz, 3H), 3.78 (s, 3H), 4.41 (q, $J = 7.1$ Hz, 2H), 6.83 (d, $J = 8.8$ Hz,
2H), 7.22 (t, \(J = 7.5 \) Hz, 1H), 7.29 (t, \(J = 7.7 \) Hz, 1H), 7.47 (d, \(J = 7.7 \) Hz, 1H), 7.52-7.61 (m, 5H), 8.13 (d, \(J = 8.2 \) Hz, 2H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 14.6, 55.4, 61.2, 111.2, 114.2, 115.2, 119.6, 122.9, 123.2, 124.6, 128.9, 129.5, 129.8, 130.3, 134.1, 138.2, 151.5, 154.1, 160.1, 166.6; HRMS calc. for C\(_{24}\)H\(_{20}\)O\(_4\) [M+H]\(^+\) 372.1362, found 372.1372.

Ethyl 4-[2-(3,5-dimethoxyphenyl)benzofuran-3-yl]benzoate (37)

![Chemical Structure](image)

Cream colored solid, 186.3 mg (93%): mp 102-104 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 1.45 (t, \(J = 7.1 \) Hz, 3H), 3.70 (s, 6H), 4.44 (q, \(J = 7.1 \) Hz, 2H), 6.45 (s, 1H), 6.81 (s, 2H), 7.27 (t, \(J = 7.5 \) Hz, 1H), 7.37 (t, \(J = 7.7 \) Hz, 1H), 7.49 (d, \(J = 7.8 \) Hz, 1H), 7.58 (d, \(J = 8.2 \) Hz, 1H), 7.63 (d, \(J = 8.0 \) Hz, 2H), 8.18 (dd, \(J = 8.2, 1.5 \) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 14.6, 55.5, 61.3, 101.6, 101.6, 105.2, 111.4, 117.1, 119.9, 123.3, 125.2, 129.8, 129.9, 130.3, 131.9, 137.9, 150.9, 154.0, 160.8, 166.5; HRMS calc. for C\(_{25}\)H\(_{22}\)O\(_5\) [M+H]\(^+\) 403.1540, found 403.1549.

Ethyl 4-[2-(4-(dimethylamino)phenyl)benzofuran-3-yl]benzoate (39)

![Chemical Structure](image)

Yellow-green oil, 160.1 mg (83%): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 1.47 (t, \(J = 7.2 \) Hz, 3H), 2.99 (s, 6H), 4.47 (q, \(J = 7.1 \) Hz, 2H), 7.29 (dt, \(J = 17.4, 7.0 \) Hz, 2H), 6.66 (d, \(J = 8.5 \) Hz, 2H), 7.29 (dt, \(J = 17.4, 7.0 \) Hz, 2H), 7.48-7.61 (m, 4H), 7.67 (d, \(J = 8.0 \) Hz, 2H), 8.19 (d, \(J = 8.0 \) Hz, 2H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 14.5, 40.3, 61.1, 111.1,
Ethyl 4-[2-(2-formylphenyl)benzofuran-3-yl]benzoate (41)

Yellow oil, 128.6 mg (69%): \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.36 (t, \(J = 7.2\) Hz, 3H), 4.36 (q, \(J = 7.2\) Hz, 2H), 7.36 (t, \(J = 7.5\) Hz, 1H), 7.43 (t, \(J = 7.6\) Hz, 2H), 7.47-7.64 (m, 5H), 7.73 (d, \(J = 7.8\) Hz, 1H), 8.01 (t, \(J = 7.6\) Hz, 2H), 8.14 (s, 1H), 10.07 (s, 1H); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 14.5, 61.3, 111.8, 117.6, 120.5, 120.7, 123.8, 125.8, 128.3, 128.3, 129.0, 129.3, 129.8, 130.5, 131.3, 131.6, 131.9, 132.9, 133.8, 134.3, 148.6, 155.1, 166.2, 191.0; HRMS calc. for C\(_{24}\)H\(_{18}\)O\(_4\)[M+H]\(^+\) 371.1278, found 371.1276.

Ethyl 4-[2-(4-cyanophenyl)benzofuran-3-yl]benzoate (43)

Colorless solid, 97.5 mg (53%): mp 135-137 °C; \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.45 (t, \(J = 7.1\) Hz, 3H), 4.45 (q, \(J = 7.1\) Hz, 2H), 7.29 (t, \(J = 7.5\) Hz, 1H), 7.41 (t, \(J = 7.8\) Hz, 1H), 7.48 (d, \(J = 7.8\) Hz, 1H), 7.57 (t, \(J = 8.1\) Hz, 5H), 7.73 (d, \(J = 8.1\) Hz, 2H), 8.19 (d, \(J = 8.0\) Hz, 2H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 14.6, 56.9, 61.4, 111.6, 111.9, 118.8, 119.7, 120.5, 123.8, 126.3, 127.3, 129.6, 129.8, 130.5, 130.7, 132.5, 134.7, 136.9, 148.7, 154.4, 166.4; HRMS calc. for C\(_{24}\)H\(_{17}\)NO\(_3\)[M+H]\(^+\) 367.1208, found 367.1212.

Ethyl 4-[2-(cyclohex-1-en-1-yl)benzofuran-3-yl]benzoate (45)
Yellow oil, 104.1 mg (52%): 1H NMR (400 MHz, CDCl$_3$) δ 1.40 (t, $J = 7.1$ Hz, 3H), 1.62 (t, $J = 3.2$ Hz, 4H), 2.12 (br s, 2H), 2.18 (br s, 2H), 3.88 (s, 3H), 4.40 (q, $J = 7.1$ Hz, 2H), 6.41-6.48 (m, 1H), 7.47 (d, $J = 8.5$ Hz, 1H), 7.54 (t, $J = 7.7$ Hz, 1H), 7.61-7.66 (m, 1H), 8.01 (dd, $J = 10.8, 1.5$ Hz, 2H), 8.09 (d, $J = 7.8$ Hz, 1H), 8.13 (d, $J = 1.9$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 14.5, 21.9, 22.6, 25.9, 26.6, 52.2, 61.3, 110.8, 115.5, 121.9, 125.2, 126.4, 127.9, 128.9, 128.9, 130.6, 131.0, 131.1, 131.2, 133.2, 134.5, 154.5, 156.0, 166.6, 167.4; HRMS calc. for C$_{25}$H$_{25}$O$_5$ [M+H]$^+$ 405.1697, found 405.1706.

Ethyl 4-[2-(thiophen-3-yl)benzofuran-3-yl]benzoate (47)

Yellow oil, 174.2 mg (100%): 1H NMR (300 MHz, CDCl$_3$) δ 1.45 (t, $J = 7.2$ Hz, 3H), 4.44 (q, $J = 7.1$ Hz, 2H), 7.21 (t, $J = 5.2$ Hz, 1H), 7.24-7.30 (m, 2H), 7.35 (t, $J = 7.6$ Hz, 1H), 7.47 (d, $J = 7.2$ Hz, 1H), 7.55 (d, $J = 8.1$ Hz, 1H), 7.58-7.70 (m, 3H), 8.18 (d, $J = 8.4$ Hz, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 14.6, 61.3, 111.3, 115.9, 119.8, 123.4, 123.8, 125.0, 126.1, 126.2, 129.7, 130.0, 130.3, 131.6, 137.7, 148.3, 154.0, 166.6; HRMS calc. for C$_{21}$H$_{16}$O$_3$S [M+H]$^+$ 349.0893, found 349.0900.
Ethyl 4-[2-(1-methyl-1H-pyrazol-5-yl)benzofuran-3-yl]benzoate (49)

Green amorphous solid, 109.4 mg (63%): 1H NMR (400 MHz, CDCl$_3$) δ 1.41 (t, $J = 7.1$ Hz, 3H), 3.63 (s, 3H), 4.40 (q, $J = 7.1$ Hz, 2H), 7.31 (t, $J = 7.3$ Hz, 1H), 7.38 (t, $J = 7.3$ Hz, 1H), 7.42-7.49 (m, 1H), 7.55 (t, $J = 6.8$ Hz, 3H), 7.60-7.72 (m, 2H), 8.11 (d, $J = 7.7$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 14.6, 61.3, 111.6, 120.2, 123.7, 125.5, 128.1, 128.6, 128.7, 129.1, 129.9, 130.4, 132.1, 132.2, 132.3, 136.8, 154.8, 166.4 (N-CH$_3$ does not show up); HRMS calc. for C$_{21}$H$_{18}$N$_2$O$_3$ [M+H]$^+$ 347.1390, found 347.1398.

2,3-Diphenylbenzofuran (52)31

Yellow-green solid, 117.6 mg (87%): mp 116-119 °C [lit. mp 123 °C]32; 1H NMR (300 MHz, CDCl$_3$) δ 7.20-7.36 (m, 5H), 7.46 (m, 6H), 7.56 (d, $J = 8.2$ Hz, 1H), 7.66 (d, $J = 7.3$ Hz, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 111.3, 117.7, 120.3, 123.1, 124.9, 127.2, 127.8, 128.6, 128.6, 129.2, 129.9, 130.5, 130.9, 133.1, 150.7, 154.2.
3-(4-Methoxyphenyl)-2-phenylbenzofuran (54)33

![Chemical Structure](image1)

Yellow amorphous solid, 79.7 mg (53%): 1H NMR (400 MHz, CDCl$_3$) δ 3.89 (s, 3H), 6.98-7.05 (m, 2H), 7.23-7.27 (m, 1H), 7.28-7.36 (m, 4H), 7.41-7.45 (m, 2H), 7.50 (d, $J=8.5$ Hz, 1H), 7.56 (d, $J=8.2$ Hz, 1H), 7.69 (dd, $J=8.2$, 1.6 Hz, 2H).

3-(3-Methoxyphenyl)-2-phenylbenzofuran (56)34

![Chemical Structure](image2)

Yellow oil, 125.7 mg (84%): 1H NMR (400 MHz, CDCl$_3$) δ 3.83 (s, 3H), 6.98-7.03 (m, 1H), 7.13 (dd, $J=11.5$, 4.9 Hz, 2H), 7.24-7.45 (m, 6H), 7.56-7.63 (m, 2H), 7.75 (dd, $J=8.1$, 1.5 Hz, 2H).

3-(4-Cyanophenyl)-2-phenylbenzofuran (58)

![Chemical Structure](image3)

Yellow solid, 140.1 mg (98%): mp 113-115 °C, 1H NMR (400 MHz, CDCl$_3$) δ 7.27 (t, $J=7.5$ Hz, 1H), 7.32-7.39 (m, 4H), 7.48 (d, $J=7.7$ Hz, 1H), 7.59 (dt, $J=11.4$, 4.6 Hz, 5H), 7.69-7.78 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 111.4, 111.6, 115.9, 118.9, 119.6,
123.6, 125.4, 127.5, 128.9, 129.2, 129.3, 130.0, 130.5, 132.9, 138.3, 151.8, 154.3; HRMS calc. for C_{21}H_{13}NO [M+H]^{+} 296.107, found 296.1073.

3-(4-Nitrophenyl)-2-phenylbenzofuran (60)34

Yellow solid, 114.5 mg (73%): mp 135-138 °C; 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.26-7.28 (m, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.36-7.39 (m, 4H), 7.52 (d, J = 7.8 Hz, 1H), 7.60 (d, J = 7.2 Hz, 3H), 7.70 (d, J = 8.2 Hz, 2H), 8.33 (dd, J = 8.7, 1.7 Hz, 2H).

3-(2-Nitrophenyl)-2-phenylbenzofuran (62)

Yellow crystals, 116.6 mg (74%): mp 119-122 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.17-7.25 (m, 2H), 7.28-7.39 (m, 4H), 7.51 (dd, J = 7.5, 1.7 Hz, 1H), 7.52-7.60 (m, 3H), 7.62 (td, J = 7.7, 1.6 Hz, 1H), 7.68 (td, J = 7.5, 1.5 Hz, 1H), 8.13 (dd, J = 8.0, 1.4 Hz, 1H), 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 111.6, 113.4, 119.5, 123.5, 125.2, 125.2, 126.9, 128.2, 128.9, 128.9, 129.4, 129.8, 130.1, 133.6, 133.6, 149.9, 151.4, 154.0; HRMS calc. for C_{20}H_{13}NO_{3} [M+H]^{+} 316.0968, found 316.0977.
3-(4-Chlorophenyl)-2-phenylbenzofuran (64)

Yellow solid, 145.6 mg (96%): mp 100-101 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.24-7.28 (m, 1H), 7.35 (dd, $J = 10.2$, 5.7 Hz, 4H), 7.45 (s, 4H), 7.47 (d, $J = 7.8$ Hz, 1H), 7.57 (d, $J = 8.2$ Hz, 1H), 7.64 (dd, $J = 7.9$, 1.7 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 111.4, 116.5, 119.9, 123.3, 125.1, 127.3, 128.7, 128.8, 129.5, 130.0, 130.5, 131.3, 131.5, 133.7, 143.7, 150.9; HRMS calc. for C$_{20}$H$_{13}$ClO [M+H]$^+$ 305.0728, found 305.0731.

1-[4-(2-(Thiophen-3-yl)benzofuran-3-yl)phenyl]ethanone (66)

Cream colored solid, 116.1 mg (73%): mp 172-174 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.68 (s, 3H), 7.20 (d, $J = 5.1$ Hz, 1H), 7.27 (dd, $J = 7.3$, 5.5 Hz, 2H), 7.35 (t, $J = 7.7$ Hz, 1H), 7.47 (d, $J = 7.8$ Hz, 1H), 7.55 (d, $J = 8.1$ Hz, 1H), 7.65 (dd, $J = 8.6$, 5.6 Hz, 3H), 8.09 (d, $J = 8.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 26.9, 111.4, 115.8, 119.8, 123.4, 123.9, 125.1, 126.1, 126.3, 129.1, 129.6, 130.2, 131.6, 136.5, 138.1, 148.3, 154.0, 197.9; HRMS calc. for C$_{20}$H$_{14}$O$_2$S [M+H]$^+$ 318.0715, found 318.0731.
3-(2-Phenylbenzofuran-3-yl)-1-tosyl-1H-indole (68)

Yellow amorphous solid, 134.1 mg (58%): 1H NMR (400 MHz, CDCl$_3$) δ 2.40 (s, 3H), 7.14 (t, $J = 7.5$ Hz, 1H), 7.25 (ddd, $J = 21.5$, 15.1, 8.0 Hz, 7H), 7.37 (dd, $J = 15.9$, 8.5 Hz, 3H), 7.57-7.64 (m, 3H), 7.76 (s, 1H), 7.85 (d, $J = 8.2$ Hz, 2H), 8.13 (d, $J = 8.3$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.9, 108.1, 111.5, 114.1, 114.9, 120.3, 121.4, 123.2, 123.7, 125.1, 125.3, 125.4, 126.9, 127.1, 128.6, 128.7, 130.0, 130.2, 130.5, 130.6, 135.4, 135.7, 145.3, 152.1, 154.3; HRMS calc. for C$_{29}$H$_{21}$NO$_3$S [M+H]$^+$ 463.1242, found 463.1315.

3-(2-Phenylbenzofuran-3-yl)-4H-chromen-4-one (70)

Cream colored solid, 73.4 mg (43%): mp 183-184 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.22-7.28 (m, 1H), 7.29-7.40 (m, 4H), 7.40-7.45 (m, 1H), 7.50 (ddd, $J = 8.2$, 7.2, 1.1 Hz, 1H), 7.53-7.59 (m, 2H), 7.73-7.78 (m, 3H), 8.01 (s, 1H), 8.36 (dd, $J = 8.0$, 1.7 Hz, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 107.8, 111.5, 118.3, 118.5, 120.5, 123.3, 124.5, 125.0, 125.8, 126.7, 127.3, 128.9, 128.9, 130.4, 130.5, 134.1, 153.1, 154.3, 155.4, 156.7, 176.2; HRMS calc. for C$_{23}$H$_{14}$O$_3$ [M+H]$^+$ 339.1016, found 339.1015.
3-(6-Nitro-2-phenylbenzofuran-3-yl)-4H-chromen-4-one (72)

Yellow solid, 44.0 mg (24%): mp 200-203 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.41 (d, $J = 3.1$ Hz, 3H), 7.50-7.60 (m, 3H), 7.74-7.81 (m, 3H), 8.03 (s, 1H), 8.17 (d, $J = 8.7$ Hz, 1H), 8.35 (d, $J = 7.9$ Hz, 1H), 8.45 (s, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 107.9, 115.5, 117.1, 118.6, 119.1, 120.6, 124.3, 126.1, 126.7, 129.1, 129.2, 130.2, 134.5, 136.2, 145.3, 152.9, 155.7, 156.6, 158.3, 176.1; HRMS calc. for C$_{23}$H$_{13}$NO$_5$ [M+H]$^+$ 384.0866, found 384.0863.

