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ABSTRACT 

The problem of fracture from cylindrical cavities in brittle materials has been analyzed. The 
analysis is based on the conditions required to extend cracks that pre-exist at the cavity surface. It 
involves the combined use of fracture mechanics and statistics solutions for crack extension in the 
concentrated stress field around the cavity. The general pertinence of the approach is substantiated by 
experimental studies of fracture from cavities in polycrystalline alumina. 

INTRODUCTION 

The fracture of ceramic components frequently 
initiates at holes or voids,l and it is of consi­
derable practical importance to comprehend the 
detailed influence of cavities on fracture initia­
tion. 

Fracture from cavities is most realistically 
treated by examining the extension of flaws at (or 
near) the cavity surface. 1,2 The flaws are consi­
dered to extend when the stress intensity, due to 
the combined stress field of the cavity and the 
flaw, attains the critical value for local crack 
extension. The flaw responsible for fracture in 
polycrystalline ceramics may either pre-exist or 
may develop due to subcritical extension nf grain 
boundary cusps. In either case, a distribution of 
flaws should exist, prior to final fracture, in the 
vicinity of the cavity surface. The analysis of 
fracture from cavities is thus a statistical prob­
lem, involving the extension of crack arrays in 
localized stress fields. A preliminary attempt to 
address this problem3 has used the unperturbed 
stress field at the cavity surface as the basis· for 
the statistical analysis. This analysis only per­
tains, of course, when the cracks are small enough 
(vis-a-vis the cavity radius) that stress gradient 
effects across the crack and interaction effects2 
can be neglected. 

Further progress in the characterization of 
fracture from cavities requires that the statisti­
cal approach be extended to include the entire range 
of crack sizes of practical concern (up to at least 
half the cavity radius)l ,4 and hence to incorporate 
the stress gradient and interaction effects oncrack 
propagation. Three-dimensional stress intensity 
factor so 1 uti ons for cracks emanating from the 
cavity surface# are needed for this purpose. These 
results can then be combined with statistical crack 
size distributions to obtain the appropriate frac­
ture relationships. The present paper considers 

ifA similar approach can be used to include volume 
cracks that do not terminate at the cavity surface. 
However, the analysis is complicated by subcritical 
crack/cavity linking effects, and the analysis is 
thus deferred to a subsequent publication. 

the problem of fracture from cylindrical cavities; 
while a companion paper examines the analagous 
problem of fracture from spherical cavities. These 
papers emphasize the basic approach for combining 
linear elastic fracture mechanics solutions with 
statistical results. For this purpose, tte best 
available fracture mechanics and statistical analy­
ses are invoked; recognizing that, in some instances, 
the solutions are still rather approximate. Evident­
ly, improved solutions can be incorporated, as they 
emerge, using the same basic procedures. 

To ascertain the general validity of the analy­
tic results, it is required that cavities with well­
defined surface crack distributions be prepared and 
tested. Preliminary results are obtained in this 
study by performing experiments on a hot pressed 
polycrystalline alumina containing cylindrical 
cavities. 

STRESS INTENSITY FACTOR SOLUTIONS 

Well-established stress intensity factor K 
solutions can be obtained directly from the litera­
ture for the two-dimensional problem of single (or 
double) radial cracks emanating from a cylindrical 
hole5 (Fig. 1). However, there are few well­
substantiated solutions for the more relevant three­
dimensional problems, such as semi-elliptical cracks 
at the surface of cylindrical cavities. Approximate 
three-dimensional solutions are often obtained by 
linear superposition. Such solutions are parti­
cularly convenient to derive, and are the primary 
solutions used in the present studies. Hence, the 
methods of solution and the expected accuracy of 
the results are examined. 
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the crack front location of ~nterest (see Fig. 2). 
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fig. 1. Stress intensity factor solutions for a 
single radial crack emanating from a 
cylindrical hole. 

