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ABSTRACT

Intelligence test scores have long been shown to correlate with a wide variety of other

abilities. The goal of this thesis is to enable a robot to solve some of the common tasks from

intelligence tests with the intent of improving its performance on other real-world tasks. In

other words, the goal of this thesis is to make robots more intelligent. We used an upper-torso

humanoid robot to solve three common perceptual reasoning tasks: the object pairing task, the

order completion task, and the matrix completion task. Each task consisted of a set of objects

arranged in a specific configuration. The robot’s job was to select the correct solution from a

set of candidate solutions.

To find the solution, the robot first performed a set of stereotyped exploratory behaviors on

each object, while recording from its auditory, proprioceptive, and visual sensory modalities.

It used this information to compute a set of similarity scores between every pair of objects.

Given these similarity scores, the robot was able to deduce patterns in the arrangement of the

objects, which enabled it to solve the given task. The robot repeated this process for all the

tasks that we presented to it. We found that the robot was able to solve all the different types

of tasks with a high degree of accuracy.

There have been previous computational solutions to tasks from intelligence tests, but no

solutions thus far have used a robot. This thesis is the first work to attempt to solve tasks

from intelligence tests using an embodied approach. We identified a framework for solving

perceptual reasoning tasks, and we showed that it can be successfully used to solve a variety

of such tasks. Due to the strong correlation between intelligence test scores and performance

in real-world environments, this suggests that an embodied approach to learning can be very

useful for solving a wide variety of tasks from real-world environments in addition to tasks from

intelligence tests.
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CHAPTER 1. OVERVIEW

1.1 Introduction

Intelligence tests have been around for over 4000 years (DuBois, 1970). Some ancient Chi-

nese emperors gave proficiency and ability tests to state officials. Even an 8-year-old Wolfgang

Amadeus Mozart was given an intelligence test when he appeared before King George III of

England in 1763 (Gregson, 1989). Indeed, human societies have been interested in tests of

mental ability for a long time. Modern intelligence tests, though, bear little resemblance to

their historical predecessors. Modern tests, such as the Wechsler Intelligence Scale for Children

(WISC), often measure test takers’ abilities in areas such as verbal comprehension, perceptual

reasoning, working memory, and processing speed (Wechsler, 2003). Other tests, such as the

Raven’s Progressive Matrices (RPM) test (Raven, 1938), focus on one specific area (in the case

of the RPM, matrix reasoning). All of these tests though, have been shown to correlate with

performance on a variety of other mental tasks (Neisser et al., 1996; Hunter and Schmidt, 1998;

Deary et al., 2007; Naglieri and Bornstein, 2003).

The goal of this thesis is to investigate the ability of robots to solve tasks that commonly

appear on intelligence tests. More specifically, we want to know how a robot can go about

solving these kinds of tasks and how that can inform the development of more intelligent

robots. Intelligence tests are an interesting research domain for roboticists because they are

well-founded in the psychology literature and have been shown to have meaningful correlations

with other measures of intelligence. Furthermore, many of the concepts underlying the tasks in

intelligence tests also appear frequently in human environments. Thus, by studying how robots

can solve intelligence tests, we can better understand how to make robots more intelligent in a

manner grounded in our understanding of human intelligence and in a manner well-suited for

the environments in which they will operate.
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CHAPTER 3. EXPERIMENTAL PLATFORM

3.1 The Robot

The robot used in this thesis is an upper-torso humanoid robot. It is shown in Figure 3.1.

The robot has two arms which are mounted in an anthropomorphic configuration. The robot

was designed to be able to do many of the same tasks that infants and young children can do,

and in this setup the robot has similar capabilities to an infant sitting in a high-chair. It can

explore and manipulate the objects placed on the table in front of it. In other words, the table

shown in Figure 3.1 acts as the interaction surface for the robot and was used in all experiments

described in this thesis.

The two arms of the robot are 7-DOF Barrett Whole Arm Manipulators (WAMs). Each

arm has an attached Barrett hand. The arms are mounted opposite each other on top of a

large metal cylindrical stand. The robot’s head has 9 degrees of freedom and is mounted above

the arms on top of the stand. The stand is attached to a metal cart. The cables attached to

the robot’s head and arms run through the hollow interior of the metal stand and connect to

the electronics cabinet on the back of the cart. In the cabinet are the computers that control

the robot’s arms, audio equipment for processing auditory data from the robot’s microphones,

and power boxes for the robot’s arms and head. Plastic covers are attached to the robot’s head

and chest in order to improve its appearance.