2-Fluoro-4-[7-methoxy-2-(m-tolyl)benzofuran-3-yl]nicotinaldehyde (75)

Yellow solid, 116.0 mg (65%): mp 177-180 °C; 1H NMR (300 MHz, CDCl$_3$) δ 2.33 (s, 3H), 4.09 (s, 3H), 6.83 (d, $J = 7.9$ Hz, 1H), 6.90 (d, $J = 8.0$ Hz, 1H), 7.19 (t, $J = 3.2$ Hz, 4H), 7.36 (d, $J = 5.1$ Hz, 1H), 7.47 (s, 1H), 8.46 (d, $J = 5.1$ Hz, 1H), 10.05 (s, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 21.7, 56.5, 108.0, 111.5, 124.6, 124.9, 125.2, 125.2, 127.9, 128.9, 129.0, 130.7, 131.0, 139.1, 140.5, 143.6, 145.8, 149.3, 152.3, 152.6, 153.6, 161.4, 164.7, 187.1, 187.1 (extra peaks due to 13C-19F coupling); HRMS calc. for C$_{22}$H$_{16}$FNO$_3$ [M+H]$^+$ 361.1114, found 362.1187.
4,4-Dimethyl-2-(2-phenylbenzofuran-3-yl)cyclohex-2-enone (77)

![Structural formula](image)

Yellow solid, 54.3 mg (34%): mp 100-106 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.27 (s, 6H), 2.08 (t, $J = 6.8$ Hz, 2H), 2.73 (t, $J = 6.8$ Hz, 2H), 6.82 (s, 1H), 7.23 (t, $J = 7.5$ Hz, 1H), 7.31 (d, $J = 8.8$ Hz, 3H), 7.33-7.48 (m, 2H), 7.52 (d, $J = 8.1$ Hz, 1H), 7.72 (d, $J = 7.3$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 27.8, 33.9, 35.3, 36.3, 111.3, 112.5, 115.5, 120.1, 122.9, 124.7, 127.0, 128.6, 130.2, 130.3, 130.9, 151.9, 154.0, 160.7, 197.2; HRMS calc. for C$_{22}$H$_{20}$O$_2$ [M+H]$^+$ 339.1356, found 339.1348.

5.6.4. General procedure for the synthesis of benzofurans 80 and 81 by three-component Sonogashira/Heck type coupling.

The 2-iodophenol (0.5 mmol) and dichlorobis(triphenylphosphine)palladium (10.5 mg, 3 mol %) were placed in a 5 mL microwave vial and purged with argon. Dry THF (0.5 mL) was added and the reaction mixture was stirred until the iodophenol completely dissolved. Then dry triethylamine (1.0 mL) and a 3.8M solution of CuI in dry triethylamine (0.5 mL) were added and the mixture allowed to stir for 10 min. Then 1.2 equiv of the corresponding alkyne was added; the vial was capped, purged with argon and placed in the microwave reactor for 30 min at 25 °C. The corresponding alkene (2.5 mmol), dry acetonitrile (2 mL), benzoquinone (0.5 mmol), and anhydrous KOAc (1.5 mmol) were added and the reaction mixture was heated in a microwave reactor at 60 °C for 25 min. After cooling and standard aqueous work up, the reaction mixture was subject to column chromatography using ethyl acetate/hexane as the eluent to afford the desired products.
Butyl \((E)\)-3-(2-phenylbenzofuran-3-yl)acrylate (80)

Orange amorphous solid, 88.9 mg (56%): \(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\)
1.00 (t, \(J = 7.4\) Hz, 3H), 1.48 (h, \(J = 7.3\) Hz, 2H), 1.67-1.76 (m, 2H), 4.26 (t, \(J = 6.6\) Hz, 2H),
4.14-4.41 (m, 2H), 6.71 (s, 1H), 7.31-7.41 (m, 2H), 7.52 (dt, \(J = 13.4, 6.9\) Hz, 4H), 7.78 (d, \(J = 8.0\) Hz, 2H),
7.90 (d, \(J = 7.5\) Hz, 1H), 8.05 (d, \(J = 16.0\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\)
14.0, 19.5, 31.0, 64.6, 111.8, 112.8, 115.5, 119.4, 121.2, 123.9, 125.5, 126.9, 128.7, 129.1, 129.9, 136.0, 154.7, 157.7, 167.6; HRMS calc. for C\(_{21}\)H\(_{21}\)O\(_3\) [M+H]\(^{+}\) 321.1485, found 321.1491.

Butyl \((E)\)-3-[2-(cyclohex-1-en-1-yl)benzofuran-3-yl]acrylate (81)

Yellow amorphous solid, 113.6 mg (70%): \(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\)
0.99 (t, \(J = 7.4\) Hz, 3H), 1.45 (dd, \(J = 14.8, 7.4\) Hz, 2H), 1.68-1.82 (m, 6H), 2.32 (s, 2H), 2.52
(s, 2H), 4.24 (t, \(J = 6.6\) Hz, 2H), 6.33 (s, 1H), 6.56 (d, \(J = 16.1\) Hz, 1H), 7.26-7.31 (m, 2H),
7.45 (s, 1H), 7.81 (d, \(J = 8.0\) Hz, 1H), 7.95 (d, \(J = 16.0\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\)
13.9, 19.4, 21.9, 22.5, 26.2, 26.6, 31.0, 64.4, 111.4, 111.8, 117.6, 120.9, 123.6, 124.9, 126.8, 128.4, 134.9, 136.7, 153.9, 160.6, 167.9; HRMS calc. for C\(_{21}\)H\(_{24}\)O\(_3\) [M+H]\(^{+}\) 324.1725, found 325.1799.
5.6.5. Elaboration of the bromo-containing benzofurans by Pd-catalyzed couplings

Ethyl 4-[5-(4-methoxyphenyl)-2-phenylbenzofuran-3-yl]benzoate (82)

In a 2 mL microwave vial, compound 26 (42.2 mg, 0.1 mmol), 4-methoxyphenylboronic acid (18.2 mg, 0.12 mmol), and tetrakis(triphenylphosphine)palladium (5.8 mg) were dissolved in a 1:1 mixture of EtOH/DMF (1.6 mL), then 1M aq. Cs₂CO₃ (0.25 mL) was added and the mixture was heated in a microwave reactor at 120 °C for 20 min. The mixture was diluted with satd. aq. Na₂SO₄ and extracted with ethyl acetate (3 x 15 mL), dried (MgSO₄) and evaporated. Column chromatography using ethyl acetate/ hexanes (1:10) as the eluent afforded 35.6 mg (80%) of product 82 as a colorless solid: mp 127-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (dd, J = 7.4, 6.8 Hz, 3H), 3.85 (d, J = 0.5 Hz, 3H), 4.44 (q, J = 7.1 Hz, 2H), 6.97 (d, J = 8.2 Hz, 2H), 7.30-7.38 (m, 3H), 7.53 (t, J = 8.1 Hz, 3H), 7.63 (dt, J = 17.1, 5.9 Hz, 6H), 8.17 (d, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.6, 55.6, 61.3, 111.5, 114.4, 116.9, 117.9, 124.5, 127.4, 128.6, 128.8, 128.9, 129.8, 129.9, 130.3, 130.4, 130.5, 134.2, 136.8, 137.9, 151.9, 153.6, 159.1, 166.6; HRMS calc. for C₃₀H₂₄O₄ [M+H]⁺ 449.1747, found 449.1675.
Ethyl 3-[(5-((E)-3-butoxy-3-oxoprop-1-en-1-yl)-2-phenylbenzofuran-3-yl]benzoate (83)

In a 2 mL vial, compound 28 (41.5 mg, 0.1 mmol), butyl acrylate (17.9 µL, 0.12 mmol), palladium acetate (0.6 mg) and SPhos (4.1 mg) were dissolved in DMF (0.5 mL). Then triethylamine (0.12 mL) was added and the mixture was heated at 100 °C for 24 h. The mixture was diluted with brine and extracted with ethyl ether (3 x 15 mL), dried (MgSO₄) and evaporated. Column chromatography using ethyl acetate/ hexanes (1:10) as the eluent afforded 37.1 mg (81%) of product 83 as a cream colored solid: mp 77-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, J = 7.3 Hz, 3H), 1.42 (m, 5H), 1.69 (m, 2H), 4.20 (t, J = 6.7 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 6.41 (d, J = 15.9 Hz, 1H), 7.29-7.36 (m, 3H), 7.50-7.68 (m, 7H), 7.76 (d, J = 16.0 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 8.21 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 14.5, 19.4, 31.0, 61.4, 64.6, 111.9, 116.7, 117.4, 120.1, 125.2, 127.2, 128.8, 129.1, 129.3, 129.5, 130.0, 130.2, 130.9, 131.8, 132.9, 134.4, 144.9, 152.2, 155.2, 166.4, 167.4; HRMS calc. for C₃₀H₂₈O₅ [M+H]⁺ 468.1937, found 469.2010.

5.6.6. Experimental details related to the synthesis of Amurensin H, Gnetuhainin B and Gnetuhainin F

1-Bromo-2-iodo-3,5-dimethoxybenzene (101)

Compound 101 was prepared from a commercially available compound 99 employing an iodination procedure described for analogous compounds. 35 3,5-Dimethoxybromobenzene (2 g, 9.2 mmol) and 1.75 g (9.2 mmol) of pTsOH were dissolved
in MeCN (80 mL) and 2.1 g (9.2 mmol) of NIS were added. The reaction mixture was allowed to stir at rt for 24 h, followed by aqueous work up and recrystallization from methanol. Product 101 was obtained as a colorless solid, 3.15 g (100%): 1H NMR (300 MHz, CDCl$_3$) δ 3.80 (s, 3H), 3.84 (s, 3H), 6.34 (d, J = 2.6 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H).

2-Iodo-3,5-dimethoxybenzaldehyde (102)

Compound 102 was prepared from commercially available 3,5-dimethoxybenzaldehyde following the procedure described for the preparation of compound 101. Compound 102 was obtained as a yellow solid in an 87% yield: 1H NMR (400 MHz, CDCl$_3$) δ 3.82 (s, 3H), 3.87 (s, 3H), 6.62 (d, J = 2.9 Hz, 1H), 7.01 (d, J = 2.9 Hz, 1H), 10.12 (s, 1H).

N,N-Diethyl-3-methoxy-5-(methoxymethyl)benzamide (103)

Compound 103 was prepared in 4 steps from commercially available 3,5-dihydroxybenzoic acid. Preparation of methyl 3-hydroxy-5-methoxybenzoate has been carried out according to a procedure described in the literature. Then methyl 5-hydroxy-3-methylbenzoate (1.5 g, 8.2 mmol) was dissolved in dry DMF (10 mL), 0.53 g of NaH (1.5 equiv., 12.3 mmol) was added and the solution was stirred for 10 min. After that, 1 mL of MOMCl (12.3 mmol) was added and the reaction mixture stirred for 2 h at rt. The reaction mixture was diluted with a H$_2$O/Et$_2$O mixture, extracted with Et$_2$O and dried, affording 1.86 g (100%) of the methyl 3-methoxy-5-(methoxymethyl)benzoate as a colorless oil. The 3-
methoxy-5-(methoxymethyl)benzoate was then converted into compound 103 using a procedure analogous to one described in the literature. Compound 103 was obtained as a colorless oil in a 78% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.12 (br s, 3H), 1.23 (br s, 3H), 3.25 (br d, $J = 7.8$ Hz, 2H), 3.46 (s, 3H), 3.52 (br d, $J = 7.7$ Hz, 2H), 3.79 (s, 3H), 5.15 (s, 2H), 6.55 (br s, 1H), 6.60 (br s, 1H), 6.63 (br s, 1H).

Methyl 3-hydroxy-2-iodo-5-methoxybenzoate (108)

Compound 108 was prepared from compound 107, synthesized following a previously described procedure. Compound 107 (1.49 g, 7.58 mmol) was dissolved in DMSO (20 mL) and 30% aq. H$_2$SO$_4$ (8 mL) was added and the reaction mixture was stirred for 5 min at rt. Then the reaction mixture was cooled to 0 °C and 0.79 g (11.4 mmol) of NaNO$_2$ dissolved in 4 mL of H$_2$O was added and the reaction mixture stirred at the same temperature for 30 min. Then 2.5 g (15 mmol) of KI were added. The reaction mixture was allowed to slowly reach rt and kept at that temperature for 4 h. Work-up was carried out according to a procedure described for an analogous process. After column chromatography, compound 108 was obtained as a dark brown oil in a 57% yield: 1H NMR (400 MHz, CDCl$_3$) δ 3.79 (s, 3H), 3.93 (s, 3H), 6.23 (d, $J = 2.3$ Hz, 1H), 6.77 (d, $J = 2.3$ Hz, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 53.3, 56.3, 79.4, 106.0, 116.3, 126.4, 162.9, 166.9, 179.1.

Hexyl 3-hydroxy-2-iodo-5-methoxybenzoate (109)

For the preparation of compound 109, 0.5 g (2.54 mmol) of compound 108 was treated with 1-hexanol (10 mL) and 1 g of K$_2$CO$_3$ and heated to 100 °C for 16 h. After
evaporation of the solvents, following a procedure described for the preparation of compound 108, the desired compound 109 was obtained as a dark red amorphous solid: \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 0.75-1.00 (m, 3H), 1.21-1.44 (m, 6H), 1.59-1.78 (m, 2H), 3.77 (s, 3H), 4.29 (t, \(J = 6.6\) Hz, 2H), 6.17 (d, \(J = 2.3\) Hz, 1H), 6.73 (d, \(J = 2.3\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ 14.2, 22.7, 25.8, 28.6, 31.5, 56.2, 66.8, 105.9, 116.1, 126.8, 162.5, 166.8, 179.2.

4-Bromo-2-iodo-6-methoxyphenol (118)

Compound 118 was prepared by a modification of a procedure described for the bromination of guaiacol. \(^{40}\) 2-Iodo-6-methoxyphenol (19, 0.975 g, 3.9 mmol) was dissolved in dry DMF (0.8 mL), the reaction mixture was cooled to 0 °C and then NBS (0.69 g, 3.9 mmol) in DMF (0.8 mL) was added dropwise. The reaction mixture was stirred for 30 min at 0 °C and then slowly quenched with an ice cold water/ethyl ether mixture at the same temperature. (The yield of the product dropped significantly when the reaction temperature was not kept at or below 0 °C). The organic fraction was separated, washed and dried over MgSO\(_4\). The reaction mixture was purified using column chromatography and the desired compound 118 was obtained as a brown solid (0.96 g, 75%): m.p. = 77-79 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 3.88 (s, 4H), 6.04 (s, 1H), 6.94 (d, \(J = 2.1\) Hz, 1H), 7.43 (d, \(J = 2.1\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ 56.7, 81.6, 112.5, 114.3, 132.4, 145.3, 146.4.

\textit{tert}-Butyl(4-ethynyl-2-methoxyphenoxy)dimethylsilane (120a)

This compound has been synthesized from 4-ethynyl-2-methoxyphenol, which was obtained following a literature procedure. \(^{41}\) The TBDMS protection of 4-ethynyl-
2-methoxyphenol was carried out according to the procedure described in the literature for an analogous substrate\(^{42}\) and yielded compound \(120a\) as a yellow oil in a 64\% yield: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 0.16 (s, 6H), 0.99 (s, 9H), 3.00 (s, 1H), 3.80 (s, 3H), 6.78 (dd, \(J = 7.9, 0.4\) Hz, 1H), 6.96-7.04 (m, 2H).

5-Ethynyl-2-(methoxymethyl)anisole (120b)

\[
\begin{array}{c}
\text{O} \\
\text{Me}
\end{array}
\begin{array}{c}
\text{OMOM}
\end{array}
\begin{array}{c}
\text{Me}
\end{array}
\]

This compound has been prepared by a procedure analogous to that of compound \(120a\). The MOM protection procedure was analogous to the one employed in the synthesis of compound 103. This yielded compound \(120b\) as a colorless solid in a 67\% yield: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 3.01 (s, 1H), 3.50 (s, 3H), 3.88 (s, 3H), 5.24 (s, 2H), 7.01 (d, \(J = 1.5\) Hz, 1H), 7.05-7.09 (m, 2H).