The three primary superposition results are: 
for a two-dio/ensional symmetrically loaded crack of 
length 2a,6, 

1 a 
K =- ~ Jcr (z) 

I (na) e 
-a 

( 
a+z )~ dz 
a-z 

( 1 ) 

where z is the distance from the crack center and 
cr 8 is th.e tensile stress normal to the crack: for 
a two-dimensional edge crack of length a8 

a 

2 (-1Ta)~ f [1 + F(z/a)] cr (z)dz 
Kr (i - z2)!i e (2) 

0 

where, F(z/a) = (l-z/a)[0.29-0.39(z/a)2 + 0.77(z/a)4 
- 0.99(z/a)6 + 0.59(z~a~8J: for a three-dimensional 
fully-contained crack • • 

2 !J 
0 0 

(3) 

y[1-(y/a) 2 ]~ cr (y, lji) 
2 dy dl/1 

[ 1-2(y/a)cos 1/1 + (y/a) ] 

where y is the radial distance from the crack center, 
and ~ is the angular coordinate with reference to 
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Fig. 2. Stress intensity factor solutions a semi­
circular crack on the surface of a cylin­
dri ca 1 cavity. 

To examine the expected utility of the super­
position method, a solution is derived for the 
radial crack configuration shown in Fig. 1. The 
tangential stress cr 8 (x) around a cylindrical cavity 
(radius r) normal to the applied stress cr

00 
is,lO 

(4) 

where x is the distance from the cavity surface. 
Substituting Eqn. (4) into Eqns. (l) and (2) (and 
applying a single crack correction?, [(2r+a)/ 
(2r+2a)l~ to convert the symmetric double crack 
solution to a single crack solution) yields the 
results plotted in Fig. 1. Also shown is the 
result for a crack of equivalent length (a+2r). It 
is apparent that the modified symmetric solution 
affords a very good approximat}on in the range 
a/r > 0.2, as observed by Shah ; whereas the edge 
crack solution provides a superior correlation for 
smaller a/r. Carefully chosen superposition solu­
tions thus appear to provide stress intensity factor 
approximations that should be satisfactory for 
present purposes. 

The three-dimensional configuration of interest 
for the present statistical analysis is the semi­
circular crack on the surface of a cylindrical cavi­
ty (Fig. 2). An approximate superposition solvtion 
for this problem considers a circular crack symme­
trically loaded about the cavity surface, by the 
stress field of the cavity (Eqn. 4}; i.e., it in­
vokes an image crack within the cavity (Fig. 2). 
The solution is obtained by replacing x in Eqn. (4) 
withy sin [<j>+ljl] (.pis the angle defined in Fig. 2), 
substituting Eqn. (4) into Eqn. (3), and integrating. 
The results are plotted in Fig. 2 for crack front 
locations both coincident with the cavity surface 
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(~=o) and remote from the cavity (~=~/2). The 
stress intensity facto7s are in close agreement with 
those derived by Shah, using a similar analysis. 
These solutions must be corrected for the presence 
of the cavity surface. The surface corrections for 
small a/r should be of the same order as those 
obtained for uniformly stressed surface cracks.8 
The correction for remote crack front locations 
( ~:=~/2) ls small, -1.03; while for near surface 
locations (~ -o) the correction is relatively 
large, -1.23, as indicated on Fig. 2. Allowing 
for possible surface corrections of this magnitude, 
a comparison of the surface crack solutions plotted 
in Fig. 2 with the radial crac~ solution (trans­
posed from Fig. l)_indicates that, for relatively 
large cracks (a/r > 1), the stress intensity factor 
for a semi-circular crack (at ~=o) is substantially 
larger than that for a radial crack of equivalent 
length. Semi-circular surface cracks in this size 
range should thus extend subcritically, into radial 
cracks (or more likely, into an intermediate semi­
elliptical configuration) before propagating to 
fracture. For small a/r, the stress intensity fac­
tors for semi-circular cracks are lower than for 
radial cracks, indicating that semi-circular cracks 
in this size range should propagate unstably to 
fracture. The "best available solution" for the 
stress intensity factor at criticality should thus 
exhibit the approximate form depicted in Fig. 2. A 
functional expression for this curve which is con­
venient for subsequent analyslT (derived using a 
formulism proposed by Grandt) is given by: 

1. 07 + .:.1.:..::3~7 --
0.52 + a/r (5) 

One other type of crack that is of interest 
for the cylindrical cayity problem is the corner 
crack (Fig. 3). Stress intensity factor solutions 
for this configurationl2 indicate that K will be 
augmented near the free surface intersection, by 
-1.33. This correction will be applied when frac­
ture is expected to initiate from corner cracks. 

