COMPOSITE-CONCRETE INTERFACE CHARACTERIZATION BY LAMB WAVES

T. Kundu
M. Ehsani
D. Guo
K. I. Maslov
Department of Civil Engineering and Engineering Mechanics
University of Arizona, Tucson, Arizona 85721, USA

INTRODUCTION

In recent years, significant attention is being paid to the nation's dilapidated infrastructure. Examples of such structures include buildings that need to be retrofitted to resist seismic loads, bridges that must be strengthened to carry heavier traffic loads and concrete water and sewer pipes that have deteriorated due to corrossions. In most of these cases, the capacity of these structures can be increased by the introduction of additional tension-carrying materials. While steel has been traditionally used for such applications, fiber reinforced plastic (FRP) materials have been increasingly replacing steel in the last decade. The high tensile strength and corrosion resistance of FRPs make them an ideal substitute for steel.

FRP plates can be epoxy bonded to the tension face of concrete beams, for example, to increase the flexural capacity of these members significantly [1]. Masonry and concrete walls can be similarly strengthened and there are reported field applications of these techniques to buildings damaged in recent earthquakes [2,3]. The success of such construction depends in large part on the bond between the FRP plates and the concrete substrate. Thus, there is great need for development of nondestructive testing methods that could easily identify defects in the bond line.

Ultrasonic techniques have become one of the most popular nondestructive testing techniques because of their versatility and ease of operation. They can easily detect internal cracks and inclusion type defects in homogeneous or layered materials. However, they have their own shortcomings. They cannot penetrate very deep inside a highly attenuative material. Fibers in the FRP plate scatter away the ultrasonic energy and the epoxy resins used for the matrix material are very attenuative. Hence, these materials are difficult to inspect by ultrasonic signals if the transducers are used in the conventional frequency range (1 to 10 MHz). Only relatively low frequency ultrasonic waves can propagate through these materials.

In this research relatively low frequency (below 1 MHz) transducers are used to inspect the delamination between the concrete and the composite plate. Both longitudinal and Lamb waves are generated and used in this investigation. Although the use of longitudinal or P-waves for detecting internal defects in a material is not new, it is new for this particular application, i.e. for detecting delamination between concrete and FRP plate.
Lamb wave imaging technique or L-scan (‘L’ stands for Lamb) technique is comparatively new. Previous efforts of using Lamb waves to inspect defects in composite and metal plates include the works of Chimenti and Nayfeh [4], Nagy et al. [5], Nayfeh [6], Bar-Cohen and Chimenti [7], Chimenti and Bar-Cohen [8], Martin and Chimenti [9], Mal and Bar-Cohen [10], Tang and Henneke [11], Bridge and Ramli [12], Atalar et al. [13,14], Chimenti and Martin [15], Alleyne and Cowley [16], Rose et al. [17], Pilarski and Rose [18], Challis and Bork [19], Tung et al. [20], Corouble et al. [21], Ditri and Rose [22], among others. Most of these works involve relating the material defects such as porosity and delamination to the change in the Lamb wave propagation characteristics, the dispersion curves, phase velocity and attenuation.

Only a few investigators have so far attempted to scan a specimen using Lamb waves to detect defects inside a material. Chimenti and Martin [15] attempted it and were successful to some extent to detect internal defects in a composite plate. The major problem of their technique is that it is very sensitive to the plate thickness variation. Hence, a few percentage of change in the plate thickness alters the receiver voltage amplitude significantly. To avoid this problem one needs to filter the received signal peak amplitude data through a special filter, called MFq filter [Chimenti and Martin [15]. This signal processing helps to minimize the effect of the plate thickness variation on the null zone but apparently retains the sensitivity of the reflected signal to the internal defects.

Kundu et al. [23] have shown that the problem imposed by the slight variation of the plate thickness can be avoided by placing the receiver beyond the null-zone so that only propagating leaky Lamb waves can be received by the receiver. The wave amplitude in this region is comparatively less sensitive to the plate thickness variation and more sensitive to the defects inside the plate. Kundu and his coworkers have used this transmitter-receiver arrangement for studying composites and interfaces [24-27]. A similar arrangement is used in this study as well.