4-Ethynyl-2-methoxyphenyl acetate (120c)

\[
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{OAc}
\end{array}
\begin{array}{c}
\text{Me}
\end{array}
\]

Commercially available 4-bromo-2-methoxyphenol (1.02 g, 5.0 mmol) and acetic anhydride (0.71 mL, 7.5 mmol) were dissolved in dichloromethane (10 mL). Then conc. H\(_2\)SO\(_4\) (25 mg) was added and the mixture was stirred for 30 min at rt. The reaction was then subjected to an aqueous work-up analogous to the one described in the literature,\(^{43}\) resulting in 4-bromo-2-methoxyphenyl acetate, obtained as a colorless solid, 1.21 g (99\%): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 2.31 (s, 3H), 3.82 (s, 3H), 6.90 (d, \(J = 8.6\) Hz, 1H), 7.03-7.12 (m, 2H). 4-Bromo-2-methoxyphenyl acetate (1.21 g, 4.9 mmol), palladium acetate (53.8 mg, 0.24 mmol), Cul (23 mg, 0.12 mmol), and tris(tert-butyl)phosphinetetrafluoroborate (69.6
mg, 0.24 mmol) were dissolved in diisopropylamine (10 mL) and purged with argon. Trimethylsilyl acetylene (1.38 mL, 9.8 mmol) was added and the reaction mixture was stirred at 40 °C for 2 h. The work-up was conducted analogous to a procedure described in the literature. The desired alkyne was obtained as a colorless solid (1.28 g, 100%). The resulting product was dissolved in THF (29 mL) and water (3.5 mL) and a 1M solution of TBAF in THF (5.7 mL) was added at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for an additional 1 h. The volatile solvents were evaporated and the aqueous layer was extracted with ethyl acetate. The organic fractions were dried, evaporated, affording 0.74 g (80%) of the desired compound 120c as a colorless solid: m.p. = 77-79 °C; 1H NMR (400 MHz, CDCl3) δ 2.31 (s, 3H), 3.07 (s, 1H), 3.82 (s, 3H), 6.99 (d, J = 8.0 Hz, 1H), 7.06-7.12 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 20.7, 56.0, 77.3, 83.2, 116.0, 120.8, 123.0, 125.1, 140.5, 150.9, 168.8.

1-Iodo-3,5-bis(tert-butyldimethylsiloxy)benzene (121a)

This compound has been prepared from 3,5-dihydroxyiodobenzene following a TBDMS-protection procedure analogous to the one employed in the synthesis of compound 120a, yielding compound 121a as a colorless oil in a 91% yield: 1H NMR (400 MHz, CDCl3) δ 0.20 (s, 12H), 0.98 (s, 18H), 6.29 (d, J = 2.1 Hz, 1H), 6.84 (d, J = 2.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ -4.2, 18.4, 25.9, 93.7, 112.2, 123.1, 157.1.
1-Iodo-3,5-bis(methoxymethoxy)benzene (121b)

This compound has been prepared from 3,5-dihydroxyiodobenzene following a MOM-protection procedure analogous to the one employed in the synthesis of compound 103, yielding compound 121b as a colorless oil in a 41% yield: 1H NMR (300 MHz, CDCl$_3$) δ 3.46 (s, 6H), 5.12 (s, 4H), 6.68 (td, $J = 2.2, 0.5$ Hz, 1H), 7.06 (dd, $J = 2.2, 0.5$ Hz, 2H).

3,5-Diacetoxyiodobenzene (121c)

3,5-Dihydroxyiodobenzene (0.27 g, 1.16 mmol) was dissolved in dichloromethane (3 mL); Ac$_2$O (0.33 mL, 3.49 mmol) and H$_2$SO$_4$ (1.2 mg) were added and the mixture was stirred at rt for 1 h. Then conc. aq. NaHCO$_3$ solution was added at 0 °C and the mixture was allowed to warm up to room temperature. The organic phase was collected, dried (MgSO$_4$) and evaporated. Compound 121c was obtained as a colorless solid (0.34 g, 91%) and used without further purification: m.p. = 77-80 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.28 (s, 3H), 6.92 (t, $J = 2.0$ Hz, 1H), 7.36 (d, $J = 2.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.3, 69.5, 92.7, 115.6, 128.4, 151.3, 168.8; HRMS calc. for C$_{10}$H$_9$IO$_4$ [M+Na]$^+$ 342.9438, found 342.9441.
2-(4-Acetoxy-3-methoxyphenyl)-5-bromo-3-(3,5-diacetoxyphenyl)-7-methoxybenzofuran (113c)

Compound 113c was synthesized following the general procedure for a three-component Sonogashira/Cacchi type cyclization and was obtained as a brown amorphous solid (340.6 mg, 60%): 1H NMR (400 MHz, CDCl$_3$) δ 2.29 (s, 6H), 2.31 (s, 3H), 3.67 (s, 3H), 4.03 (s, 3H), 6.95 (s, 1H), 7.00 (s, 1H), 7.03 (d, $J = 8.3$ Hz, 1H), 7.09 (d, $J = 1.2$ Hz, 2H), 7.15 (s, 1H), 7.21 (s, 1H), 7.35 (d, $J = 8.3$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 20.9, 21.3, 55.9, 56.6, 110.9, 111.0, 111.1, 114.9, 115.6, 115.7, 116.6, 119.8, 120.6, 123.3, 128.2, 132.6, 134.2, 140.4, 142.2, 145.7, 151.2, 151.5, 151.8, 168.9; HRMS calc. for C$_{28}$H$_{24}$BrO$_9$ [M+H]$^+$ 583.0525, found 583.0598.

4-(1,3-Dioxolan-2-yl)-2-iodo-6-methoxyphenol (122)

Compound 122 was prepared following a procedure described for an analogous reaction. 5-Iodovanillin (1.0 mmol) and ethylene glycol (5.0 mmol) were dissolved in toluene. Then acidic aluminum oxide was added and the resulted mixture was refluxed for 24 h. After cooling, the mixture was filtered, washed with dichloromethane/water and the organic phase was dried (MgSO$_4$) and evaporated. Column chromatography using ethyl acetate/hexanes (1:3) as the eluent afforded 196 mg (62%) of product 122 as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 3.91 (s, 3H), 3.97-4.06 (m, 2H),
4.08-4.16 (m, 2H), 5.69 (s, 1H), 6.16 (s, 1H), 6.96 (s, 1H), 7.42 (s, 1H); 13C NMR (101 MHz, CDCl₃) δ 56.5, 65.5, 80.9, 95.7, 103.0, 108.9, 129.1, 131.6, 146.2, 146.6.

2-(4-Acetoxy-3-methoxyphenyl)-3-(3,5-diacetoxyphenyl)-5-(1,3-dioxolan-2-yl)-7-methoxybenzofuran (123)

![Compound 123](image)

Compound 123 was synthesized following the general procedure for the three-component Sonogashira/Cacchi type cyclization and was obtained as a bright yellow oil (340.6 mg, 63%): 1H NMR (400 MHz, CDCl₃) δ 2.28 (s, 6H), 2.30 (s, 3H), 3.67 (s, 3H), 4.00-4.05 (m, 2H), 4.07 (s, 3H), 4.14-4.23 (m, 2H), 5.84 (s, 1H), 6.97-7.05 (m, 3H), 7.12 (d, $J = 2.2$ Hz, 2H), 7.19 (d, $J = 13.7$ Hz, 2H), 7.37 (dd, $J = 8.3$, 2.0 Hz, 1H); 13C NMR (100 MHz, CDCl₃) δ 20.8, 21.3, 55.9, 56.4, 65.5, 104.2, 105.5, 110.9, 111.1, 115.4, 116.5, 117.6, 119.7, 120.7, 123.2, 128.6, 131.2, 134.1, 134.8, 140.2, 143.8, 145.4, 151.1, 151.7, 168.9, 168.9; HRMS calc. for C$_{31}$H$_{29}$O$_{11}$ [M+H]$^+$ 577.1704, found 577.1711.

2-(4-Acetoxy-3-methoxyphenyl)-3-(3,5-diacetoxyphenyl)-5-formyl-7-methoxybenzofuran (114)

![Compound 114](image)

Compound 114 (85.4 mg, 0.155 mmol) was dissolved in THF (0.3 mL), 10% aq. HCl (62 µL) was added at 0 °C, and the reaction mixture was stirred for 20 min. An aqueous work-up was conducted according to a procedure described in the
Compound 114 was obtained as a yellow oil (75.8 mg, 92%): 1H NMR (400 MHz, CDCl$_3$) δ 2.29 (s, 6H), 2.30 (s, 3H), 3.67 (s, 3H), 4.08 (s, 3H), 6.99-7.06 (m, 2H), 7.14 (d, $J = 2.1$ Hz, 2H), 7.18 (s, 1H), 7.37 (dd, $J = 8.3$, 1.8 Hz, 1H), 7.40 (s, 1H), 7.61 (s, 1H), 9.96 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 20.9, 21.3, 55.9, 56.4, 105.1, 111.1, 115.7, 116.7, 118.5, 119.8, 120.6, 123.4, 127.9, 131.5, 133.9, 133.9, 140.6, 146.2, 146.8, 151.3, 151.9, 152.2, 168.9, 191.8, 191.9; HRMS calc. for C$_{29}$H$_{25}$O$_{10}$ [M+H]$^+$ 533.1442, found 533.1443.

3,5-Diacetoxybenzyl diethyl phosphonate (117a)

This compound has been prepared in 4 steps starting from commercially available 3,5-dihydroxybenzyl alcohol. Acetylation of the 3,5-dihydroxybenzyl alcohol has been carried out according to a procedure described for an analogous transformation, which yielded 3,5-diacetoxybenzyl alcohol as a colorless oil in a 65% yield: 1H NMR (300 MHz, CDCl$_3$) δ 2.25 (s, 6H), 4.56 (s, 2H), 6.79 (d, $J = 2.1$ Hz, 1H), 6.94 (d, $J = 2.4$ Hz, 2H). This compound has been treated with PBr$_3$, according to a procedure described in the literature, which yielded 3,5-diacetoxybenzyl bromide as a colorless oil in a 53% yield. 3,5-Diacetoxybenzyl bromide was then reacted with P(OEt)$_3$, following a procedure described in the literature for an analogous transformation, which yielded compound 117a as a colorless oil in quantitative yield: 1H NMR (300 MHz, CDCl$_3$) δ 1.25 (t, $J = 7.0$ Hz, 6H), 2.27 (s, 6H), 3.13 (d, $J = 21.7$ Hz, 2H), 3.92-4.05 (m, 4H), 6.83 (d, $J = 2.1$ Hz, 1H), 6.88-7.04 (m, 2H).
3,5-Di(methoxymethoxy)benzyl diethyl phosphonate (117b)

This compound has been prepared from methyl 3,5-dihydroxybenzoate following a MOM-protection procedure analogous to the one employed in the synthesis of compound 103, affording methyl 3,5-di(methoxymethoxy)benzoate as a colorless oil in a 60% yield: 1H NMR (300 MHz, CDCl$_3$) δ 3.48 (s, 6H), 3.90 (s, 3H), 5.19 (s, 4H), 6.91 (t, $J = 2.3$ Hz, 1H), 7.37 (dd, $J = 2.4, 1.3$ Hz, 2H). Then 1.25 g (4.88 mmol) of this compound was dissolved in dry DME (9 mL), 0.92 g of LiAlH$_4$ was added, and the reaction mixture was stirred until complete conversion of the starting material was observed (by TLC analysis). After quenching with methanol (4.5 mL) and carrying out an aqueous work-up, 1.05 g (95%) of 3,5-di(methoxymethoxy)benzyl alcohol was obtained as a colorless oil: 1H NMR (300 MHz, CDCl$_3$) δ 3.47 (s, 6H), 4.63 (s, 2H), 5.16 (s, 4H), 6.65 (t, $J = 2.3$ Hz, 1H), 6.71 (dd, $J = 2.1, 0.6$ Hz, 2H). 3,5-Di(methoxymethoxy)benzyl alcohol was then converted into compound 117b following a literature procedure described for analogous substrates, which yielded compound 117b as a colorless oil in a 75% yield: 1H NMR (400 MHz, CDCl$_3$) δ 1.26 (t, $J = 7.1$ Hz, 6H), 3.08 (d, $J = 21.7$ Hz, 2H), 3.45 (s, 6H), 4.03 (dd, $J = 7.9, 7.0$ Hz, 4H), 5.13 (s, 4H), 6.63 (m, 3H).

(E)-(3,5-dihydroxystyrlyl)boronic acid (116)

This compound has been prepared from commercially available (E)-2-(3,5-dimethoxystyrlyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 0.5 g (1.72 mmol) of which
was dissolved in CH$_2$Cl$_2$ (5 mL), the reaction mixture cooled to -78 °C, and then treated with neat BBr$_3$ (4 equiv, 0.66 mL). The reaction mixture was stirred at -78 °C for 1 h, then allowed to warm to room temperature and stirred for an additional 1 h. After quenching the reaction mixture with H$_2$O, extraction with ethyl acetate, and flash column purification, using ethyl acetate as the eluent resulted in compound 116 being obtained as a brown oil in a 40% yield: 1H NMR (400 MHz, CDCl$_3$) δ 4.93 (s, 4H), 6.22 – 6.33 (m, 2H), 6.49 (d, $J =$ 2.2 Hz, 2H), 7.19 (d, $J =$ 18.1 Hz, 1H).

3,5-Diacetoxystyrene (115)51

This compound has been prepared following the method described in the literature.51 1H NMR (400 MHz, CDCl$_3$) δ 2.28 (s, 6H), 5.31 (d, $J =$ 10.8 Hz, 1H), 5.73 (d, $J =$ 17.5 Hz, 1H), 6.64 (dd, $J =$ 17.5, 10.9 Hz, 1H), 6.82 (s, 1H), 7.02 (s, 2H).

4.7. REFERENCES

182

20. See the experimental part for the synthetic details. 5-Iodovanillin **119** (X = CHO) is commercially available.
CHAPTER 6

One-pot Synthesis of 1-Alkyl-1H-indazoles from 1,1-Dialkylhydrazones via Aryne Annulation

Reproduced from *Organic & Biomolecular Chemistry*, 2012, 10, 2409-2412 by permission of the Royal Society of Chemistry
Copyright © 2012

Nataliya A. Markina, Anton V. Dubrovskiy, and Richard C. Larock*

*Department of Chemistry, Iowa State University, Ames, Iowa 50011

6.1. ABSTRACT

The reaction of readily accessible 1,1-dialkylhydrazones with commercially available o-(trimethylsilyl)aryl triflates provides a direct one-step route to pharmaceutically important 1-alkylindazoles. The products are obtained in high yields by one-pot NCS-chlorination/aryne annulation or Ac_2O-acylation/deprotection/aromatization protocols.

6.2. INTRODUCTION

1H-Indazoles represent an important class of heterocyclic compounds that exhibit a wide range of biological and pharmaceutical activities, including anti-inflammatory, antitumor, and anti-HIV activity among others. Selected examples of 1-alkyl-1H-indazoles with notable pharmacological activities include granisetron, a serotonin 5-HT_3 receptor antagonist used to treat nausea and vomiting after chemotherapy; lonidamine, used for the
treatment of brain tumors;6 and CL-958, an antitumor agent, which is currently in clinical evaluation (Figure 1).7

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Biologically active 1-alkyl-1H-indazoles.}
\end{figure}

Various methods for the synthesis of the 1H-indazole core have been developed.8 However, most of them employ harsh reaction conditions, thus have limited the scope and applicability. Recently, several methodologies have been reported that involve aryne intermediates in [3 + 2] cycloaddition reactions with diazo compounds,9 N-tosylhydrazones,10,11 and \textit{in situ} generated nitrile imines (Scheme 1).12

\begin{scheme}
\caption{Known aryne-mediates processes for the synthesis of 1H-indazoles}
\end{scheme}
These methods afford 1H-indazoles, 1-acyl-1H-indazoles or 1-aryl-1H-indazoles under mild reaction conditions. However, no aryne-annulation approach to 1-alkyl-1H-indazoles has yet been reported.

6.3. RESULTS AND DISCUSSION

6.3.1. Background

Larock group has previously shown that the reaction of a variety of N,N-dialkylhydrazones with arynes seemingly proceeds through a cyclic intermediate 3 that subsequently undergoes ring opening to form the corresponding o-(dialkylamino)aryl imines 4 (Scheme 2).

Scheme 2. Unusual entry of the mesityl-derived hydrazone

An unexpected result was obtained in the case of the mesityl-substituted substrate, where the corresponding indazole 5 was formed, albeit in only a 33% yield (Scheme 3).