Figure 3.1 shows the robot with the table in front of it and the electronics cabinet behind it,

covered by a black cloth. This setup was used for the experiments described in Chapters 4 and 5,

which primarily used the robot’s left arm. During the experiments described in Chapter 6, the

robot’s left arm required maintenance and as a result was removed along with the plastic chest

covers. Since the experiments only required one arm, the robot’s right arm was used instead.
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Figure 3.1: The upper-torso humanoid robot. The robot is shown here with some of the

Montessori objects that were used in the experiments described in Chapters 4 and 5.

This did not affect the robot’s performance.

Figure 3.2 shows the robot’s right hand. It has three fingers, all of which have two joints

and can open and close fully, though the two joints in each finger are controlled by a single

motor. The fingers can also change spread, that is, the two outermost fingers can pivot around

the palm of the hand and either be on the same side as the other finger or on the opposite side.

The hand with the finger spread open is shown in Figure 3.2a and the hand with the finger

spread closed is shown in Figure 3.2b. The right hand of the robot is equipped with touch

(a) (b)

Figure 3.2: The Barrett hand attached to the robot’s right arm. The image on the left shows

the hand with the spread open; the image on the right shows the hand with the spread closed.
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Figure 6.1: The robot used in these experiments. It is shown here with only its right arm as the

left arm was temporarily removed for maintenance when these experiments were performed.

The Microsoft Kinect camera is mounted on the lower part of the robot’s torso.

6.2 Experimental Platform

6.2.1 Robot and Sensors

All experiments described in this chapter were performed using the robot shown in Fig-

ure 6.1. The robot is equipped with two 7-DOF Barrett Whole Arm Manipulators (WAMs),

each with an attached Barrett Hand. Each WAM can measure its own joint angles and torques

at a rate of 500 Hz. The robot used only its right arm to perform the behaviors in these

experiments, as its left arm was temporarily removed for maintenance. The robot also has an

Audio-Technica U853AW cardioid microphone mounted in its head in order to capture audi-

tory feedback at the standard 16-bit/44.1kHz over a single channel. During the experiments,

the robot was also equipped with a Microsoft Kinect camera, which can capture both RGB

video and depth information. The Kinect camera was attached to the lower part of the robot’s

torso, slightly above the table and pointed down at it. The robot is described in more detail

in Chapter 3.
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6.2.2 Objects

The objects used in the experiments described in this chapter were designed specifically

to maintain the general structure of matrix completion tasks as described by Carpenter et al.

(1990) while moving to the domain of physical objects (as opposed to images on a piece of

paper). Figure 6.2 shows the three properties that the objects varied by. Each object is a

cylindrical plastic jar that is 8.6 centimeters tall and 9.4 centimeters in diameter. The jars are

semi-transparent, each being one of three colors: blue, green, or red (see Figure 6.2a). Each jar

is filled with one of four different types of contents: glass beads, rice, beans, or screws (shown

in Figure 6.2b). Each jar was filled until it weighed either 166g, 250g, or 337g (shown in

Figure 6.2c). In all, there are 3 colors × 4 contents types × 3 weights = 36 total jars (one for

each permutation of the values). Figure 6.3 shows all 36 objects.

6.2.3 Exploratory Behaviors

The robot performed ten stereotyped behaviors to explore the objects: grasp, lift, hold,

shake, rattle, drop, tap, poke, push, and press. All of these behaviors are shown in Figure 6.4.

In addition to these behaviors, the robot also performed the look behavior (not shown in

Figure 6.4), during which it took a visual snapshot of the object on the table in front of it

with the Kinect camera before performing the other behaviors on it. All behaviors in the

experiments described in this chapter were performed with the robot’s right arm and encoded

using Barrett’s API. The trajectory of the joint positions for each of the behaviors was executed

using the default PID controller of the WAM. All of the behaviors were performed identically

on each object, with only minor variations due to the initial placement of the object.