EXPERIMENT

A specimen containing a hidden artificial defect is fabricated and scanned by different ultrasonic waves to see under what conditions the delamination defect can be detected clearly. A small interface defect in a real structure can act as the initiation point for a large area of delamination and can significantly reduce the load carrying capacity of the structure. That is why it is necessary to detect defects when they are small (a few centimeter in dimension for civil engineering structures). The specimen was prepared by gluing a glass fiber reinforced plastic (GFRP) plate to a concrete block as shown in Figure 1. The GFRP plate was manufactured by pressing three layers of an E-glass fabric in a polyester resin matrix. The fabric weighed approximately 18 oz per square yard (0.61 kg per square meter) and had equal amounts of fibers in the 0- and 90-degree directions. The average thickness of the plate was 3.66 mm. A two-component epoxy was mixed to produce an adhesive with a consistency of warm honey. The epoxy was applied to the surface of the GFRP plate before it was placed on top of the concrete block. A small pressure [less than 1 psi (6890 Pa)] was applied to the GFRP plate at room temperature for about two days until the epoxy was cured. The average total thickness of glue and GFRP plate was found to be 4.56 mm. While preparing the specimen an approximately circular delaminated area of about 50 mm diameter was artificially fabricated near the center of the concrete/composite interface. This was done by applying no epoxy to that region. The GFRP plate was then pasted to the concrete block using epoxy glue. The average combined thickness of the GFRP plate and epoxy glue was found to be 4.56 mm. After the specimen was fabricated one could not see or feel the defect from outside by touching the GFRP plate because the internal delaminated area did not significantly change any dimension. The objective of the study was to detect this delamination by ultrasonic signals.
A laboratory made ultrasonic scanner [23,25] was used for generating the ultrasonic images. Broad band Panametrics transducer was excited by Matec 310 gated amplifier using tone burst and short-pulse signals from the Wavetek function generator. The reflected signal was received by a Matec receiver and was digitized by GAGE 40 MHz data acquisition board, then the received signal was analyzed. The computer program either computed the peak to peak or the average amplitude of the signal in a given time window and then plotted it in a gray scale with respect to the horizontal (x,y) position of the transducers. Voltage versus Frequency or V(t) curves were obtained by changing the carrier frequency of 10 cycles of the tone burst signal and synchronous detection of the amplitude value of the received signal.

Lamb Wave Scanning

Kundu et al [23-25] have shown that Lamb waves are very effective in detecting defects inside composite plates and at the interface. To investigate the capability of the Lamb waves in detecting the concrete/composite delamination zone the specimen was scanned by the propagating Lamb waves. In this case two identical Panametrics 500 kHz, broad band transducers, one acted as a transmitter and the second one as a receiver, were used in the pitch-catch arrangement as shown in Figure 2. Both transducers and the specimen were immersed in water. The transmitter was excited in the swept frequency tone-burst mode. The signal frequency continuously changed from 200 kHz to 800 kHz. Transmitter and receiver were placed in the defocus position, in this position the transmitter axis and the receiver axis intersected at a point below the reflecting surface. For this orientation of the receiver the peaks in the reflection spectra were observed when leaky Lamb waves (or generalized Rayleigh waves) were generated in the specimen. This is because at the defocused position receiver could receive only the leaky waves. Figure 3 shows two peaks in the reflection spectrum (continuous line), one near 370 kHz and the second one near 570 kHz when the transducers are inclined at 25° angle. If the angle of

Figure 1: Geometry of the specimen - epoxy bonded concrete/GFRP plate.

Figure 2: Transmitter (T) and Receiver (R) arrangement for conventional C-scan (top figure) and new Lamb wave scan or L-scan imaging (bottom figure).
inclination were varied the peak positions changed. If the transducers were brought closer to each other and placed in the focused position (also known as the specular reflection position) then dips were observed (dashed line) approximately at the frequency values where peaks were observed in the defocused position and vice-versa. This is because when the receiver was placed closer to the transmitter at the focus position it received direct (specular) reflected energy that was reduced when leaky waves were generated. These curves generated over the well-bonded region (Figure 3) and the debonded region (Figure 4) show noticeable difference. It implies that the Lamb wave is sensitive to the delamination defect.

One can obtain the Lamb-wave phase velocity from the transducer inclination angle using the Snell’s law. If the Lamb wave phase velocity be V_L then the striking angle (θ) that would generate the leaky Lamb mode at the water-specimen interface is given by,

$$\theta = \sin^{-1}\left(\frac{V_w}{V_L}\right)$$

where V_w is the longitudinal wave speed in water (the coupling fluid), at room temperature V_w is 1.49 km/s. From Eq (1) one can see that 25° angle of inclination of the transducer corresponds to 3.53 km/s phase velocity. Curves similar to Figures 3 and 4 were generated for different inclinations of the transducers, varying from 10° to 27.5°. In other words, Lamb waves of different phase velocities varying from 8.58 km/s (for 10° angle of inclination) to 3.23 km/s (for 27.5° angle of inclination) were generated in the plate. Frequencies corresponding to different peaks of the received signal spectra were recorded against the Lamb wave phase velocity. Closed and open circles in Figure 5 show the peak positions that were experimentally obtained over the well-bonded and delaminated regions. In the frequency range of our interest (200 to 800 kHz) only two strong peaks were observed, whose positions shifted between 50 and 100 kHz as transducer inclination angle changed from 10° to 27.5°.

![Figure 3: V(f) curves generated by propagating Lamb waves in focused (dotted) and defocused (solid) positions over the well bonded region of the concrete-GFRP specimen.](image)

![Figure 4: V(f) curves generated by propagating Lamb waves in focused (dotted) and defocused (solid) positions over the delaminated region of the concrete-GFRP specimen.](image)
9

0
good bonded

delaminated

computed

Figure 5: Generalized Lamb/Rayleigh dispersion curves theoretically obtained (continuous line) and experimentally obtained over the well-bonded zone (solid circles) and delaminated zone (open circles).