Scheme 3. Unusual entry of the mesityl-derived hydrazone
In order to improve the scope and efficiency of this process, we envisioned that one can retain the cyclic nature of the intermediate 9 in two complementary ways (Scheme 4), namely by having a nearby leaving group (path a) or trapping the amide 9 with a trapping agent (path b).14

Scheme 4. Two pathways towards indazoles

6.3.2. One-pot protocol employing NCS

To our delight, we found that the reaction of N,N-dimethylhydrazone chloride 7 ($R^1 = \text{Ph}, R^2 = \text{Me}$) with benzyne 2, generated in situ from o-(trimethylsilyl)aryl triflate 8 in presence of fluoride source, proceeds smoothly to afford indazole 11 in an 81% yield (Scheme 4, path a).

However, it did not prove to be efficient to purify and isolate the labile starting materials 7. We promptly investigated the possibility of a one-pot procedure wherein the chlorine-containing hydrazones are not isolated, but generated in situ from 1,1-dialkylhydrazones 6 and NCS and further reacted with the o-(trimethylsilyl)aryl triflate 8 in
the presence of a fluoride source.16 To our delight, the desired indazole 11 was obtained in a 78\% yield. The optimal reaction conditions were found to be 1.1 equiv. of NCS per 1 equiv. of the hydrazone 6, and a slight excess of the substrate 6 (1.2 equiv) per 1 equiv. of the aryne precursor 8. Both steps conveniently proceed in acetonitrile at 65 °C.

With the optimal conditions in hand, we next examined the scope and limitations of this method (Table 1). A range of hydrazones was studied first. Aryl, alkenyl and heteroaryl hydrazones afforded the corresponding indazoles 15a-i in 32-78\% yields. Electron-poor aryl hydrazones afforded the corresponding indazoles 15d and 15e in lower yields (59 and 45\% respectively). The presence of a cyano group, terminal alkyne moiety, and an ortho-bromo substituent was tolerated under these reaction conditions. Unfortunately, hydrazones with R1 = 4-nitrophenyl, 2-furyl, 2,3,5-trimethoxyphenyl and alkyl groups did not afford the desired indazoles, seemingly due to complications during the NCS chlorination step.

Other aryne precursors were also tested. Symmetrical naphthalyne and dimethoxybenzyne precursors afforded the desired indazoles 15j and 15k in good 63 and 62\% yields respectively. The unsymmetrical 3-methoxybenzyne precursor provided exclusively the 4-OMe regioisomer 15l in a 64\% yield. The structure of the product 15l is consistent with the proposed mechanism (Scheme 4, path a).17
Table 1. Reaction Scope

| Me | 15a (78%) |
|------------------------------|
| Me | 15b (76%) |
| Me | 15c (72%) |
| Me | 15d (59%) |
| Me | 15e (45%) |
| Me | 15f (67%) |
| Me | 15g (65%) |
| Me | 15h (32%) |
| Me | 15i (60%) |
| Me | 15j (63%) |
| Me | 15k (62%) |
| Me | 15l (64%) |

When cyclic hydrazones derived from N-aminopiperidine and N-aminomorpholine were employed in this one-pot process, the interesting products 15m and 15n were obtained, both in a 60% yield (Scheme 5). In these cases, the initially formed indazolium salt 16 undergoes
ring-opening by the succinimide moiety present in the reaction media from the chlorination step.18

Scheme 5. Reaction of cyclic hydrazones

\[\begin{array}{c}
\text{Ph} & \text{H} \\
Y = \text{O}, \text{6m} & \text{Y} = \text{CH}_2, \text{6n}
\end{array} \]

6.3.3. **One-pot protocol employing Ac$_2$O/N$_2$H$_4$**

In order to overcome some limitations of the methodology using NCS, we also studied the reaction between the hydrazone 6a ($R^1 = \text{Ph}$) and the benzyne precursor 8 in the presence of acetic anhydride (Scheme 2, path b). We were pleased to observe formation of the corresponding trapped product 17a ($R^1 = \text{Ph}$) in an 83\% yield, which could also be subsequently deacetylated and aromatized in situ to produce the indazole 15a (overall yield for the 2 steps of 63\%). After some optimization studies, we were able to obtain the latter in an 83\% overall yield without isolating the intermediate product 17a. The scope of this process is summarized in Table 2.
Table 2. Reaction Scope for Ac₂O/N₂H₄ protocol

Gratifyingly, a variety of substituents in the R¹ position of the hydrazone are well tolerated. For example, the product 15o is obtained in an 80% yield. The electron-rich hydrazones, that failed to react efficiently under our NCS-mediated protocol, have afforded the corresponding indazoles 15p and 15q in excellent yields (91 and 76%), despite their steric encumbrance. On the other hand, electron-deficient hydrazones, such as 2-thiophenyl and 3-pyridyl hydrazones, provide the corresponding products 15i and 15r in only 39 and 29% yields respectively.
6.4. CONCLUSIONS

In summary, 1-alkyl-1H-indazoles can be prepared from arynes and hydrazones in high yields by one-pot NCS-chlorination/aryne annulation protocol. This chemistry provides a convenient route to 1-alkyl-1H-indazoles from readily available N,N-dimethylhydrazones and presents a valuable extension of the known synthetic routes to indazoles.

6.5. ACKNOWLEDGEMENT

We thank the National Science Foundation and the National Institutes of Health Kansas University Center of Excellence in Chemical Methodology and Library Development (P50 GM069663) for their generous financial support.

6.6. EXPERIMENTAL

6.6.1. General remarks

The \(^1\)H and \(^{13}\)C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz, respectively. Chemical shifts are reported in \(\delta\) units (ppm) by assigning the TMS resonance in the \(^1\)H NMR spectrum as 0.00 ppm and the CDCl\(_3\) resonance in the \(^{13}\)C NMR spectrum as 77.23 ppm. All coupling constants (\(J\)) are reported in Hertz (Hz). All commercial reagents were used directly as obtained. Thin layer chromatography was performed using commercially prepared 60-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm). All melting points were obtained using an EZ-Melt automated melting point apparatus and are uncorrected. High resolution mass
spectra (HRMS) were obtained using an Agilent QTOF 6540 mass spectrometer (ESI at a voltage of 70 eV). All mass spectra (MS) were obtained using a GCT-Agilent 6890 gas chromatograph/ mass spectrometer (EI at a voltage of 70 eV). All IR spectra were obtained using a Nicolet 380 FT-IR apparatus.

6.6.2. Preparation of hydrazones 6

The starting hydrazones were prepared according to the procedure described in our recent communication. The characterization of hydrazones 6a-6c, 6g, 6h, 6j-6m, 6p and 6r can be found therein.

6.6.3. Data for the crude N',N'-dimethylbenzohydrazonoyl fluoride (7a)

\[
\text{F} \quad \text{N} \quad \text{N}
\]

\[
\begin{align*}
^1\text{H} \text{NMR} \ (400 \text{ MHz, CD}_3\text{CN}) & \delta \ 2.83 \ (s, \ 6\text{H}), \\ & 7.44 \ (m, \ 3\text{H}), \ 7.73 \ (d, \ J = 7.9 \text{ Hz, 2H}) \text{ (succinimide peak: } \delta \ 2.60); \\ ^{19}\text{F} \text{NMR} \ (400 \text{ MHz, CD}_3\text{CN}) & \delta \ -66.6; \text{ MS (EI) m/z (}) \%
\end{align*}
\]

166 (M^+, 100%), 103 (20%), 77 (19%), 42 (21%); HRMS (ESI) calcd for [M+H]^+ C_9H_{12}FN_2 167.0907, found 167.0975.

6.6.4. General procedure for the preparation of indazoles 15 by a one-pot NCS procedure. [1-Methyl-3-phenyl-1H-indazole19 (15a) as an example]

\[
\begin{align*}
\text{H}_3\text{C} \\
\end{align*}
\]

To a solution of benzaldehyde dimethylhydrazone 6a (46 mg, 0.31 mmol, 1.25 equiv.) in 1 mL of acetonitrile under an inert atmosphere N-chlorosuccinimide (46 mg,
0.34 mmol, 1.38 equiv) was added and the reaction mixture was stirred for 1 h at 65 °C. Then an additional 4 mL of acetonitrile, together with CsF (114 mg, 0.75 mmol, 3 equiv.) and o-(trimethylsilyl)phenyl triflate (61 µL, 0.25 mmol, 1.0 equiv.) were added and the reaction mixture was stirred at 65 °C for an additional 10 h (monitored by TLC). After cooling to room temperature, the reaction mixture was filtered through a short column of celite and concentrated under vacuum. The crude reaction mixture was subjected to column chromatography using ethyl acetate : hexanes (1:10) as eluent and afforded 40.6 mg (78 %) of product 15a, gray solid: mp 81-83 °C; 1H NMR (400 MHz, CDCl$_3$) δ 4.13 (s, 3H), 7.21 (s, 1H), 7.42 (t, $J = 4.3$ Hz, 3H), 7.52 (t, $J = 7.6$ Hz, 2H), 7.99 (d, $J = 8.3$ Hz, 2H), 8.04 (d, $J = 8.2$ Hz, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 35.72, 109.38, 121.09, 121.53, 121.81, 126.45, 127.57, 127.99, 128.98, 133.89, 141.63, 143.91; MS (EI) m/z (%) 208 (M$^+$, 100%), 77 (10%); HRMS (EI) calcd for [M+H]$^+$ C$_{14}$H$_{13}$N$_2$ 209.1073, found 209.1075; IR (CH$_2$Cl$_2$, cm$^{-1}$) 2939 (m), 1617 (s), 1495 (s), 1351 (s).

1-Methyl-3-(naphthalen-2-yl)-1H-indazole (15b)

Product 15b was isolated as a yellow oil in a 76% yield: 1H NMR (400 MHz, CDCl$_3$) δ 4.19 (s, 3H), 7.27 (ddd, $J = 7.7$, 5.2, 2.0 Hz, 1H), 7.46 (d, $J = 5.2$ Hz, 2H), 7.53 (td, $J = 5.2$, 4.6, 2.1 Hz, 2H), 7.90 (d, $J = 8.6$ Hz, 1H), 7.98 (t, $J = 7.9$ Hz, 2H), 8.17 (d, $J = 8.4$ Hz, 2H), 8.44 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 35.81, 109.47, 121.25, 121.61, 121.95, 125.67, 126.19, 126.45, 126.52, 127.94, 128.42, 128.65, 131.37, 133.14,
133.82, 141.69, 143.73; MS (EI) m/z (%) 258 (M⁺, 100%); HRMS (EI) calcd for [M+H]⁺ C₁₅H₁₅N₂O 259.123, found 259.1234; IR (CH₂Cl₂, cm⁻¹) 2937 (m), 1615 (s), 1494 (m).

3-(4-Methoxyphenyl)-1-methyl-1H-indazole (15c)

Product 15c was isolated as a yellow oil in a 72% yield: ¹H NMR (400 MHz, CDCl₃) δ 3.88 (s, 3H), 4.11 (s, 3H), 7.05 (dd, J = 9.0, 2.2 Hz, 2H), 7.20 (ddd, J = 7.9, 5.5, 2.3 Hz, 1H), 7.41 (d, J = 5.4 Hz, 2H), 7.90 (dd, J = 9.0, 2.2 Hz, 2H), 7.99 (d, J = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 35.66, 55.53, 109.29, 114.42, 120.83, 121.52, 121.64, 126.38, 126.50, 128.74, 141.53, 143.73, 159.55; MS (EI) m/z (%) 238 (M⁺, 100%), 223 (61%), 195 (22%); HRMS (EI) calcd for [M+H]⁺ C₁₅H₁₅N₂O 239.1179, found 239.1179; IR (CH₂Cl₂, cm⁻¹) 3007 (w), 2938 (m), 2838 (m), 1614 (s), 1530 (s), 1035 (s).

Methyl 4-(1-methyl-1H-indazol-3-yl)benzoate (15d)

Product 15d was isolated as a yellow solid in a 59% yield: mp 117-121 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.95 (s, 3H), 4.14 (s, 3H), 7.25 (dt, J = 8.1, 4.2 Hz, 1H), 7.44 (d, J = 3.5 Hz, 2H), 8.04 (dd, J = 11.3, 8.5 Hz, 3H), 8.16 (d, J = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 35.91, 52.34, 109.61, 121.29, 121.65, 121.82, 126.63, 127.12, 129.24, 130.30, 138.38, 141.68, 142.57, 167.17; MS (EI) m/z (%) 266 (M⁺, 100%), 235
(61%), 208 (12%), 192 (13%); HRMS (EI) calcd for [M+H]+ C16H15N2O2 267.1128, found 267.1133; IR (CH2Cl2, cm⁻¹) 2951 (m), 1720 (s), 1611 (s), 1114 (s).

4-(1-Methyl-1H-indazol-3-yl)benzonitrile (15e)

Product 15e was isolated as a light yellow solid in a 45% yield: mp 144-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.15 (s, 3H), 7.25-7.30 (m, 1H), 7.46 (d, J = 3.6 Hz, 2H), 7.74-7.79 (m, 2H), 7.99 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 36.02, 109.82, 111.08, 119.26, 120.96, 121.68, 122.02, 126.81, 127.63, 132.79, 132.96, 138.50, 141.61, 141.76 (the latter peak possibly appears due to the conformational restriction at the C-3 carbon of the indazole); MS (EI) m/z (%) 233 (M⁺, 100%); HRMS (EI) calcd for [M+H]+ C15H12N3 234.1026, found 234.1025; IR (CH2Cl2, cm⁻¹) 2941 (w), 2228 (s), 1610 (s).

3-(4-Ethynylphenyl)-1-methyl-1H-indazole (15f)

Product 15f was isolated as a yellow solid in a 67% yield: mp 106-108 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.16 (s, 1H), 4.13 (s, 3H), 7.18-7.30 (m, 1H), 7.43 (s, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 8.2 Hz, 2H), 8.00 (d, J = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 35.84, 78.04, 83.91, 109.53, 115.50, 121.33, 121.42, 121.70,
126.57, 127.20, 132.76, 134.36, 141.63, 142.87; MS (EI) m/z (%) 232 (M⁺, 100%); HRMS (EI) calcd for [M+H]⁺ C₁₆H₁₃N₂ 233.1073, found 233.1078; IR (CH₂Cl₂, cm⁻¹) 3296 (s), 2940 (w), 2107 (w), 1615 (m), 1493 (m).

3-(2-Bromophenyl)-1-methyl-1H-indazole (15g)

Product 15g was isolated as a yellow oil in a 65% yield: ¹H NMR (400 MHz, CDCl₃) δ 4.15 (s, 3H), 7.18 (ddd, J = 7.8, 5.6, 2.1 Hz, 1H), 7.30 (td, J = 7.7, 1.7 Hz, 1H), 7.38-7.48 (m, 3H), 7.55 (dd, J = 7.6, 1.7 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.72-7.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 35.86, 109.31, 120.76, 122.13, 122.66, 123.54, 126.49, 127.47, 129.91, 132.61, 133.46, 134.54, 140.78, 143.93; MS (EI) m/z (%) 288 ([M+2]+, 90%), 286 (M⁺, 100%), 206 (15%); HRMS (EI) calcd for [M+H]⁺ C₁₄H₁₂BrN₂ 287.0178, found 287.0183; IR (CH₂Cl₂, cm⁻¹) 2939 (m), 1617 (m), 1495 (m), 1027 (m).

(E)-1-Methyl-3-styryl-1H-indazole (15h)

Product 15h was isolated as a light brown solid in a 32% yield: mp 72-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.09 (s, 3H), 7.24 (s, 2H), 7.40 (dd, J = 9.5, 6.6 Hz, 3H), 7.43-7.54 (m, 2H), 7.60 (d, J = 7.4 Hz, 2H), 8.02 (d, J = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 35.76, 109.43, 120.19, 121.13, 121.20, 122.21, 126.64, 126.68, 127.91, 128.93, 130.45, 137.61, 141.46, 142.29; MS (EI) m/z (%) 234 (M⁺, 90%), 233 ([M-H]⁺,
100%), 218 (48%); HRMS (EI) calcd for [M+H]+ C16H15N2 235.1230, found 235.123; IR (CH2Cl2, cm⁻¹) 3082 (w), 2937 (m), 1614 (m), 1493 (m), 962 (s).