SURFACE INTERSECTION 

CORNER CRACK 

CYLINDRICAL CAVITY 

Fig. 3. A schematic of a corner crack. 

#The singularity at the surface, ~=o, tends to 
zero8; but increases rapidly for ~ > 0, to a 
maximum at -o.os~ . 
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FRACTURE STATISTICS 

The probability of fracture ~(S) when fracture 
occurs by the unstable extension of non-interacting 
surface cracks is~ in general, related to the state 
of stress, S, byl ; 

s 
.tn[l-«Sl] fdA f g(~)dS (6) 

A o 

where A is the stressed area and g(S)dS is the num­
ber of flaws in unit area that extend unstably in 
the stress range S to S + dS. The functio~ ~(S) can 
be deduced from experimental strength data • and 
usually, several flaw populations exist over the 
entire strength range4 (0'>-"'); so that several func­
tional forms are needed to fully-describe g(S). 
However, for a restricted range of strength, the 
mathematically convenient reduced Weibull functionS 
is usually found to afford an adequate description; 

s 

f g(S)dS =(*f (7) 

0 

where m is a shape parameter and 50 a scale para­
meter. This fracture probability relation can be 
used in conjunction with stress fields at cavity 
surfaces and K solutions to obtain expressions for 
cavity fracture. Some caution should be exercised, 
however, when the subcritical extension of surface 
cracks is involved (see Section 2), because this 
phenomenon can lead to instability conditions that 
violate the postulates used to derive Eqn. (6). 

For a cylindrical cavity with a stress applied 
normal to the cylinder axis (Fig. 4l the stress at 
the cavity surface is biaxiallO (except for the 
small plane stress condition near

1
5he ends). The 

tangential stress cr 6 is given by ; 

(8) 

where e is the location on the cavity surface with 
-respect to the applied stress axis. ThT longitudi­
nal stress crz (Fig. 4) is equal to vcr 6 . 0 Both 
stresses are thus tensile in the range, 5~/6>9>~/6. 

000 <:;::::: . - - - - -

CAVITY ¥ 
AXIS 

Fig. 4. A schematic indicating the configuration 
used for statistical analysis. 



Fracture is considered to be restricted to the ten­
sile region, because the crack extension stress 
under biaxial compression substantially exceeds 
that under biaxial tension.6 In the tensile range, 
the pertinent strength distribution function is 
that which pertains to a principal stress ratio 
S ;s2 equal to v. For the function given by Eqn. 
(}), it has been demonstrated? that probabilities 
of fracture in multiaxial tension can be related to 
those in uniaxial tension through a proportionality 
term I(m, v, S1/S2); the fracture probability being. 
greater in multiaxial tension than in uniaxial ten­
sion. This proportionality is contained in subse­
quent calculations of the fracture probability. The 
modified strength distribution is thus 

(9) 

where s1 is the maximum principal tensile stress. 
Hence, for very small cracks at the cavity surface 
(a/r < lo-2) the fracture probability derived from 
Eqns. (6) to (9) by equating S1 to cr 6 is, 

Tr/2 

-tn[l-~(s00)] = 4rt (~;r I(m,v) J (4sin 2a-l)m de 

Tr/6 

- 4rt A(m)(S /S )m 
QO 0 

( 10) 

where S~ is the magnitude of the applied stress cr 6 at fracture and t is the length of the cylindrical 
cavity. For S1/S2 = v = 0.2, inserting the propor­
tionality I(m,v) derived from Ref. 7 into Eqn. (10) 
and integrating yields the A(m) plotted in Fig. 5. 
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Fig. 5. 