6.2.4 Sensorimotor Contexts

In this chapter, the robot used 21 sensorimotor contexts. A sensorimotor context is defined

as a behavior combined with a sensory modality, e.g., drop-audio. We will use the notation

behavior-modality to denote a context and the letter C to denote the set of all contexts. Table 6.1

shows all combinations of behaviors and modalities that the robot used. The robot used all



70

(a) Color: green, red, and blue.

(b) Contents: glass, rice, beans, and screws.

(c) Weight: light, medium, and heavy.

Figure 6.2: The properties by which the objects varied. Each object is a jar that is one of three

colors, filled with one of four different types of contents, and weighing one of three different

weights, for a total of 36 objects (see Figure 6.3).

Figure 6.3: The 36 objects used in the experiments described in this chapter, grouped by color.

Within each group, all objects of the same weight are in the same row and all objects with the

same type of contents are in the same column.
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⇒

(a) Grasp

⇒

(b) Lift

⇒

(c) Hold

⇒

(d) Shake

⇒

(e) Rattle

⇒

(f) Drop

⇒

(g) Tap

⇒

(h) Poke

⇒

(i) Push

⇒

(j) Press

Figure 6.4: Before and after images for the ten exploratory behaviors that the robot performed

on all objects. From left to right and top to bottom: grasp, lift, hold, shake, rattle, drop, tap,

poke, push, and press. The object was placed back in the initial position by the experimenter

after some of the behaviors (e.g., drop).
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Figure 6.11: Accuracy versus number of contents for the subset of tasks that don’t require

color information and for all tasks. The line labeled “Overall” is the same as the line labeled

“Category Distances + Supervision” in Figure 6.10. The other line was computed in the exact

same way as the overall line with the exception that the 500 tasks were reduced to just the 173

that did not require perception of color to solve. The standard deviation for each data point is

also plotted using dashed lines.

As described in Section 6.2.4, there was only one context, color-look, that had access to

visual data collected from the robot’s camera. Because color is so important to solving the

tasks, we wanted to know how this affected the robot’s performance. Figure 6.11 shows the

robot’s performance on only the matrix completion tasks that did not require the perception

of color to solve (173 out of 500 ) as compared to the robot’s performance on all 500 tasks.

On average the robot performs better when the task does not involve color, especially in the

middle part of the graph (5 to 15 contexts). It is also worth mentioning that the upper limit

of the standard deviation converges to 100% accuracy sooner for tasks not involving color than

for all tasks. Just as we expected, because there are no redundant contexts in which color can

be perceived (as opposed to weight and contents), the robot has a harder time identifying color

as a relevant property, and thus tasks that require it are harder to solve.

6.5.3 Performance Compared to Difficulty of the Task

Figure 6.12 shows six figures that compare the robot’s performance for different types of

task difficulty. Figure 6.12a shows the robot’s performance as a function of the number of
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Figure 6.12: Six figures that compare the performance as a function of the difficulty of the

matrix completion tasks.
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Figure 6.13: Three figures that show the number of matrix completion tasks for different task

difficulty types.

candidate objects that it can choose from to complete the matrix. It is interesting to note

that, even though the scores are reported as the kappa value to compensate for different chance

accuracies, the robot still performs better when given fewer options to pick from than when

given more. Conversely, Figure 6.12b shows that when the number of patterns present in

the matrix increases, the robot gets better at solving the task. Interestingly, even though

Figure 6.12b was computed using the context distances method without supervision (as opposed

to the category distances method with supervision as in all the other figures5), it was still

possible to achieve 100% accuracy on matrices with 6 patterns when the maximum possible

over all tasks was 44.6%. Intuitively this makes sense because the more patterns present in a

matrix, the more constrained the possible candidate objects are, and thus the easier the task

is to solve.

Figure 6.12c shows the robot’s performance when the objective function was computed

only across the rows of the matrix in each task, down the columns, or both. As expected, the

robot is able to perform better when using an objective function that takes into account the

information across the rows and down the columns. Also as expected, the robot’s performance

when only using rows or only using columns is approximately the same. This is likely due to

the fact that the task generation algorithm treats rows and columns identically.

Figures 6.12d, 6.12e, and 6.12f show the robot’s performance on different subsets of the

5This was done because in the version of this graph that used the category distances method with supervision,
all the lines performed maximally well, making it impossible to perceive any difference in performance.
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perceptual reasoning tasks has been shown to work for multiple tasks, it is reasonable to expect

that it could be used to successfully solve other perceptual reasoning tasks as well.