1-Methyl-3-(thiophen-2-yl)-1H-indazole (15i)

Product 15i was isolated as a yellow-green oil in a 60% yield: ¹H NMR (300 MHz, CDCl₃) δ 4.10 (s, 3H), 7.17 (dd, J = 4.9, 3.7 Hz, 2H), 7.20-7.26 (m, 2H), 7.33-7.37 (m, 2H), 7.38-7.46 (m, 3H), 7.63 (d, J = 3.6 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.75, 109.44, 121.29, 121.32, 124.46, 124.94, 126.77, 127.82, 136.23, 138.98, 141.48; MS (EI) m/z (%) 214 (M⁺, 100%), 199 (25%); HRMS (EI) calcd for [M+H]+ C12H11N2S 215.0637, found 215.0640; IR (CH2Cl2, cm⁻¹) 3397 (m), 2948 (m), 2842 (m), 2798 (m), 1595 (m), 1494 (m).

1-Methyl-3-phenyl-1H-benzo[f]indazole (15j)

Product 15j was isolated as a yellow solid in a 63% yield: mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.20 (s, 3H), 7.33-7.39 (m, 1H), 7.46 (q, J = 6.6 Hz, 2H), 7.58 (t, J = 7.6 Hz, 2H), 7.78 (s, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 7.3 Hz, 2H), 8.57 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 35.87, 104.18, 120.32, 123.15, 123.52, 126.22, 127.60, 127.77, 128.19, 129.09, 129.45, 132.57, 133.71,
140.52, 143.73; MS (El) m/z (%) 258 (M+, 100%); HRMS (El) calcd for [M+H]+ C18H14N2
259.1230, found 259.1224.

5,6-Dimethoxy-1-methyl-3-phenyl-1H-indazole (15k)

Product 15k was isolated as a yellow solid in a 62% yield: mp 128-130 °C; 1H NMR (400 MHz, CDCl3) δ 3.95 (s, 3H), 3.99 (s, 3H), 4.06 (s, 3H), 6.74 (s, 1H), 7.28 (s, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.89 (d, J = 7.3 Hz, 2H);
13C NMR (100 MHz, CDCl3) δ 35.84, 56.25, 56.46, 90.65, 100.77, 114.67, 127.29, 127.73, 128.97, 134.08, 137.28, 143.19, 146.63, 150.82; MS (El) m/z (%) 268 (M+, 100%), 253 (62%), 210 (17%); HRMS (El) calcd for [M+H]+ C16H17N2O2 269.1290; IR (CH2Cl2, cm⁻¹) 3008 (w), 2937 (m), 2832 (m), 1713 (s), 1630 (s), 1206 (s).

4-Methoxy-1-methyl-3-phenyl-1H-indazole (15l)

Product 15l was isolated as a yellow solid in a 64% yield: mp 96-97 °C; 1H NMR (400 MHz, CDCl3) δ 3.90 (s, 3H), 4.09 (s, 3H), 6.52 (d, J = 7.7 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 7.31-7.42 (m, 2H), 7.45 (t, J = 7.4 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 35.86, 55.39, 99.92, 101.98, 112.91, 127.71, 127.78, 127.96, 129.70, 134.15, 143.57, 144.55, 154.72; MS (El) m/z (%) 238 (M+, 100%), 223 (18%), 208
(20%); HRMS (EI) calcd for [M+H]^+ C_{15}H_{15}N_{2}O 239.1179, found 239.1179; IR (CH_2Cl_2, cm\(^{-1}\)) 2937 (m), 2840 (w), 1614 (s), 1584 (s), 1507 (s), 1358 (s), 1182 (m).

1-[2-(2-(3-Phenyl-1H-indazol-1-yl)ethoxy)ethyl]pyrrolidine-2,5-dione (15m)

Product 15m was isolated as a colorless oil in a 60% yield: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 2.39 (s, 4H), 3.53-3.60 (m, 2H), 3.60-3.66 (m, 2H), 3.95 (t, \(J = 5.2\) Hz, 2H), 4.56 (t, \(J = 5.3\) Hz, 2H), 7.16-7.25 (m, 1H), 7.38-7.46 (m, 2H), 7.46-7.56 (m, 3H), 7.95 (d, \(J = 8.0\) Hz, 2H), 7.99 (d, \(J = 8.8\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 28.09, 38.19, 49.22, 67.23, 69.82, 110.21, 121.20, 121.26, 121.71, 126.51, 127.70, 128.10, 129.02, 133.83, 142.00, 144.36, 177.20; MS (EI) \(m/z\) (%) 363 (M^+ , 30%), 220 (28%), 207 (100%), 194 (32%), 77 (16%); HRMS (EI) calcd for [M+H]^+ C_{21}H_{22}N_{3}O_{3} 364.1656, found 364.1664; IR (CH_2Cl_2, cm\(^{-1}\)) 2944 (m), 2873 (m), 2798 (m), 1776 (m), 1704 (s), 1399 (m), 1123 (s).

1-[5-(3-Phenyl-1H-indazol-1-yl)pentyl]pyrrolidine-2,5-dione (15n)

Product 15n was isolated as an orange oil in a 60% yield: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.35 (m, 2H), 1.62 (m, 2H), 1.99 (m, 2H), 2.62 (s, 4H), 3.48 (t, \(J = 7.3\) Hz, 2H), 4.42 (t, \(J = 7.1\) Hz, 2H), 7.20 (t, \(J = 7.0\) Hz, 1H), 7.39 (dd, \(J = 14.4, 6.7\) Hz, 3H), 7.50 (t, \(J = 7.6\) Hz, 2H), 7.96 (d, \(J = 7.6\) Hz, 2H), 8.01 (d, \(J = 8.2\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 28.09, 38.19, 49.22, 67.23, 69.82, 110.21, 121.20, 121.26, 121.71, 126.51, 127.70, 128.10, 129.02, 133.83, 142.00, 144.36, 177.20; MS (EI) \(m/z\) (%) 350 (M^+ , 30%), 220 (28%), 207 (100%), 194 (32%), 77 (16%); HRMS (EI) calcd for [M+H]^+ C_{21}H_{22}N_{3}O_{3} 351.1656, found 351.1664; IR (CH_2Cl_2, cm\(^{-1}\)) 2971 (m), 2875 (m), 2806 (m), 1791 (m), 1720 (s), 1395 (m), 1123 (s).
MHz, CDCl$_3$) δ 24.27, 27.41, 28.28, 29.55, 38.66, 48.75, 109.40, 121.05, 121.54, 121.77,
126.34, 127.61, 127.93, 128.94, 133.90, 141.06, 143.86, 177.35; MS (El) m/z (%) 361 (M$^+$,
100%), 249 (53%), 194 (48%), 77 (29%); HRMS (EI) calcd for [M+H]$^+$ C$_{22}$H$_{24}$N$_3$O$_2$
362.1863, found 362.1870; IR (CHCl$_3$, cm$^{-1}$) 2937 (m), 2862 (m), 1773 (m), 1693 (s), 1491
(s), 1351 (s).

6.7. REFERENCES AND NOTES

2. Guglielmotti, A.; De Joannon, A. C.; Cazzolla, N.; Marchetti, M.; Soldo, L.; Cavallo,
3. a) Cereceotto, H.; Gerpe, A.; Gonzalez, M.; Aran, V. J.; Ochoa de Ocariz, C. Mini-Rev.
62, 5627-5629.
5. For a recent review, see: Hsu, E. S. Am. J. Ther. 2010, 17, 476-486.
6. For a review, see: Di Cosimo, S.; Ferretti, G.; Papaldo, P.; Carlini, P.; Fabi, A.;
C.; Whitfield, L. R.; Grove, W. R.; Rummel, S.; Grochow, L. B.; Donehower, R. C.
4073-4095.

14. Path b has been studied by Anton V. Dubrovskiy. See the original publication for more details.

16. During our optimization studies, we have investigated the first NCS-chlorination step by conducting the reaction in CD$_3$CN and monitoring the completeness of the reaction by 1H NMR spectroscopy. We have found that the hydrazone 6a was fully converted to the chlorohydrazone 7a in about 30 minutes. We have also found that upon addition of CsF to the resulting reaction mixture, the chlorohydrazone 7a is instantly converted to its fluoro analogue 7a’ (supported by HRMS).

18. Supporting the mechanism outlined in Scheme 2, GC/MS analysis of the crude reaction mixture for the preparation of 15a showed a peak (m/z = 113.1) corresponding to N-methylsuccinimide. Additionally, the absence of a peak (m/z = 264.32) corresponding to the dimerization product of compound 6a suggests that this reaction does not proceed through a [3+2] cycloaddition of an azomethyneimine and an aryne.

CHAPTER 7

Synthesis of Pyrido[1,2-a]Indole Malonates and Amines through Aryne Annulation

Partially reproduced from the *Journal of Organic Chemistry*, 2012, 65, 8908-8915, with permission from American Chemical Society
Copyright © 2012

Donald C. Rogness, Nataliya A. Markina, Jesse P. Waldo and Richard C. Larock*

*Department of Chemistry, Iowa State University, Ames, IA 50011

7.1. ABSTRACT

Pyrido[1,2-a]indoles are known as medicinally and pharmaceutically important compounds, but there is a lack of efficient methods for their synthesis. We report a convenient and efficient route to these privileged structures starting from easily accessible 2-substituted pyridines and aryne precursors. A small library of compounds has been synthesized utilizing the developed method, affording variously substituted pyrido[1,2-a]indoles in moderate to good yields.

7.2. INTRODUCTION

Selected examples of pyridoindoles have been shown to possess important biological activities (Figure 1). (-)-Goniomitine isolated from the root bark of *Gonioma Malagasy* has
shown significant antitumor activity against several types of cancer cells.1 A series of indolo[2,1-\(\alpha\)]isoquinoline compounds have been shown to possess a wide range of biological activities, including cytostatic,2,3 antiviral,4 immunosuppressive5 and tubulin polymerization inhibiting activities.6 Another series of compounds known as metosenes have shown significant antitumor activity.7 However, the fully aromatic pyridoindole core has been mentioned in the literature only briefly, mainly due to the challenges in the preparation of this system.8 Recent efforts, as shown herein, have focused on utilizing the nucleophilic nature of carefully designed pyridines for the synthesis of pyrido[1,2-\(\alpha\)]indoles.

\begin{center}
\includegraphics[width=\textwidth]{figure1.png}
\end{center}

Figure 1. Biologically active compounds containing a pyridoindole core.

The highly electrophilic nature of arynes, as well as recent advances in the development of mild methods for their generation and increasing numbers of commercially available aryne precursors provide a great environment for the development of useful synthetic reactions between arynes and a wide variety of nucleophiles.9 Development of aryne chemistry allowed to access to a number of interesting heterocycles and carbocycles in few steps, including indoles,10 xanthones,11 acridines,12 indazoles,13 and benzotriazoles,14 among others, using mild and functional group tolerant reaction conditions. Our group has a long-term
interest in exploring the full potential of aryne-based methodologies.15

A few reports have demonstrated pyridine-aryne couplings. In 2001, Cheng and co-workers reported the reaction of 2-pyridyl carboxylates and benzenes (Scheme 1).16 In 2010, the same group reported that the multicomponent reaction of pyridines, arynes, and terminal acetylenes or methyl ketones leads to a series of 1,2-disubstituted pyridines.17 Before that, similar work was reported using acetonitrile as the proton source and secondary nucleophile in place of the terminal acetylene.18 Additionally, Zhang has reported the reaction of arynes with pyridyl analogues generated \textit{in situ} from pyridines or quinolines and alpha-bromo carbonyl compounds (Scheme 1).19

\textbf{Scheme 1.} Aryne-mediated processes involving pyridines

\begin{equation}
\text{CO}_2^+ \quad \text{O}_2 \quad \text{Isoamyl Nitrite} \quad \text{DCM/Acetone reflux} \quad \text{Nitrile} \quad \text{Cheng, 2001}
\end{equation}

\begin{equation}
\text{OTf}^+ \quad \text{TMS} \quad + \quad \text{X-H} \quad \text{KF, 18-crown-6, THF, rt} \quad \text{X} = \text{C=N, CO-R} \quad \text{Cheng, 2010}
\end{equation}

\begin{equation}
\text{OTf}^+ \quad \text{TMS} \quad + \quad \text{Br-R} \quad \text{CsF, Na}_2\text{CO}_3 \quad \text{DME, 80 °C} \quad \text{R = Aryl, Acyl, Ester} \quad \text{Zhang, 2009}
\end{equation}
One of the challenges of pyridine-based aryne coupling reactions is neutralization of the newly formed quaternary nitrogen cation. Wanting to incorporate the pyridine ring system into a larger ring system, a series of electrophilic groups in the position 2 of the pyridine ring were envisioned to be compatible mechanistically with arynes, namely Michael acceptors and imines, leading to the stabilized pyrido[1,2-a]indole aromatic ring system.

7.3. RESULTS AND DISCUSSION

7.3.1. Aryne annulation of pyridin-2-ylmethyleneamines

Initially, we attempted a reaction between ethyl pyridin-2-ylcarbamate (1) with the Kobayashi benzyne precursor 2,20 hoping to obtain pyrido[1,2-a]quinazolinone 4 (Scheme 2). Instead, the product 3 was isolated in a 63% yield. This might be due to the presence of the fairly acidic amide hydrogen in the starting compound 1.

Scheme 2. Reaction of ethyl pyridin-2-ylcarbamate (1) with benzyne

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{O} & \quad \text{O} \\
\text{OEt} & \quad \text{Tf} \\
\text{ethyl pyridin-2-ylcarbamate} & \quad \text{Kobayashi benzyne precursor} \\
\end{align*}
\]

\[
\begin{align*}
\text{TMS} & \quad \text{CsF, CH}_3\text{CN} \\
\text{rt, 12 h} & \quad \text{63\%} \\
\end{align*}
\]

We then decided to eliminate the acidic hydrogen by switching to a different starting material, namely imine 5 (Scheme 3). In this case, messy reaction mixture was obtained, without any evidence supporting the formation of 6. We attempted to run this reaction using different solvent (THF or toluene) or replacing CsF with other fluoride sources (e.g. TBAF or
TBAT), but it did not improve the reaction outcome, providing messy reaction mixtures. When the reaction was run in THF at 65 °C, small amount of an unidentified product was isolated with its molecular weight corresponding to the addition of 3 benzyne molecules to the starting imine 5. Indeed one can imagine that the imine nitrogen atom in the resulted compound 6 is nucleophilic enough to further attack the aryne intermediate, thus providing a complex mixture of overreacted products.

Scheme 3. Reaction of benzylidene pyridinamine (5) with benzyne

\[
\text{Ph} - \text{N} = \text{N} + \text{OTf} \xrightarrow{\text{CsF, CH}_2\text{CN, 65 °C, 12 h}} \text{messy}
\]

We then decided to slightly modify the structure of imine 5 and explore analogous imines derived from 2-pyridinecarboxaldehyde, which should lead to the formation of the five-membered heterocycles, namely pyridoindoles. Thus, imine 7 was allowed to react with benzyne to form a mixture of pyridoindoles 8 and 9 in a combined yield of 56% (Scheme 4).

Scheme 4. Reaction of 2-imino-pyridine 7 with benzyne

\[
\text{Ph} - \text{N} = \text{N}_\text{Bu} + \text{OTf} \xrightarrow{\text{CsF, THF, 65 °C, 24 h}} \text{8, 25%} + \text{9, 31%}
\]

In this case the reactive nitrogen atom in initially formed compound 8 was partially
trapped with one molecule of aryne intermediate to form 9.

7.3.2. Optimization of the reaction conditions

Attempts were made to inhibit the subsequent arylation process (Table 1). However, in all cases, roughly equimolar mixtures of 8 and 9 were obtained in modest yields (entries 1-4). After evaluating the reaction conditions that should favor formation of the free amino product, we were able to suppress the formation of product 9 and obtain product 8 exclusively, albeit in only 18% yield (entry 5). Alternatively, the subsequent arylation product 9 could be promoted by using an excess of the benzyne precursor (3 equiv) and an elevated reaction temperature (entry 6).