RELATIVE FlAW SIZE PARAHETER. ~ (Kc!S*)
2 

The dimensionless fracture probability 
factor A(m) for fracture from a cylindri­
cal cavity, plotted as a function of the 
shape parameter m of the flaw size distri­
bution. Note that A(m) can be approxi­
mately expressed by A(m) ~ 0.35 exp(l.06m). 

l6!:i 

For larger a/r, ·this result must be modified 
to account for stres~ gradient effects. The K 
solution that reflects the crack extension condition 
at instability (see Section 2) should be used for 
this purpose. For flaws normal to the applied 
stress, KI in Eqn. (5) can be equated to the criti­
cal value Kc#, to obtain the effective flaw strength 
S* (i.e., the applied stress required to cause 
unstable crack extension), which can then be 
expressed in terms of the apparent strength S (that 
obtained by assuming uniform tension near the cavity 
surface, S = Jn Kc/7.38 Ja) as {Appendix I); 

where 

s* = o.33 + 2B(O.l1 - o.o56Cl)~ = Z(Cl) 
s (11) 

B = cos(a/3), cosh{a/3) or sinh(a/3), cos a, cosh a, 

sinh a= (0.037- 0.004a)/(O.ll - 0.056a)3/2 

and a .l(Kc ~ 
r s*) 

The choice of the cos, cosh or sinh relation for B 
depends on the magnitude of a, in the usual way. 
The stress gradient factor Z(a) given by Eqn. (11) 
is plotted in Fig. 6. 
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Fig. 6. The stress gradient correction term. 

Herein we assume that Kr is independent of crack 
length. This is not vaTid for cracks comparable 
in size to the microstructural dimensions.l,2 



We now assume that a similar relation between 
S and S* pertains for all flaws in the tensile 
range (i.e., that the stress gradient is relatively 
insensitive to the flaw location and orientation). 
The fracture probability can then be obtained by 
substituting S from Eqn. (11) for S.., in Eqn. (1 0), 
to give; 

where S.., is the new value of the applied stress 
at fracture. Before proceeding, it is important to 
examine the implications of the assumption concern­
ing the orientation independence of the stress 
gradient factor. An exact solution to the present 
problem would require that K1, K11 , and Krri solu­
tions be derived (for 5Tf/6 >6 >1T/6) for all possible 
flaw locations and orientations at instability; and 
then to derive the equivalent S/S* functions. This 
is too extensive an exercise to attempt for present 
purposes. But it is instructi.ve to develop a quali­
tative appreciation of the probable trends. For 
all flaw orientations within a specified element, 
de (Fig. 4), the two stresses cre and crz are inter­
related (crz = ve 6 ). The stress gradient factor for 
given e should, therefore, be orientation indepen­
dent. The only substantive differences might occur 
at large a/r, where cracks with normals parallel to 
the cylinder axis {Fig. 4) tend to an annular shape 
at criticality, rather than the radial configuration 
analyzed in Section 2. However, these cracks are 
in an unfavorable orientation for extension in the 
present problem, and do not provide an appreciable 
contribution to the fracture probability. The 
effect of the axial orientation, e, on the stress 
gradient factor may be surmized by examini?8 the 
tangential and shear stress distributions. The 
tangential stress gradient (and hence, the Kr 
gradient) decreases with rotation away from e = /2, 
because the importance of the (r+x)-4 term in Eqn. 
(4) diminishes. However, this tends to be counter­
acted by the emergence of a shear stress (or Kir 
component) with a strong (r+x)-4 term. The orien­
tation dependence of the stress gradient factor 
could, therefore, be relatively small. 