It would also be interesting to solve other types of tasks from intelligence tests with robots,

such as verbal reasoning tasks. As stated in Chapter 1, however, these types of tasks would

require that the robot be able to learn large amounts of background knowledge, such as lan-

guage. For example, in order to solve word relation tasks, a robot would have to understand

the meaning of various words and how they relate to each other. Nonetheless, it would be

interesting to develop robotic systems capable of learning this type of knowledge and to test

those systems using the same type of tasks designed to test humans.

Another possible direction for future work is an improved objective function. In this thesis,

all the tasks required their own, task-specific objective function. Future work could investigate

methods for creating a generalized objective function that would work across a wide variety

of perceptual reasoning tasks. This would require a unified method for posing tasks and it

would require the robot to be able to learn the properties of each task. Though difficult, doing

so would allow robots to solve many more perceptual reasoning tasks without requiring the

development of task-specific methodology.
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Raven, J. C. (1938). Progressive matrices. Éditions scientifiques et psychotechniques.

Richardson, K. (1991). Reasoning with ravenin and out of context. British Journal of Educa-

tional Psychology, 61(2):129–138.

Romanes, G. J. (1882). Animal intelligence. Kegan Paul, Trench & Co, London, Great Britain.

Rooks, B. (2006). The harmonious robot. Industrial Robot: An International Journal,

33(2):125–130.



108

Ruff, H. A. and Dubiner, K. (1987). Stability of individual differences in infants’manipulation

and exploration of objects. Perceptual and Motor Skills, 64(3c):1095–1101.

Saenko, K. and Darrell, T. (2008). Object category recognition using probabilistic fusion of

speech and image classifiers. In Proceedings of the 4th International Workshop Machine

Learning for Multimodal Interaction, Revised Selected Papers, volume 4892, pages 36–47,

Brno, Czech Republic.

Sanghi, P. and Dowe, D. L. (2003). A computer program capable of passing IQ tests. In

Proceedings of the 4th International Conference on Cognitive Science (ICCS), pages 570–

575.

Sato, Y. and Inoue, H. (2010). Solving sudoku with genetic operations that preserve building

blocks. In Proceedings of the IEEE Symposium on Computational Intelligence and Games

(CIG), pages 23–29, Copenhagen, Denmark.

Sattler, J. M. (2008). Assessment of children: Cognitive foundations. JM Sattler, San Diego,

CA.

Scerri, E. R. (2011). The Periodic Table: A Very Short Introduction. Oxford University Press,

Oxford.

Schaeffer, J., Lake, R., Lu, P., and Bryant, M. (1996). CHINOOK: The world man-machine

checkers champion. AI Magazine, 17(1):21.

Sharp, S. E. (1899). Individual psychology: A study in psychological method. The American

Journal of Psychology, 10(3):329–391.

Sinapov, J., Bergquist, T., Schenck, C., Ohiri, U., Griffith, S., and Stoytchev, A. (2011a).

Interactive object recognition using proprioceptive and auditory feedback. The International

Journal of Robotics Research, 30(10):1250–1262.

Sinapov, J., Schenck, C., Staley, K., Sukhoy, V., and Stoytchev, A. (2013). Grounding se-

mantic categories in behavioral interactions: Experiments with 100 objects. Robotics and

Autonomous Systems (to appear).



109

Sinapov, J. and Stoytchev, A. (2008). Detecting the functional similarities between tools using

a hierarchical representation of outcomes. In Proceedings of the 7th IEEE International

Conference on Development and Learning (ICDL), pages 91–96, Monterey, CA.

Sinapov, J. and Stoytchev, A. (2010a). The boosting effect of exploratory behaviors. In

Proceedings of the 24th National Conference on Artificial Intelligence (AAAI), pages 1613–

1618, Atlanta, GA.

Sinapov, J. and Stoytchev, A. (2010b). The odd one out task: Toward an intelligence test

for robots. In Proceedings of the 9th IEEE International Conference on Development and

Learning (ICDL), pages 126–131, Ann Arbor, MI.

Sinapov, J. and Stoytchev, A. (2011). Object category recognition by a humanoid robot using

behavior-grounded relational learning. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pages 184–190, Shanghai, China.