Table 1. Optimization of Aryne Annulations with Pyridin-2-ylmethanimines

<table>
<thead>
<tr>
<th>entry</th>
<th>2 (equiv)</th>
<th>fluoride source (equiv)</th>
<th>temp (°C)</th>
<th>% yielda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>TBAT</td>
<td>rt</td>
<td>62 (34:28)b</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>CsF (3)</td>
<td>65</td>
<td>56 (25:31)b</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>CsF (3)</td>
<td>65</td>
<td>67 (36:31)b</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>CsF (6)</td>
<td>65</td>
<td>70 (55:15)b</td>
</tr>
<tr>
<td>5</td>
<td>1.2</td>
<td>TBAF (1.4)</td>
<td>-78 to 100</td>
<td>18c</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>CsF (6)</td>
<td>100</td>
<td>72d</td>
</tr>
</tbody>
</table>

7.3.3. Study of the scope of the reaction

With optimal conditions in hand for the synthesis of N-aryl-2-pyrido[1,2-a]indoles, a series of diverse imines were allowed to react with benzyne precursor 2 (Table 2). To our delight, our optimized conditions provided the corresponding pyridoindoles in good yields starting from a variety of alkyl imines, even with allyl imine 16 and the sterically bulky
adamantyl imine 14 (entries 1-5). Unfortunately, propargyl imine 18 did not provide any of the desired product (entry 6). Additionally, heterocycle-containing primary amines were condensed with 2-pyridinecarboxaldehyde to form a series of imines capable of reacting with benzyne, including substrates containing the medicinally-relevant benzodioxole (19), thiophene (21), and amide (23) functionality (entries 7-9). A major drawback was the fact that all substrates that contained a CH₂ unit directly attached to the imine nitrogen afforded pyridoindoles that were not stable on silica gel and polymerized rapidly. This caused some problems with purification of these compounds, but we found that the addition of 5% triethylamine to both the silica gel and the eluent helped stabilize the compounds and afforded clean products in slightly higher yields. However, despite the instability of the product, even the diimine 25, derived from 1,2-diaminoethane afforded the corresponding double-annulation product 26 in a 51% yield (entry 10). The halogenated substrates 27 and 29 reacted poorly compared to the corresponding parent substrate 7, affording the corresponding pyridoindoles 28 and 30 in 34 and 22% yields (entries 11 and 12). Furthermore, the 6-substituted pyridinylmethanimines 31 and 32 did not react with benzyne according to TLC analysis (entries 13 and 14). The quinoline-based imine 33 reacted smoothly to form the desired product 34 in a 75% yield (entry 15). When thiazole derivative 35 was allowed to react using our optimized reaction conditions the desired product 36 was formed, albeit in only 27% yield (entry 16). Unfortunately, the 4-methoxyaniline-derived imine 37 under our optimized reaction conditions afforded a complicated mixture with only trace amounts of the desired pyridoindole based on ¹H NMR data (entry 17).
Table 2. Synthesis of Pyridoindoles from \(N \)-Pyridin-2-yl-methanimines and Arynes

\[
\text{N} \quad \text{R} + \text{OTf}_{\text{TMS}} \xrightarrow{\text{CsF, THF}} 100 \, ^\circ\text{C}, 16 \, \text{h} \quad \text{N} \quad \text{R} \quad \text{Ph}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>starting material</th>
<th>aryne</th>
<th>product</th>
<th>yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(R = \text{^tBu, 7})</td>
<td>(\text{TMS})</td>
<td>(\text{R = ^tBu, 9})</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>(R = \text{^tPr, 10})</td>
<td>(\text{TMS})</td>
<td>(\text{R = ^tPr, 11})</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>(R = \text{Cy, 12})</td>
<td>(\text{TMS})</td>
<td>(\text{R = Cy, 13})</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>(R = \text{Ada, 14})</td>
<td>(\text{TMS})</td>
<td>(\text{R = Ada, 15})</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>(R = \text{Allyl, 16})</td>
<td>(\text{TMS})</td>
<td>(\text{R = Allyl, 17})</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>(R = \text{Propargyl, 18})</td>
<td>(\text{TMS})</td>
<td>(\text{R = Propargyl, -})</td>
<td>0(^c)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{N} \quad \text{R} \quad \text{O} \quad \text{OTf}_{\text{TMS}})</td>
<td>(\text{OTf}_{\text{TMS}})</td>
<td>(\text{R = Cy, 13})</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>(\text{N} \quad \text{R} \quad \text{N} \quad \text{S} \quad \text{Ph})</td>
<td>(\text{OTf}_{\text{TMS}})</td>
<td>(\text{R = Ada, 15})</td>
<td>62</td>
</tr>
</tbody>
</table>

\(^a\) Synthesis conditions: \(\text{CsF, THF} \), \(100 \, ^\circ\text{C}, 16 \, \text{h} \)

\(^b\) Yields are reported as isolated yields.

\(^c\) The reaction did not proceed to completion.
Table 2 continued.

<table>
<thead>
<tr>
<th></th>
<th>Structure</th>
<th></th>
<th>Structure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>2</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>$R^1 = Br, R^2 = H, \text{27}$</td>
<td>2</td>
<td>$R^1 = Br, R^2 = H, \text{28}$</td>
<td>34^d</td>
</tr>
<tr>
<td>12</td>
<td>$R^1 = F, R^2 = H, \text{29}$</td>
<td>2</td>
<td>$R^1 = F, R^2 = H, \text{30}$</td>
<td>22^d</td>
</tr>
<tr>
<td>13</td>
<td>$R^1 = H, R^2 = Br, \text{31}$</td>
<td>2</td>
<td>-</td>
<td>0^e</td>
</tr>
<tr>
<td>14</td>
<td>$R^1 = H, R^2 = 4$-OMeC$_6$H$_4, \text{32}$</td>
<td>2</td>
<td>-</td>
<td>0^e</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>
Table 2 continued.

<table>
<thead>
<tr>
<th>17</th>
<th>37</th>
<th>2</th>
<th>-</th>
<th>tracef</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>7</td>
<td>38</td>
<td>39</td>
<td>80</td>
</tr>
</tbody>
</table>

a For the details of experimental procedure, see the experimental section. b Isolated yield after column chromatography. c The product was not observed or isolated. d The yield was determined by 1H NMR spectral analysis. e Recovered unreacted starting material. f The reaction afforded a complicated mixture that contained trace amounts of the desired product based on 1H NMR spectral analysis.

7.3.4. Additional studies

Additionally, an unsymmetrical aryne precursor 38 has been employed in the reaction with imine 7, which provided compound 39 in an 80% yield. The exact structure of the compound 39 has been determined by COSY and NOE experiments (Figure 2).

Figure 2. Characteristic NOEs observed in the 1H - 1H NOESY analysis (NOESY, 400 MHz, CDCl$_3$) and 3D structure (generated in Chem3D, C: gray; H: white; N: blue; O: red) for compound 39.
An NOE experiment showed the methoxy protons (C24) coupling to the doublet (C12) and the methoxy protons (C23) coupling to a singlet (C17) and a doublet (C19). If a different isomer had been formed, then the methoxy group (C23) should have ended up ortho to the nitrogen, thus only one coupling of hydrogens at C23 should have been observed.

In addition, we studied the possibility of converting the reaction presented in Scheme 4 into a one-pot protocol without isolation of the imine 7. We were pleased to find that reaction between the aldehyde 40, amine 41 (1 equiv) and aryne precursor 2, under the optimized reaction conditions afforded the desired pyridoindole product 9 in a 60% yield (Scheme 5).

Scheme 5. A one-pot approach for the synthesis of pyridoindoles

\[
\begin{align*}
\text{Scheme 5.} & \quad \text{A one-pot approach for the synthesis of pyridoindoles} \\
40 + \text{BuNH}_2 + 41 + 2 & \rightarrow 9, 60\% \\
\text{CsF, THF, } 100^\circ\text{C, 16 h} & \\
\end{align*}
\]

7.3.5. Aryne Annulation of pyridin-2-malonates

We also shown that in addition to imines, 2-(pyridin-2-ylmethylene)malonates can also participate in the discovered aryne annulation, providing access to the 2-(pyrido[1,2-\alpha]indol-10-yl)malonates. Thus, when compound 42 was reacted with benzyne precursor 2 under slightly different reaction conditions the desired pyridoindole 43 was isolated in a 68% yield (Scheme 6).
Scheme 6. Reaction of diethyl 2-(pyridin-2-ylmethylene)malonate 42 with benzyne

\[
\text{\text{42}} \quad \text{CO}_2\text{Et} \quad \text{CO}_2\text{Et} \quad + \quad \text{\text{2}} \quad \text{O Tf} \quad \text{TMS} \quad \text{TBAT, THF} \quad \text{rt, 24 h} \quad \text{\text{43}} \quad \text{68\%} \quad \text{CO}_2\text{Et} \quad \text{CO}_2\text{Et}
\]

Selected examples of the scope of this process are shown in Table 3. The methodology tolerates a variety of different esters, providing dimethyl ester, a diethyl ester, a and a dibenzyl ester products 43, 45 and 49 in good yields (entries 1,2 and 4), whereas sterically hindered di-\(t\)-butyl ester 46 afforded lower 40\% yield of product 47 (entry 3). Similarly to the results obtained with imines (Table 2, entries 11-15), lower yields of final products were obtained when various substituents were placed on the pyridine ring. For example, when a halogen-containing pyridines 50, 52 and 54 were subjected to the optimized conditions corresponding pyridoindoles 51, 53 and 55 were isolated in 39, 45 and 51\% yields, respectively (entries 5-7). One interesting trend noted is the fact that the yields seemed to increase as the halogen decreased in electronegativity. With quinoline substrate 56 only 32\% yield of product 57 was obtained (entry 8), comparing to 75\% yield of the product 34 (Table 2, entry 15). However, when a substituent was placed at the 6-position of the pyridine ring (entry 9) the formation of the desired pyridoindole was not observed, analogously to the experiments with imines (table 2, entry 14). \(\beta\)-Keto esters have also been condensed with 2-pyridinecarboxaldehyde in order to obtain the corresponding pyridine-containing Michael acceptors. The methyl ketone 59 (a mixture of \(E\) and \(Z\) isomers), afforded product 60 in a 61\% yield (entry 10). Unfortunately, thiazole derivative 61 did not afford desired
pyridoindole (entry 11), compared to the lower yield of product 36 (Table 2, entry 16).

Table 3. Synthesis of Pyridoindoles from 2-(Pyridin-2-yl-methylene)malonates and Arynes

![Chemical reaction diagram]

<table>
<thead>
<tr>
<th>entry</th>
<th>starting material</th>
<th>aryne</th>
<th>product</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
</table>
| 1 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = Et, 42 | 2 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = Et, 43 | 68 |
| 2 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = Me, 44 | 2 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = Me, 45 | 74 |
| 3 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = t-Bu, 46 | 2 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = t-Bu, 47 | 40 |
| 4 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = Bn, 48 | 2 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| R = Bn, 49 | 72 |
| 5 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| 50 | 2 | \[
\text{N}^\text{C}O^\text{2} \text{Et}_2 \]
| 51 | 39 |
| 6 | \[
\text{N}^\text{C}O^\text{2} \text{Me}_2 \]
| 52 | 2 | \[
\text{N}^\text{C}O^\text{2} \text{Me}_2 \]
| 53 | 45 |
Table 3 continued.

7	![Structure 54](image)	2	![Structure 55](image)			
8	![Structure 56](image)	2	![Structure 57](image)			
9	![Structure 58](image)	2	-			
10	![Structure 59](image)	2	![Structure 60](image)			
11	![Structure 61](image)	2	-			
12	![Structure 42](image)		![Structure 62](image)	62	63	64
It was pleasing to see that our conditions tolerated a variety of different benzyne precursors (entries 12-15). Symmetrical benzyne precursor \textbf{62} yielded pyrido[1,2-\textit{a}]indole \textbf{63} in a 64\% yield (entry 12). A series of unsymmetrical benzyne precursors \textbf{64}, \textbf{39}, and \textbf{67} have been examined and all produced single regioisomers in good yields (entries 13-15). These results are in good agreement with previously reported studies on the regioselectivity of reactions involving unsymmetrical aryne precursors22 and provide additional evidence that
the aryne is initially attacked by the nitrogen of the pyridine ring.

A series of 1D-NOESY and/or 1D-COSY experiments confirmed the structures shown (Figure 3). For example, an NOE interaction was observed between the malonate hydrogen at C14 of 65 and two doublet protons (C5 and C20). Furthermore, using a 1D-COSY experiment, these two doublets were observed to couple to two triplet protons. If the other regioisomer had been formed, the two doublets found to interact with the malonate hydrogen at through 1D-NOESY experiment would have coupled to both a triplet proton and a doublet proton in a 1D-COSY experiment. For compounds 66 and 68, NOE interactions between the malonate hydrogen (C14) and the methoxy protons (C19) were observed along with coupling to the doublet hydrogen at C5.

![Figure 3. Characteristic NOEs observed in the 1H - 1H NOESY analysis (NOESY, 400 MHz, CDCl$_3$) and 3D structures (generated in Chem3D, C: gray; H: white; N: blue; O: red) for compounds 65, 66 and 68.](image-url)
7.3.6. Reaction mechanism

A proposed reaction mechanism is shown in Scheme 7. Initially, the pyridyl nitrogen attacks the aryne as a nucleophile, pushing electrons onto an adjacent aromatic carbon. Then the newly formed aryl carbanion attacks the neighboring electrophile to form intermediate A, which subsequently abstracts a hydrogen to afford the neutralized aromatic structures B or C. In the case of N-pyridin-2-yl-methanimines (X = NR) C, a subsequent aryne reaction takes place to form the arylated amine D.

Scheme 7. Proposed mechanism for formation of the pyrido[1,2-\(\alpha\)]indoles
7.4. CONCLUSIONS

In conclusion, certain readily obtainable 2-substituted pyridines when allowed to react with arynes, give a variety of biologically relevant pyrido[1,2-a]indoles in good overall yields under mild reaction conditions. Thus a new route to an understudied heterocyclic ring system has been developed. The optimized methodology tolerates a variety of functional groups, with substituents on the pyridine ring being less efficient. A number of various 2-substituted pyridines reacted with benzyne precursors, both symmetrical and unsymmetrical, to yield the desired pyrido[1,2-a]indoles in good yields.

7.5. ACKNOWLEDGEMENTS

We gratefully acknowledge the National Science Foundation and the National Institutes of Health Kansas University Center of Excellence in Chemical Methodology and Library Development (P50 GM069663) for their generous financial support. We would also like to thank Dr. Feng Shi and Anton Dubrovskiy for their help in preparing benzyne precursors.

7.6. EXPERIMENTAL

7.6.1. General remarks

The \(^1\)H and \(^{13}\)C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz, respectively. Thin layer chromatography was performed using commercially prepared 60-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm). All melting points are uncorrected. All reagents were used directly as obtained
commercially. Compounds 123 and 524 were prepared according to the literature procedures.

7.6.2. Preparation of (E)-ethyl 1-phenylpyridin-2(1H)-ylidenecarbamate (3)

Compound 1 (41.6 mg, 0.25 mmol) was placed in a vial with a screw cap. CsF (113.9 mg, 0.75 mmol) was added, the mixture flushed with argon and diluted with dry acetonitrile (5 mL), then 2 (73 L, 0.3 mmol) was added, the vial was sealed and the reaction mixture stirred at room temperature for 16 h. After reaction completion and standard aqueous work up the crude reaction mixture was purified by column chromatography (ethyl acetate: hexanes (2:1)).

This compound was obtained in a 63% yield (38.2 mg) as a yellow oil: 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 8.00 (dd, \(J = 9.4, 1.1 \) Hz, 1H), 7.45 – 7.53 (m, 3H), 7.38 – 7.44 (m, 2H), 7.34 (dd, \(J = 7.2, 1.8 \) Hz, 2H), 6.45 (td, \(J = 6.7, 1.4 \) Hz, 1H), 4.05 (q, \(J = 7.1 \) Hz, 2H), 1.21 (t, \(J = 7.1 \) Hz, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 162.34, 160.53, 142.41, 139.22, 138.78, 129.63, 129.01, 126.81, 120.68, 109.33, 61.18, 14.84; HRMS (El) calcd for C\textsubscript{14}H\textsubscript{15}N\textsubscript{2}O\textsubscript{2} 243.1128, found 243.1135.

7.6.3. General procedure for preparation of the pyridin-2-ylmethanimines

The commercially available aldehyde (2.34 mmol) was added to a 5-10 mL round-bottom flask equipped with a magnetic stir bar. The flask was sealed, purged with argon, and water (0.6 mL) was added. To the resulting suspension or solution was added the corresponding amine (1-3 equiv) and the mixture was stirred at room temperature overnight.
Then the reaction mixture was subjected to an aqueous work up using ethyl acetate or diethyl ether as the organic phase. The organic layer was separated, dried over anhydrous MgSO₄, and the solvent was removed to afford the pure imine.

tert-Butyl(pyridin-2-yl-methylene)amine (7)

This compound was obtained as a yellow liquid (322.2 mg, 85%): ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 4.0 Hz, 1 H), 8.36 (s, 1 H), 8.02 (d, J = 7.9 Hz, 1 H), 7.73 (t, J = 7.7 Hz, 1 H), 7.29 (ddd, J = 7.5, 4.9, 1.2 Hz, 1 H), 1.31 (s, 9 H).