In summary, two prominent Lamb modes were experimentally detected in the window of our interest and both mode positions shifted as the transducers moved from the well-bonded to the delaminated zone.

It is not easy to obtain all elastic constants of the anisotropic composite layer and compare the experimental results with the theoretical dispersion curves of the specimen. Due to the random variations of GFRP properties it was treated as a homogeneous medium at low frequencies. Ultrasonic longitudinal wave speed in GFRP was measured using a technique similar to that used by Kinra and Iyer [28,29]. Density and elastic wave speeds in the GFRP composite layer and concrete are given in Table 1.

Reflection coefficient spectra of the composite plate (with the above material properties) sandwiched between the water half-space and the concrete half-space were computed for different incident angles between 10° and 27.5°. Sharp dips of the reflection spectra correspond to the leaky Lamb/Rayleigh wave generation frequency. Theoretical dispersion curves were computed in this manner and plotted in Figure 5 by a continuous line. In spite of many approximations in the material modeling the matching between the theoretical curves and the experimental points over the well-bonded region is quite good. Debonding shifts the dispersion curves slightly towards right. From Figure 5 one can see that for the lower mode this shift is comparatively larger at lower phase velocity (between 5 and 3.23 km/s) or higher transducer angle (between 17.5° and 27.5°). As a result the transducers inclined at an angle between 17.5° and 27.5° should be more effective in detecting the delamination. The 25° angle was selected for generating the L-scan image of the interface. However, any other angle between 17.5° and 27.5° would have done this job equally well.

In Figures 3 one can clearly see that for 25° angle of incidence the Lamb waves (or generalized Rayleigh waves) are generated near 370 kHz and 570 kHz in the good region.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (mm)</th>
<th>Density (gm/cc)</th>
<th>P-wave speed (km/s)</th>
<th>S-wave speed (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFRP</td>
<td>4.56</td>
<td>1.79</td>
<td>1.7</td>
<td>1.12</td>
</tr>
<tr>
<td>Concrete</td>
<td>100</td>
<td>6.02</td>
<td>4.26</td>
<td>2.28</td>
</tr>
</tbody>
</table>
On the delaminated region (Figure 4) the strong Lamb mode is generated near 425 kHz. The specimen was scanned with this Lamb mode (incident angle = 25° and signal frequency = 425 kHz). The L-scan image of the interface is shown in Figure 6. The delaminated zone can be clearly seen. The rest of the interface does not show any other bright spot.

Pulse-Echo C-scan Imaging

The specimen was then scanned by a 500 kHz Panametrics transducer in the pulse echo mode. The transducer was triggered by a JSR DPR35+ pulser. The time histories over the well-bonded and delaminated zones are shown in Figure 7. From this figure one can see that the reflected signals from the top and bottom surfaces of the composite plate are not well separated.

![Figure 7: Time histories generated by a 500 kHz transducer over the well-bonded zone (top) and delaminated zone (bottom).](image-url)
If one plots the "peak to peak" value or the maximum signal amplitude value of this signal in a gray scale against the x,y position of the specimen then there is a good chance of completely missing the delaminated zone. This is because the reflected signal from the interface is not well separated from the front face reflection. However, by placing the receiving gate position slightly behind the front surface echo, such that it approximately coincided with the arrival time of the interface echo, one could detect the delaminated zone (top image of Figure 8). Increasing signal frequency to 1 MHz did not significantly improve the quality of the image as can be seen from the bottom image of Figure 8 which was generated by the 1 MHz transducer. One can clearly see that the qualities of both these images are worse than the L-scan image shown in Figure 6. This is probably due to the fact that Lamb waves propagate over a finite distance along the interface before reaching the receiver. As a result, it gives the average property over that finite zone and noises of C-scan images coming from the point to point property variations are eliminated in the L-scan images.

CONCLUDING REMARKS

In this paper it is shown that the delamination at the concrete/GFRP composite interface can be detected by both Lamb wave scanning (L-scan) and longitudinal wave scanning techniques. The pulse-echo C-scan technique faces some difficulty because the front surface echo and the interface echo are not well separated at low frequencies and the signal attenuates very fast inside the composite layer at high frequencies. The C-scan technique is very sensitive to the glue and GFRP plate property variations, L-scan technique is not that sensitive to these variations. The C-scan image generated by P-waves shows similar gray levels for both delamination and glue/plate property variations. It is difficult to distinguish between the two. The L-scan image, on the other hand, shows only the delamination zone as a bright spot. The Lamb mode that is used for generating the L-scan image is insensitive to the small variations of the glue and plate properties, as a result the image is not affected by the non-uniform plate thickness and its properties. Thus, for this application the Lamb wave scanning technique appears to be the superior technique.

ACKNOWLEDGEMENTS

This research was financially supported by NSF grants CMS9622403, CMS9523349 and EPRI Grant W08031-14.
REFERENCES