Sinapov, J., Sukhoy, V., Sahai, R., and Stoytchev, A. (2011b). Vibrotactile recognition and

categorization of surfaces by a humanoid robot. IEEE Transactions on Robotics, 27(3):488–

497.

Sinapov, J., Wiemer, M., and Stoytchev, A. (2008). Interactive learning of the acoustic prop-

erties of objects by a robot. In Procceedings of the RSS Workshop on Robot Manipulation:

Intelligence in Human Environments, Zurich, Switzerland.

Sinapov, J., Wiemer, M., and Stoytchev, A. (2009). Interactive learning of the acoustic proper-

ties of household objects. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pages 2518–2524, Kobe, Japan.

Slonaker, J. R. (1912). The normal activity of the albino rat from birth to natural death, its

rate of growth and the duration of life. Journal of Animal Behavior, 2:20–42.

Small, W. S. (1899). Notes on the psychic development of the young white rat. The American

Journal of Psychology, 11(1):80–100.



110

Spearman, C. (1904). “General Intelligence,” Objectively determined and measured. The

American Journal of Psychology, 15(2):201–292.

Spearman, C. (1914). The theory of two factors. Psychological Review, 21(2):101.

Stoytchev, A. (2005). Behavior-grounded representation of tool affordances. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), pages 3060–3065,

Barcelona, Spain.

Sugarman, S. (1981). The cognitive basis of classification in very young children: An analysis

of object-ordering trends. Child Development, 52(4):1172–1178.

Sun, J., Moore, J., Bobick, A., and Rehg, J. (2010). Learning visual object categories for robot

affordance prediction. The International Journal of Robotics Research, 29(2-3):174.

Takamuku, S., Hosoda, K., and Asada, M. (2008). Object category acquisition by dynamic

touch. Advanced Robotics, 22(10):1143–1154.

Tenenbaum, J., De Silva, V., and Langford, J. (2000). A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319–2323.

Terman, L. M. (1916). The Measurement of intelligence. Houghton Mifflin, Boston, MA.

Torres-Jara, E., Natale, L., and Fitzpatrick, P. (2005). Tapping into touch. In Proceedings of

the Fifth International Workshop on Epigenetic Robotics, Osaka, Japan.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236):433–460.

Turvey, M. T. (1996). Dynamic touch. American Psychologist, 51(11):1134.

Vauclair, J. and Bard, K. A. (1983). Development of manipulations with objects in ape and

human infants. Journal of Human Evolution, 12(7):631–645.

Verbeek, M. E., Drent, P. J., and Wiepkema, P. R. (1994). Consistent individual differences in

early exploratory behaviour of male great tits. Animal Behaviour, 48(5):1113–1121.



111

Watt, D. C. (1998). Lionel Penrose, FRS (1898–1972) and eugenics: Part one. Notes and

Records of the Royal Society of London, 52(1):137–151.

Wechsler, D. (1939). The measurement of adult intelligence. Williams & Wilkins Co, Baltimore.

Wechsler, D. (1997). Wechsler Adult Intelligence Scale–third edition: Administration and scor-

ing manual. Psychological Corporation, San Antonio, TX.

Wechsler, D. (2003). Wechsler Intelligence Scale for Children–fourth edition (WISC-IV). San

Antonio, TX: The Psychological Corporation.

Weisler, A. and McCall, R. B. (1976). Exploration and play: Resume and redirection. American

Psychologist, 31:492–508.

Westergaard, G. C. (1992). Object manipulation and the use of tools by infant baboons (Papio

cynocephalus anubis). Journal of Comparative Psychology, 106(4):398–403.

Westergaard, G. C. (1993). Development of combinatorial manipulation in infant baboons

(Papio cynocephalus anubis). Journal of comparative psychology, 107(1):34–38.

Wissler, C. (1901). The correlation of mental and physical tests. Psychological Monographs:

General and Applied, 3(6):1–62.

Yarrow, L. J., McQuiston, S., MacTurk, R. H., McCarthy, M. E., Klein, R. P., and Vietze, P. M.

(1983). Assessment of mastery motivation during the first year of life: Contemporaneous and

cross-age relationships. Developmental Psychology, 19(2):159.

Younger, B. (1985). The segregation of items into categories by ten-month-old infants. Child

Development, 56(6):1574–1583.