Isopropyl(pyridin-2-yl-methylene)amine (10)

This compound was obtained as a brown liquid (250.2 mg, 72%): ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 4.5 Hz, 1 H), 8.38 (s, 1 H), 7.98 (d, J = 7.9 Hz, 1 H), 7.72 (t, J = 7.7 Hz, 1 H), 7.34-7.25 (m, 1 H), 3.70-3.57 (m, 1 H), 1.27 (d, J = 6.3 Hz, 6 H).

Cyclohexyl(pyridin-2-yl-methylene)amine (12)

This compound was obtained as a brown liquid (440.1 mg, 99%): ¹H NMR (300 MHz, CDCl₃) δ 8.63 (d, J = 4.9 Hz, 1 H), 8.39 (s, 1 H), 7.98 (d, J = 7.9 Hz, 1 H), 7.72 (t, J = 6.8 Hz, 1 H), 7.29 (ddd, J = 7.4, 4.9, 1.2 Hz, 1 H), 3.29 (tt, J = 10.3, 4.0 Hz, 1 H), 1.91-1.49 (m, 7 H), 1.46-1.14 (m, 3 H).
Adamantyl(pyridin-2-yl-methylene)amine (14)

This compound was obtained as a yellow solid (516.1 mg, 92%): mp = 40-42 °C, 1H NMR (400 MHz, CDCl$_3$) δ 8.62 (d, $J = 3.1$ Hz, 1 H), 8.34 (s, 1 H), 8.01 (d, $J = 6.9$ Hz, 1 H), 7.71 (t, $J = 7.1$ Hz, 1 H), 7.32-7.23 (m, 1 H), 2.16 (s, 3 H), 1.82 (s, 6 H), 1.71 (q, $J = 12.5$ Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$) δ 156.4, 155.8, 149.4, 136.7, 124.5, 121.1, 58.3, 43.2, 36.7, 29.7; HRMS (EI) calcd for C$_{16}$H$_{20}$N$_2$ 241.1699, found 241.1700.

Allyl(pyridin-2-yl-methylene)amine (16)

This compound was obtained as a dark brown oil (270.4 mg, 79%): 1H NMR (300 MHz, CDCl$_3$) δ 8.65 (d, $J = 4.8$ Hz, 1 H), 8.40 (s, 1 H), 8.18-7.88 (m, 1H), 7.75 (t, $J = 7.7$ Hz, 1 H), 7.45-7.28 (m, 1 H), 6.24-5.95 (m, 1H), 5.37-5.04 (m, 2 H), 4.32 (dd, $J = 5.8$, 1.4 Hz, 2 H).

Propargyl(pyridin-2-yl-methylene)amine (18)

This compound was obtained as a brown liquid (262.3 mg, 78%): 1H NMR (400 MHz, CDCl$_3$) δ 8.70 (d, $J = 1.7$ Hz, 1 H), 8.66 (d, $J = 3.8$ Hz, 1 H), 7.98 (d, $J = 7.9$ Hz, 1 H), 7.75 (t, $J = 6.9$ Hz, 1 H), 7.37-7.29 (m, 1 H), 4.64-4.51 (m, 2 H), 2.55 (s, 1 H); 13C NMR (100 MHz, CDCl$_3$) δ 163.4, 154.4, 149.7, 136.8, 125.2, 121.7, 78.5, 76.4, 47.3; HRMS (EI) calcd for C$_9$H$_8$N$_2$ 145.0760, found 145.0761.
N-(Pyridin-2-ylmethylene)-2-(thiophen-2-yl)ethanamine (21)

This compound was obtained as a yellow oil (409.3 mg, 87%): H NMR (300 MHz, CDCl₃) δ 8.64 (ddd, J = 4.8, 1.6, 0.9 Hz, 1 H), 8.33 (s, 1 H), 8.00 (d, J = 7.9 Hz, 1 H), 7.75 (td, J = 7.8, 1.7 Hz, 1 H), 7.32 (ddd, J = 7.4, 4.8, 1.2 Hz, 1 H), 7.13 (dd, J = 5.1, 1.2 Hz, 1 H), 6.92 (dd, J = 5.1, 3.4 Hz, 1 H), 6.85 (dd, J = 3.4, 0.9 Hz, 1 H), 3.95 (td, J = 7.1, 1.3 Hz, 2 H), 3.27 (t, J = 7.1 Hz, 2 H); C NMR (100 MHz, CDCl₃) δ 162.9, 154.6, 149.6, 142.3, 136.8, 131.7, 126.9, 125.4, 125.0, 123.9, 121.6, 62.8, 31.5; HRMS (EI) calcd for C₁₂H₁₂N₂S 217.0794, found 217.0797.
(E)-1-[3-(Pyridin-2-ylmethyleneamino)propyl]pyrrolidin-2-one (23)

This compound was obtained as a yellow oil (226.5 mg, 41%): \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.60 (d, \(J = 3.8\) Hz, 1 H), 8.34 (s, 1 H), 7.90 (d, \(J = 7.9\) Hz, 1 H), 7.70 (ddt, \(J = 9.4, 7.7, 1.8\) Hz, 1 H), 7.32-7.22 (m, 1H), 3.64 (t, \(J = 6.9\) Hz, 2 H), 3.36 (q, \(J = 6.8\) Hz, 4 H), 2.31 (t, \(J = 8.1\) Hz, 2 H), 2.02-1.86 (m, 4 H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 175.1, 162.5, 154.4, 149.6, 136.7, 124.9, 121.6, 59.0, 47.3, 40.8, 31.2, 28.5, 18.0; HRMS (EI) calcd for C\(_{13}\)H\(_{18}\)N\(_3\)O 232.1444, found 232.1447.

(N\(^1\)E,\(N^2\)E)-N\(^1\),N\(^2\)-Bis(pyridin-2-ylmethylene)ethane-1,2-diamine (25)

This compound was obtained as a yellow solid (298.9 mg, 54%): mp = 61-63 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.61 (d, \(J = 4.1\) Hz, 2 H), 8.40 (s, 2 H), 7.96 (d, \(J = 7.9\) Hz, 2 H), 7.71 (td, \(J = 7.7, 1.8\) Hz, 2 H), 7.28 (ddd, \(J = 7.5, 4.9, 1.3\) Hz, 2 H), 4.05 (s, 4 H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 163.6, 154.5, 149.6, 136.7, 124.9, 121.5, 121.6, 61.5; HRMS (EI) calcd for C\(_{14}\)H\(_{15}\)N\(_4\) 239.1291, found 239.1297.

tert-Butyl-(5-bromopyridin-2-ylmethylene)amine (27)

This compound was obtained as a brown solid (545.2 mg, 97%): mp 35-37 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.68 (d, \(J = 1.6\) Hz, 1 H), 8.29 (s, 1 H), 7.93 (d, \(J = 8.4\) Hz, 1 H), 7.84 (dd, \(J = 8.5, 1.8\) Hz, 1 H), 1.30 (s, 9 H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\)
155.5, 154.2, 150.5, 139.4, 122.3, 121.9, 58.3, 29.7; HRMS (EI) calcd for C_{10}H_{13}BrN_{2} 241.0335, found 241.0336.

tert-Butyl-(5-fluoropyridin-2-ylmethylene)amine (29)

![Chemical structure](image)

This compound was obtained as a yellow oil (193.8 mg, 46%): 1H NMR (300 MHz, CDCl$_3$) δ 8.45 (d, $J = 2.8$ Hz, 1 H), 8.32 (s, 1 H), 8.05 (dd, $J = 8.8$, 4.8 Hz, 1 H), 7.43 (td, $J = 8.2$, 2.6 Hz, 1 H), 1.29 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 160.2 (1J$_{CF}$ 257 Hz), 155.2, 152.1 (3J$_{CF}$ 4 Hz), 137.5 (2J$_{CF}$ 24 Hz), 123.6 (2J$_{CF}$ 19 Hz), 122.3 (3J$_{CF}$ 4 Hz), 58.0, 29.8; HRMS (EI) calcd for C$_{10}$H$_{13}$FN$_2$ 181.1136, found 181.1137.

tert-Butyl-(6-bromopyridin-2-ylmethylene)amine (31)

![Chemical structure](image)

This compound was obtained as colorless crystals (515.2 mg, 91%): mp 50-52 °C; 1H NMR (300 MHz, CDCl$_3$) δ 8.27 (s, 1 H), 8.00 (dd, $J = 7.6$, 0.9 Hz, 1 H), 7.57 (t, $J = 7.5$ Hz, 1 H), 7.46 (dd, $J = 7.8$, 0.9 Hz, 1 H), 1.29 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 156.9, 155.4, 141.4, 139.0, 128.9, 119.5, 58.4, 29.7; HRMS (EI) calcd for C$_{10}$H$_{13}$BrN$_2$ 241.0355, found 241.0339.

tert-Butyl[6-(4-methoxyphenyl)pyridin-2-ylmethylene]amine (32)

![Chemical structure](image)

This compound was obtained as a cream colored solid (305.2 mg, 97%): mp 81-83 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.45 (s, 1 H), 8.06-7.92 (m, 3 H), 7.73 (t, $J = 7.7$ Hz, 1 H), 7.64 (d, $J = 7.8$ Hz, 1 H), 7.00 (d, $J = 8.6$ Hz, 2 H), 3.85 (s, 3 H),
1.35 (d, J = 2.5 Hz, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 160.6, 157.4, 156.7, 155.5, 137.2, 131.9, 128.3, 120.6, 118.3, 114.3, 57.9, 55.5, 29.8; HRMS (EI) calcd for C$_{17}$H$_{21}$N$_2$O 269.1648, found 269.1653.

tert-Butyl(quinolin-2-ylmethylene)amine (33)

This compound was obtained as a yellow solid (417.8 mg, 84%): mp 54-56 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.53 (s, 1 H), 8.20 (q, J = 8.7 Hz, 2 H), 8.12 (d, J = 8.4 Hz, 1 H), 7.84 (d, J = 8.1 Hz, 1 H), 7.73 (t, J = 7.7 Hz, 1 H), 7.56 (t, J = 7.5 Hz, 1 H), 1.36 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 157.0, 155.8, 147.8, 136.5, 129.8, 129.5, 128.8, 127.8, 127.2, 118.4, 58.2, 29.8; HRMS (EI) calcd for C$_{14}$H$_{16}$N$_2$ 213.1386, found 213.1391.

tert-Butyl(thiazol-2-ylmethylene)amine (35)

This compound was obtained as a pale yellow liquid (198.3 mg, 69%): 1H NMR (400 MHz, CDCl$_3$) δ 8.40 (s, 1 H), 7.87 (d, J = 2.8 Hz, 1 H), 7.35 (d, J = 3.1 Hz, 1 H), 1.28 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.9, 143.9, 123.8, 121.2, 58.5, 29.6; HRMS (EI) calcd for C$_8$H$_{12}$N$_2$S 169.0794, found 169.0795.

(E)-4-methoxy-N-(pyridin-2-ylmethylene)aniline (37)29

This compound was obtained as a yellow oil (441.2 mg, 89%): 1H NMR (400 MHz, CDCl$_3$) δ 8.70 (d, J = 5.0 Hz, 1 H), 8.63 (s, 1 H), 8.19 (d, J = 7.8 Hz, 1 H), 7.80 (td, J = 7.8, 1.8 Hz, 1 H), 7.34 (d, J = 8.7 Hz, 3 H), 6.95 (d, J = 8.8 Hz, 2 H), 3.84 (s,
3 H).

7.6.4. General procedure for preparation of the N-methyl-N-phenylpyrido[1,2-a]indol-10-amines

To a dry 4 dram vial equipped with a magnetic stir bar and screw cap, CsF (228 mg., 1.5 mmol, 6 equiv) was added under an inert atmosphere of nitrogen. Then, the corresponding imine (0.25 mmol), THF (5 mL), and the aryne precursor (0.75 mmol, 3 equiv) were added and the vial was tightly sealed. The reaction mixture was vigorously stirred at 100 °C for 16 h. After cooling, the reaction mixture was diluted with ethyl acetate, filtered and concentrated under reduced pressure. The crude reaction mixture was then purified by column chromatography using hexanes or ethyl acetate/hexane mixtures with the addition of 1% triethylamine as the eluent to afford pure product.

N-(tert-Butyl)-N-phenylpyrido[1,2-a]indol-10-amine (9)

\[
\begin{array}{c}
\text{N} \\
\text{Ph} \\
\text{N} \\
\text{Bu}
\end{array}
\]

This compound was obtained a yellow oil (56.1 mg, 72%): 1H NMR (300 MHz, CDCl$_3$) δ 8.23 (d, $J = 7.1$ Hz, 1 H), 7.83 (dd, $J = 10.4$, 8.2 Hz, 2 H), 7.48 (dt, $J = 9.4$, 1.2 Hz, 1 H), 7.40-7.34 (m, 1 H), 7.26 (ddd, $J = 8.1$, 7.0, 1.2 Hz, 2 H), 6.80 (ddd, $J = 9.4$, 6.3, 1.0 Hz, 1 H), 6.38 (ddd, $J = 7.4$, 6.4, 1.2 Hz, 1 H), 1.26 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.5, 134.5, 128.7, 128.3, 127.9, 124.3, 123.1, 122.4, 119.9, 119.4, 119.0, 117.6, 117.8, 112.6, 110.4, 107.9, 57.6, 30.4; HRMS (EI) calcd for C$_{22}$H$_{22}$N$_2$ 314.1625, found 314.1633.
N-(Isopropyl)-N-phenylpyrido[1,2-a]indol-10-amine (11)

This compound was obtained as a yellow solid (49.9 mg, 66\%): mp 129-132 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.36 (d, $J = 7.0$ Hz, 1 H), 7.94 (d, $J = 7.3$ Hz, 1 H), 7.60 (d, $J = 7.9$ Hz, 1 H), 7.35-7.29 (m, 1 H), 7.11 (t, $J = 7.8$ Hz, 1 H), 6.88-6.82 (m, 1 H), 6.64 (dd, $J = 18.4$, 7.8 Hz, 1 H), 6.50 (t, $J = 6.6$ Hz, 1 H), 4.63-4.46 (m, 1 H), 1.25 (d, $J = 6.5$ Hz, 2 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.8, 134.8, 129.2, 128.4, 128.3, 124.4, 123.0, 122.4, 120.0, 119.5, 117.8, 116.4, 113.2, 110.4, 108.1, 107.0, 49.7, 21.5; HRMS (EI) calcd for C$_{21}$H$_{20}$N$_2$ 301.1699, found 301.1699.

N-Cyclohexyl-N-phenylpyrido[1,2-a]indol-10-amine (13)

This compound was obtained as a yellow oil (61.1 mg, 75\%): 1H NMR (400 MHz, CDCl$_3$) δ 8.36 (d, $J = 7.0$ Hz, 1 H), 7.94 (d, $J = 7.1$ Hz, 1 H), 7.62 (d, $J = 8.1$ Hz, 1 H), 7.32 (d, $J = 7.6$ Hz, 3 H), 7.11 (t, $J = 7.9$ Hz, 2 H), 6.88-6.81 (m, 1 H), 6.65 (t, $J = 7.1$ Hz, 1 H), 6.60 (d, $J = 8.2$ Hz, 2 H), 6.50 (t, $J = 6.6$ Hz, 1 H), 4.08 (t, $J = 11.4$ Hz, 1 H), 2.21 (d, $J = 12.1$ Hz, 2 H), 1.76 (d, $J = 13.3$ Hz, 2 H), 1.58 (d, $J = 16.9$ Hz, 1 H), 1.44 (q, $J = 13.2$ Hz, 2 H), 1.34-1.07 (m, 3 H), 0.98-0.87 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.8, 134.6, 129.2, 128.3, 128.2, 124.3, 123.0, 122.4, 120.0, 119.6, 117.9, 116.3, 113.1, 110.4, 108.1, 107.7, 58.5, 32.0, 26.3, 25.8; HRMS (EI) calcd for C$_{24}$H$_{24}$N$_2$ 341.2012, found
341.2013.