The trends in,the fracture probability with the 
relative strength S.../S0 , predicted by Eqn. (12) are 
plotted in Fig. 7 as a function of the relative 
cavity size (r/r0 ), for a typical flaw size varia­
bility m o~ 4; t2e figure was constructed by letting 
rqt and Kc /roSa be unity. Also plotted on the 
f1gure are the fracture probabilities ~(Soo) obtained 
from Eqn. (12) for the uniform tension case. It is 
apparent from Fig. 7 that the fracture probability 
deviates from the uniform stress result at low 
strengths (large a/r) and that the onset of the 
deviationS' occurs at higher strength levels (and 
fracture probabilities) as the absolute cavity size 
(r/r0 ) decreases. In the deviant regime, the frac­
ture probabilities are lower and initially exhibit 
a stronger dependence on the fracture stress than 
anticipated by the shape parameter of the flaw size 
distribution, i.e., the effective m values are 
larger. Thereafter, below S", the fracture proba­
bilities are identical to those obtained by consi­
dering the cavities as equivalent cracks. 
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Fig. 7. The probability of fracture ~(Soo) from 
cylindrical cavities as a function of the 
relative strength (Soo/S0 ) plotted for 
three relative cavity radii, and for a 
sh!}pe parameter m of 4 (r0 t 0 and 
Kclfr0 So2 are both unity); also plotted 
for comparison are the uniform stress 
results, ~(Soo). 

FRACTURE STUDIES 

Concept 

The applicability of the fracture relations 
derived in the preceding sections can only be ade­
quately assessed if cavi.ties with well-defined 
surface crack distributions are prepared and tested. 
Preliminary studies a~e reported for two types of 
cylindrical holes. The first set of samples con­
tain ho-les prepared by drilling; these should con­
tain surface cracks with a size distribution similar 
to that produced by surface grinding. The pertinent 
crack size distribution function for the hole might 
thus be estimated from separate strength tests on 
samples with ground surfaces. The second set of 
samples contain holes generated by incorporating 
W wires. The thermal expansion differential between 
Wand Al203 should generate relatively well-defined 
radial cracks emanating from the W/Al203 interface. 
Further, since the W must be subsequently removed 
by oxidation, the expansion involved in the forma­
tion of the oxide causes additional crack extension, 
leaving a cylindrical cavity with relatively large 
radial cracks. 

Experi~ntal 

The polycrystalline aluminum oxide material 
used for the fracture studies was prepared from 
Linde A aluminum oxide powder doped with 0.1 w/o 
magnesium oxide. The powders were milled in a 



vibratory energy Sweco mill for 2 hr. using isopropyl 
and polyvinyl alcohols, and then dried for- 20 hrs. 
Consolidation was achieved by vacuum hot pressing 
at 1400°C for 1 hr. The resultant material was 
- 99% dense and had a grain size of - 2um. 

One set of samples was prepared by cutting 
rectangular (20 x 6.6 x 1.3 mm) beams from the hot­
pressed disc, and rotary grinding the surfaces. 
Then, a through-thickness 0.7 mm radius hole was 
introduced into half of the samples (Fig. 8a) by 
diamond core drilling followed by reaming. The 
second set of samples was obtained by consolidating 
material containing a 127um W wire. Rectangular 
beams were then cut such that the wire was in a 
through-width orientation (Fig. 8b). Finally, the 
H wire was removed by oxidizing in air for 2 hr. at 
1150° c. 

a) 

b) 

c 

Fig. 8 (a) The drilled hole configuration. 
(b) The hole configuration obtained using 

W wires. 
(c) A fracture surface for a sample with a 

hole produced by a W wire; the initial 
length of the radial crack is indicated. 

Strength tests were performed on each sample 
using a conventional four point flexure fixture with 
outer and inner spans of 19 and 6 mm, respectively. 
The tests were conducted in a dry nitrogen environ­
ment and at a rapid stress-rate (100 MPa s-1~, to 
minimize the influence of slow crack growth. The 
fracture surface of each sample was examined in the 
optical or scanning electron microscope, in an 
attempt to identify the origin of fracture. 

167 

Results 

The strength results obtained for the machined 
samples are plotted in Fig. 9. T~e results for the 
expansion induced cracks are summarized in Table I. 
As anticipated, the presence of the holes reduced 
the strength. Inspection of the samples containing 
the drilled holes indicated that the fracture 
always traversed the hole; but, fracture initiation 
could not always be unambiguously determined to 
occur from sites on the cavity surface. Examination 
of the fracture surfaces of the samples prepared 
with W wire indicated a clear demarkation of the 
profile of the radial crack that initiated failure 
(Fig. 8c). 
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Fig. 9. 

•ns 

A comparison of the fracture strengths of 
samples with and without drilled holes, 
showing the strengths of the latter 
predicted from the former. 

TABLE I 

STRENGTH RESULTS ON ALUMINA SAMPLES 

WITH AS-FABRICATED HOLES 

"l'ract'tre J(~~fn 11 ty 
~"11 N+1 

Fractu{e 7rrength 
MPa 

0.14 183 

0.29 190 

0.43 204 

0.57 230 

0.71 251 

0.86 254 



The fracture toughness of the material was also 
determined, using the indentation technique.B For 
a load of 200N, the measured parameters were: 
indentation diameter, 100 ~m; total crack length 
250 ~m. These values correspond to a toughness of 
4.0 MPa ,'m. 

Interpretation 

(a) Drilled Cavities 

For the samples without cavities, the fracture 
probability in four point flexure, for fracture 
occurring within the inner span, can be derived 
directly from Eqn. (6) as; 

( 13) 

where 2 is the inn~r span, b the sample width, d 
the sample depth, Sa the outer fiber stress at frac­
ture and z the distance from the tensile surface 
(the first term in the parentheses relates to frac­
ture from the tensile surface, and the second term 
allows for fracture from the side faces). For the 
samples containing the drilled cavities, the frac­
ture probability (c.f. Eqn. (12)) is 

(14) 

where ~H is the outer fiber stress at fracture, in 
the presence of the hole. The experimental results 
are interpreted in terms of Eqns. (13) and (14) by 
firstly obtaining the strength distribution para­
meters m and S0 , from a best fit of the data for 
the as-machined samples to Eqn. (13), as indicated 
by the data line on Fig. 9. Then, fracture proba­
bilities in the presence of the hole can be derived 
for the same surface flaw population by inserting 
these distribution parameters and the pertinent 
A(m) and Z(a) values into Eqn. {14)(the a value 
pertinent to each strength level was evaluated by 
employing the measured polycrystalline K, of 
4 MPa Jm). The predicted strengths in t~e presence 
of the hole are plotted on Fig. 9. The predicted 
val.ues conform relati v.ely closely to the measured 
values at large probabilities ( >0.6), but afford 
a substantial underestimate at lower probabilities. 
To assess the possibility that fracture from corner 
sites (see Fig. 3) might be the origin of the dis­
crepancy at low probabilities, the corner crack 
correction factor (Section 2) is applied to z, 
and the fracture probabilities re-evaluated. The 
results are plotted in Fig. 9. A much closercorres-

. pondence with the data at low fracture probabilities 
is apparent; suggesting that the fractures in the 
low probability regime occur primarily from corner 
sites. However, the fractographic evidence is not 
sufficiently definitive for this suggestion to be 
fully substantiated. 

As an indication of the influence of the dis­
tribution parameter m on the strength reduction 
effected by a cylindrical hole, the strength ratio 
Sa/S~ at constant probability is derived for the 
spec1fic specimen geometry used in the present tests, 
and for a strength level of -200 MPa (this ratio is 
independent of the scale parameter S0 ). The results 
for a surface crack and a corner crack are plotted 
in Fig. 10. Note that the strength ratio always 
exceeds the value expected from the stress cor:en­
tration factor (0.33). 