N-Adamantyl-N-phenylpyrido[1,2-a]indol-10-amine (15)

![Chemical structure of N-Adamantyl-N-phenylpyrido[1,2-a]indol-10-amine (15)](image)

This compound was obtained as a yellow solid (61.2 mg, 62%): mp 128-130 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.28 (d, \(J = 7.0\) Hz, 1 H), 7.86 (dd, \(J = 13.5, 8.2\) Hz, 2 H), 7.49 (d, \(J = 9.4\) Hz, 1 H), 7.38 (t, \(J = 7.1\) Hz, 1 H), 7.32-7.23 (m, 2 H), 7.16-7.00 (m, 4 H), 6.85 (dd, \(J = 8.4, 6.3\) Hz, 1 H), 6.74 (t, \(J = 6.9\) Hz, 1 H), 6.44 (t, \(J = 6.2\) Hz, 1 H), 2.19 (s, 6 H), 2.09 (s, 3 H), 1.65 (s, 6 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.3, 135.1, 129.5, 128.2, 127.9, 124.2, 123.0, 122.3, 119.7, 119.2, 118.1, 112.2, 110.3, 107.9, 58.1, 42.5, 36.7, 30.5. HRMS (EI) calcd for C\(_{28}\)H\(_{28}\)N\(_3\) 393.2325, found 393.2324.

N-Allyl-N-phenylpyrido[1,2-a]indol-10-amine (17)

![Chemical structure of N-Allyl-N-phenylpyrido[1,2-a]indol-10-amine (17)](image)

This compound was obtained as an orange oil (40.2 mg, 54%) and was highly unstable in various solvents and neat. Due to the low stability a clean \(^{13}\)C NMR spectrum of this compound could not be obtained; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.34 (d, \(J = 7.1\) Hz, 1 H), 7.92 (d, \(J = 7.1\) Hz, 1 H), 7.57 (d, \(J = 8.4\) Hz, 1 H), 7.32 (d, \(J = 4.9\) Hz, 2 H), 7.13 (t, \(J = 8.0\) Hz, 2 H), 6.88-6.79 (m, 1 H), 6.70 (s, 3 H), 6.50 (s, 1 H), 6.12-5.97 (m, 1H), 5.31 (dd, \(J = 17.2, 1.7\) Hz, 1 H), 5.14 (dd, \(J = 10.3, 1.6\) Hz, 1 H), 4.40 (dt, \(J = 5.5, 1.6\) Hz, 2 H); HRMS (EI) calcd for C\(_{21}\)H\(_{18}\)N\(_2\) 298.1470, found 298.1466.
N-(Benzo[1,3]dioxol-5-ylmethyl)-N-phenylpyrido[1,2-a]indol-10-amine (20)

![Chemical Structure](image)

This compound was obtained as an orange oil (76.6 mg, 78%):

1H NMR (400 MHz, CDCl$_3$) δ 8.33 (d, $J = 7.1$ Hz, 1 H), 7.92 (d, $J = 8.3$ Hz, 1 H), 7.60 (d, $J = 7.3$ Hz, 1 H), 7.36-7.28 (m, 2 H), 7.23 (d, $J = 9.3$ Hz, 1 H), 7.11 (t, $J = 8.0$ Hz, 2 H), 6.94 (s, 1 H), 6.89 (d, $J = 8.6$ Hz, 1 H), 6.83 (dd, $J = 8.7$, 6.8 Hz, 1 H), 6.72 (d, $J = 7.9$ Hz, 1 H), 6.68 (d, $J = 7.9$ Hz, 3 H), 6.47 (t, $J = 6.7$ Hz, 1 H), 5.90 (s, 2 H), 4.96 (s, 2 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.5, 147.9, 146.5, 133.9, 132.1, 129.1, 128.1, 125.7, 124.5, 123.1, 122.4, 120.2, 120.1, 118.7, 117.2, 113.5, 112.1, 110.6, 108.4, 108.0, 107.8, 101.1, 101.0, 101.0, 56.8; HRMS (EI) calcd for C$_{26}$H$_{19}$N$_2$O$_2$ 392.1519, found 392.1527.

N-Phenyl-N-[2-(thiophen-2-yl)ethyl]pyrido[1,2-a]indol-10-amine (22)

![Chemical Structure](image)

This compound was obtained as an orange oil (65.2 mg, 70%): 1H NMR (400 MHz, CDCl$_3$) δ 8.38 (d, $J = 7.1$ Hz, 1 H), 7.97 (d, $J = 7.0$ Hz, 1 H), 7.61-7.54 (m, 1 H), 7.39-7.32 (m, 2 H), 7.25 (d, $J = 8.6$ Hz, 1 H), 7.18 (t, $J = 8.0$ Hz, 2 H), 7.12 (d, $J = 5.1$ Hz, 1 H), 6.95-6.90 (m, 1 H), 6.90-6.84 (m, 1 H), 6.81 (s, 1 H), 6.72 (t, $J = 8.1$ Hz, 3 H), 6.52 (t, $J = 6.7$ Hz, 1 H), 4.12-4.03 (m, 2 H), 3.31-3.20 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.0, 141.8, 132.7, 130.5, 129.4, 128.2, 127.1, 126.2, 125.0, 124.5, 123.6, 123.2, 122.6, 120.2, 118.6, 117.0, 112.9, 110.6, 108.2, 54.1, 28.8; HRMS (EI) calcd for C$_{24}$H$_{20}$N$_2$S
This compound was obtained as an orange oil (57.8 mg, 60%):

1H NMR (400 MHz, CDCl$_3$) δ 8.36 (d, $J = 7.1$ Hz, 1 H), 7.94 (d, $J = 7.5$ Hz, 1 H), 7.54 (d, $J = 6.9$ Hz, 1 H), 7.32 (t, $J = 6.0$ Hz, 2 H), 7.25 (d, $J = 9.7$ Hz, 1 H), 7.13 (t, $J = 7.8$ Hz, 2 H), 6.87 (dd, $J = 9.3$, 6.4 Hz, 1 H), 6.67 (dd, $J = 21.0$, 7.7 Hz, 3 H), 6.50 (t, $J = 6.8$ Hz, 1 H), 3.31 (t, $J = 7.4$ Hz, 2 H), 3.81 (t, $J = 7.7$ Hz, 2 H), 3.22 (t, $J = 7.0$ Hz, 2 H), 2.33 (t, $J = 8.2$ Hz, 2 H), 1.92 (t, $J = 7.6$ Hz, 4 H); 13C NMR (100 MHz, CDCl$_3$) δ 175.1, 149.3, 132.6, 129.3, 128.1, 126.2, 124.5, 123.2, 122.6, 120.2, 118.6, 117.0, 116.9, 112.9, 110.7, 110.6, 108.2, 49.7, 47.2, 40.7, 31.2, 26.4, 18.0; HRMS (EI) calcd for C$_{25}$H$_{26}$N$_3$O 384.2070, found 384.2063.

N^1,N^2-Diphenyl-N^4,N^4-di(pyrido[1,2-α]indol-10-yl)ethane-1,2-diamine (26)

This compound was obtained as a yellow solid (69.2 mg, 51%):

mp 268-271 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.33 (d, $J = 7.1$ Hz, 2 H), 7.98- 7.85 (m, 2 H), 7.60-7.45 (m, 2 H), 7.40-7.28 (m, 4 H), 7.17 (d, $J = 9.2$ Hz, 2 H), 6.96 (dd, $J = 8.6$, 7.1 Hz, 4 H), 6.80 (dd, $J = 9.0$, 6.6 Hz, 2 H), 6.59 (t, $J = 7.3$ Hz, 2 H), 6.48 (dd, $J = 11.2$, 7.4 Hz, 6 H),
4.15 (s, 4 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.2, 132.6, 129.2, 128.2, 126.1, 124.5, 123.2, 122.6, 120.1, 118.4, 116.9, 112.8, 110.7, 110.6, 108.1, 50.3; HRMS (EI) calcd for C$_{38}$H$_{30}$N$_4$ 542.2465, found 542.2472.

7-Bromo-N-(tert-butyl)-N-phenylpyrido[1,2-**a**]indol-10-amine (28)

This compound was obtained as an orange oil in a 34% yield (NMR yield based on the addition of 1,4-dimethoxybenzene as an internal standard): 1H NMR (400 MHz, CDCl$_3$) δ 8.44 (s, 1 H), 7.85 (d, $J = 8.1$ Hz, 1 H), 7.71 (d, $J = 8.1$ Hz, 1 H), 7.33 (dt, $J = 18.6$, 8.6 Hz, 3 H), 7.05 (t, $J = 8.0$ Hz, 2 H), 6.87 (t, $J = 8.2$ Hz, 3 H), 6.69 (t, $J = 7.2$ Hz, 1 H), 1.52 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.3, 132.5, 128.7, 128.4, 127.8, 125.5, 124.4, 123.5, 120.9, 119.8, 119.3, 118.7, 118.0, 114.1, 110.4, 102.5, 57.6, 30.4; HRMS (EI) calcd for C$_{22}$H$_{21}$BrN$_2$ 392.0883, found 392.0892.

7-Fluoro-N-(tert-butyl)-N-phenylpyrido[1,2-**a**]indol-10-amine (30)

This compound was obtained as an orange solid in a 22% yield (NMR yield based on the addition of 1,4-dimethoxybenzene as an internal standard): mp 104-105 ºC; 1H NMR (400 MHz, CDCl$_3$) δ 8.21 (d, $J = 3.3$ Hz, 1 H), 7.80 (d, $J = 8.0$ Hz, 1 H), 7.72 (d, $J = 7.7$ Hz, 1 H), 7.34 (ddd, $J = 24.9$, 12.8, 6.3 Hz, 3 H), 7.05 (t, $J = 8.0$ Hz, 2 H), 6.88 (d,
$J = 8.1$ Hz, 2 H), 6.81 (t, $J = 7.9$ Hz, 1 H), 6.68 (t, $J = 7.3$ Hz, 1 H), 1.53 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 152.6, 150.3, 149.4, 132.4, 128.9, 128.4, 123.0, 120.5, 120.0, 119.4, 118.9, 118.8, 118.0, 115.7, 115.4, 113.7, 110.4, 110.3, 109.9, 57.6, 30.4 (extra peaks due to 13C-19F coupling); HRMS (EI) calcd for C$_{22}$H$_{21}$FN$_2$ 333.1762, found 333.1754.

N-(tert-Butyl)-N-phenylindolo[1,2-a]quinolin-7-amine (34)

This compound was obtained as a yellow oil (68.3 mg, 75%): 1H NMR (400 MHz, CDCl$_3$) δ 8.60 (d, $J = 8.3$ Hz, 1 H), 8.50 (d, $J = 8.5$ Hz, 1 H), 7.76 (d, $J = 7.8$ Hz, 1 H), 7.63 (t, $J = 8.5$ Hz, 2 H), 7.44 (t, $J = 7.6$ Hz, 1 H), 7.40-7.30 (m, 3 H), 7.08 (dd, $J = 14.5$, 8.9 Hz, 3 H), 6.90 (d, $J = 8.1$ Hz, 2 H), 6.69 (t, $J = 7.2$ Hz, 1 H), 1.59 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 149.1, 137.0, 134.7, 131.7 129.8, 129.1 129.0, 128.5, 124.8 124.2, 123.0, 122.2, 119.9, 118.42, 117.8, 117.5, 116.8, 115.7, 114.5, 57.5, 30.4; HRMS (EI) calcd for C$_{26}$H$_{24}$N$_2$ 365.2012, found 365.2003.

N-(tert-Butyl)-N-phenylthiazolo[3,2-a]indol-9-amine (36)

This compound was obtained as a colorless solid (21.7 mg, 27%): mp 102-103 $^\circ$C; 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, $J = 4.2$ Hz, 1 H), 7.60 (d, $J = 7.8$ Hz, 2 H), 7.21 (t, $J = 7.4$ Hz, 1 H), 7.15 (t, $J = 7.6$ Hz, 1 H), 7.08 (dt, $J = 16.6$, 8.2 Hz, 4 H), 6.77 (t, $J = 6.9$ Hz, 1 H), 6.53 (d, $J = 4.2$ Hz, 1 H), 1.51 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 148.7, 136.3,
This compound was obtained as a yellow oil (75.0 mg, 80%): 1H NMR (400 MHz, CDCl$_3$) δ 8.21 (d, $J = 7.2$ Hz, 1 H), 7.48 (d, $J = 8.3$ Hz, 1 H), 7.27 (d, $J = 10.3$ Hz, 1 H), 7.20 (t, $J = 8.0$ Hz, 1 H), 6.92 (t, $J = 8.2$ Hz, 1 H), 6.80-6.69 (m, 2 H), 6.47-6.33 (m, 3H), 6.18 (dd, $J = 7.8$, 2.0 Hz, 1 H), 3.84 (s, 3 H), 3.66 (s, 3 H), 1.52 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 159.7, 154.2, 151.4, 133.0, 129.2, 128.4, 124.0, 121.7, 120.6, 30.0, 119.9, 118.1, 111.4, 111.3, 108.4, 104.7, 103.3, 102.5, 100.4, 57.8, 55.4, 55.1; HRMS (EI) calcd for C$_{24}$H$_{27}$N$_2$O$_2$ 375.2067, found 375.2060.

7.7. REFERENCES AND NOTES

21. Carried out by Donald Rogness
22. For a discussion of the reactivity and regioselectivity of unsymmetrical arynes, see:
CHAPTER 8

General Conclusions

Over the course of the work described in this dissertation, several novel methodologies have been successfully developed and applied to the synthesis of medicinally-relevant heterocycles, including indoles, benzo[b]furans, 1,2-dihydroisoquinolines, 1H-indazoles, and pyrido[1,2-a]indoles. In these methods, well-studied transition metal-catalyzed processes and newly discovered aryne-mediated processes have been found applicable and efficient when applied to the synthesis of a variety of heterocycles. Most of these processes have also been transformed into multicomponent processes. As a result of this work, a novel three-component reaction of indoles, 2-alkynylbenzaldehydes and amines has been discovered and a library of over a hundred 1,2-dihydroisoquinolines has been prepared and sent out for biological testing. A novel method for the synthesis of 2,3-disubstituted indoles and N-methylindoles under Sonogashira conditions has been developed and applied to the synthesis of 24 indole scaffolds. A related method for the synthesis of 2,3-disubstituted benzofurans under Sonogashira conditions has also been optimized and successfully applied to the synthesis of a variety of medicinally-relevant benzofurans. A total synthesis of naturally-occurring oligostilbenes has been initiated based on the methodology developed and significant progress has been made in that direction. A one-pot method for the synthesis of 1-alkyl-1H-indazoles has been developed utilizing the reaction between 1,1-dialkylhydrazones, NCS and arynes. This process proved to be efficient and resulted in the
synthesis of 13 indazoles, as well as several interesting extensions. Finally, the synthesis of a small library of medicinally-relevant pyrido[1,2-\(a\)]indoles has been accomplished by the reaction of arynes with 2-substituted pyridines. A three-component version of this methodology has also proved successful.

The variety and notable efficiency of the methods developed illustrates the incredible potential that lies in the thoughtful combination of already known and well-studied approaches for the generation of complex molecules in a one-pot fashion from readily available starting materials.

The number of publications on multicomponent and combinatorial chemistry has grown immensely in the last few decades. The number of the new methods that have been developed during these years is even greater. One can expect an explosion in the growth in the field of multicomponent reactions in the near future, resulting in the gradual transformation of known methods of organic syntheses into greener, highly efficient and waste-free strategies.
ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude and appreciation to Distinguished Professor Richard C. Larock. I am thankful for his patience, understanding, inspiration, support and encouragement during these five years.

I thank my Program of Study Committee: Professors Thomas Greenbowe, Malika Jefferies-El, Yan Zhao, George Kraus and Nicola Pohl for their support and assistance throughout graduate school.

I would like to thank former and current members of the Larock group and the Iowa State University Department of Chemistry for their assistance and valuable discussions, especially Dr. Donald Rogness, Dr. Raffaella Mancuso, Dr. Yu Chen and Anton Dubrovskiy, with whom I had the privilege to collaborate. Special thanks goes to our secretary, Patricia Boone, for always being there for us. It was truly a pleasure to be a part of such an intelligent and inspiring team.

My gratitude extends to all the former and present staff of the Moscow Chemical Lyceum, especially Sergey Evgenjevich Semenov, who were an inspiration to pursue chemistry as a profession, as well as to live a more meaningful and complete life, and to Dr. Yakov V. Voznyj for his guidance during the start of my research career.

I would like to acknowledge my parents, Alexander Markin and Marina Markina and my brother, Fedor Markin, whose constant love and care sustained me throughout these years. I’d like to thank my grandmother, Lidiya Mikhajlovna Knyazeva, as well as the rest of my extended family and friends for their genuine support and care.
Finally, I am endlessly thankful to Anton Dubrovskiy, for being the most loving, understanding and supportive husband and colleague I could wish for.