:~ 

Fig. 
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(b) Expansion Induced Cracks 

The radial cracks generated by the fabrication 
of cavities from W wires appear to be -2r in length 
(Fig. 8c). The stress intensity factor solutions 
(Fig. 1) would indicate that the cylindrical hole 
should exert a minor influence on the extension 
condition for radial cracks of this magnitude. How­
ever, several radial cracks of variable length 
emanate from each cavity (up to a maximum of 6). 
Also, the crack lengths are a significant fraction 
of the sample thickness. The quantitative inter­
pretation of the measured fracture strength in: the 
presence of these cracks is, therefore, a complex 
analytic problem. One sample, for which these com­
plexities are minimized, has been chosen for analy­
sis; this sample (strength 204 MPa) had five cracks, 
with the largest normal to the sample axis and the 
others at orientations >rr/4. Fracture occurred 
from the crack normal to the sample axis (Fig. 8c). 
Initially, if the effects of the sample boundaries 
and the other radial cracks are neglected, the 
stress intensity factor at the crack front closest 
to the tensile surface is; 

x~ [1-2(h+a*-x)J 
~ a dx (a -x) 

( 15) 

where a*=2(a+r), crg is the outer fiber stress and 
h is the distance etween surface and the crack 
front. An approximate (upper bound) correction for 
the influence or the boundary' can be deduced from 
Isida's results 9 for a strip containing an eccen­
tric crack. For the present problem - a ligament 
width h -2a*/3 - the stress intensity factor at the 
upper crack front could be larger than that antici­
pated from Eqn. (15), by -1.09. A maximum possible 
correction for the influence of the o5her radial 
cracks comes from Westman's solution2 for the 
pressurized star crack; for 6 cracks, the correction 
is -0.8. 

Inserting the measured toughness (4 MPz ~m), 
crack length (190 ~m), hole radius (77 ~m) and 
ligament depth (400 ~m) into Eqn. (15), the fracture 
strength is predicted to be 207 MPa. The boundary 
correction decreases the predicted strength to a 
minimum of 190 MPa, while the crack interaction 
correction increases the strength to a maximum of 
259 MPa. The latter cannot be reconciled with the 
measured strength (204 MPa), indicating that the 
crack interaction effect is of minor importance in 
this instance. Then, the relatively good correla­
tion of the single crack solution with the measured 
strength tends to confirm that the pressure of the 
central hole had little influence on the crack 
extension condition. 
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IMPLICATIONS AND CONCLUSIONS 

A method for predicting fracture probabilities, 
when fracture occurs from cavities, has been formu­
lated by combining concepts from linear elastic 
fracture mechanics and from fracture statistics. 
The method has been applied to cylindrical cavities, 
using the best available fracture mechanics and 
statistics solutions. The same basic procedure can 
incorporate improved fracture m~chanics solutions, 
as they emerge. The analysis demonstrates that 
fracture from cavities depends on the flaw popu 1 a-
t ion that exists at the cavity surface, the size of 
the flaws relative to the cavi.ty radius and on the 
stress field around the cavity. The interpretation 
and prediction of fracture requires a detailed 
knowledge of each of these influences. Otherwise, 
the interpretation can only be subjective. This 
issue is addressed more extensively in the companion 
paper, in the context of fracture from spherical 
cavities. 

Experimental results obtained on Al203 samples 
containing cylindrical cavities and relatively well­
defined surface crack distributions indicated 
reasonable correspondence with the theory. The 
major uncertainties derive from inadequate stress 
intensity factor solutions for crack configurations 
of practical interest. This is an area for future 
study. 

APPENDIX I 

Defining S* as the flaw strength, or the 
applied stress needed to cause unstable crack 
extension, Eqn. (15) gives 

Kc .Jrr -.-25 .Ja 
l 07 + 1.37 
· 0.52 + a/r 

Then, defining the apparent strength S as the 
strength of a flaw exposed to a uniform tension 
equal to that at the cavity surface; 

5 =.fif Kc/7. 38 Fa 

Combining Eqns. (Al) and (A2) yields; 

(Al) 

(A2) 

(5/5*)3- (5/5*)2 + 0.12{5/5*)a - 0.032a = 0 (A3) 

where 

Using the standard solution for a cubic equation 
then yields the relation for S/S* given by Eqn. (11 ). 
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