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Figure 2.1 RDF schema for the movie domain

2.2 Problem Formulation

In this section we formulate the problem of learning predictive models from RDF data.

Assume there are pairwise disjoint infinite sets I, B, L and V (IRIs, Blank nodes, Literals and

Variables respectively). A triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called an RDF triple. In

this triple, s is the subject, p the predicate, and o the object. An RDF graph is a set of RDF

triples.

As a running example for the following definitions, we consider the RDF schema for the

movie domain as shown in Figure 2.1. We wish to predict whether a movie receives more than

$2M in its opening week.

Definition 2.1. [Target Class] Given an RDF graph G, a target class is a distinguished IRI of

type rdfs:Class in G. For example, Movie.

Definition 2.2. [Instances] Given an RDF graph G and a target class T , the instances of T ,

denoted T (G) is the set {x : (x, rdf:type, T ) ∈ G}.

Definition 2.3. [Attribute] Given an RDF graph G and a target class T , an attribute A (of a

target class T ) is a tuple of IRIs (p1, . . . , pn) such that the domain of p1 is T , the range of pi is

the domain of pi+1, and the range of pn is a literal. For example, (hasActor, foaf, yearOfBirth).

We also refer the range of the attribute A as the range of pn.

Definition 2.4. [Attribute Graph] Given an instance x of the target class T in the RDF graph

G and an attribute A = (p1, . . . , pn), the attribute graph of the instance x, denoted by A(x),
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is the union of the sets of triples that match the Basic Graph Pattern [Prud’ommeaux and

Seaborne (2008)]

((x, p1, ?v1) AND (?v1, p2, ?v2) AND . . . AND (?vn−1, pn, ?vn)) (2.1)

where vi ∈ V are variables.

Given an additional literal value a, we also define a filtered attributed graph, denotedA(x, a),

which includes the filter constraint FILTER(?vn = a) in the graph pattern (2.1). Further, if A

is a tuple of attributes (A1, . . . , An), then we define A(x) to be (A1(x), . . . , An(x))

Definition 2.5. [Target Attribute] Given an RDF graph G and a target class T , a target

attribute is a distinguished attribute denoted by C. For example, (openingReceipts).

C(x) is intended to describe the class label of the instance x, hence we assume that each

instance has exactly one class label, i.e., |C(x)| = 1 for every x ∈ T (G). Given a target attribute

C = (p1, . . . , pn), we define v(C, x) to be the value of ?vn matched by the graph pattern (2.1).

Definition 2.6. [Class Label] Given a target attribute C = (p1, . . . , pn), the set of class labels

is the the range of pn. For brevity we denote this set by C.

Definition 2.7. [RDF Dataset] An RDF dataset D is a tuple (G, T ,A, C) where G is an RDF

graph, T a target class in G, A a tuple of attributes, and C is a target attribute. We also denote

the tuple (T ,A, C) as Desc(D) corresponding to the descriptor of the dataset.

Definition 2.8. [Induced Attribute Graph Dataset] Given an RDF dataset D = (G, T ,A, C),

its induced attribute graph dataset, denoted I(D), is defined as {(A(x), v(C, x)) : x ∈ T (G)}.

We now formalize the the problem of learning from RDF data.

Problem 2.9. Given an RDF dataset D = (G, T ,A, C) and its induced attribute graph dataset

I(D), a hypothesis class H, and a performance criterion P , the learning algorithm L outputs a

classifier h ∈ H that optimizes P . The input to the classifier h is A(x) where x is an instance

of a target class T , and the output h(x) ∈ C is a class label.
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2.3 Learning from RDF data

We reduce the problem of learning from RDF data to the problem of learning from multiset

attribute data which is defined below. This reduction allows for application of algorithms for

learning from multiset attribute data (e.g. Relational Bayesian Classifier [Neville et al. (2003b)])

to this setting. Given an RDF dataset D = (G, T ,A, C) and its induced attribute graph dataset

I(D), consider an attribute A and the attribute graph A(x) of an instance x ∈ T (G). The

attribute graph A(x) can be viewed as a directed acyclic graph (DAG) rooted in x, and here

we are interested in only the leaves of this DAG. The following definition captures this notion.

Definition 2.10. [Leaf] Given an attribute Ai, we define the leaf function L(Ai(x)) that returns

the multiset of leaves of Ai(x), such that each leaf a ∈ Ai(x) is replaced with n copies of a

where n is the number of unique paths from x to a. For brevity we write L(Ai(x)) as Li(x) and

L(Ai(x, a)) as Li(x, a).

Also, we overload the leaf function on a tuple of attributes A = (A1, . . . , An) by L(A(x)) =

(L1(x), . . . ,Ln(x)). Using the leaf function, we reduce I(D) into a multiset attributed dataset

M(D) = {(L(A(x)), v(C, x)) : x ∈ T (G)}. To learn from M(D) we focus our attention on

Relational Bayesian Classifiers (RBC) motivated from modeling relational data [Neville et al.

(2003b)]. RBC assumes that attribute multisets are independent given the class, and the most

probable class of an instance is given by:

hRBC(x) = argmax
c∈C

p(c)
∏
i

p(Li(x) : c) (2.2)

Several methods to estimate the probabilities p(Li(x) : c) are described by Neville et al.

(2003b):

• Aggregation: p̂agg(Li(x) : c) = p̂(agg(Li(x)) : c), where agg is an aggregation function

such as min, max, average for continuous attributes; and mode for discrete attributes.

• Independent Value: p̂ind(Li(x) : c) =
∏

a∈Li(x)p̂(a : c), which assumes each value in

the multiset is independently drawn from the same distribution (attribute value indepen-

dence).
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• Average Probability: p̂avg(Li(x) : c) =
∑
a∈Li(x)p̂(a: c)

|Li(x)| , which also assumes attribute

value independence as in Independent Value, however during inference the probabilities

are averaged instead of multiplied.

For estimating the parameters in (2.2), we assume that the learner does not have access to the

RDF graph G but instead only has knowledge T ,A, and C. In addition, we assume that the

RDF store answers statistical queries over the RDF graph G which in our setting correspond to

aggregate SPARQL queries submitted to a SPARQL endpoint. Given a descriptor Desc(D) =

(T ,A, C) where C = (c1, . . . , cm) we assume that the RDF store supports the following type of

primitive queries:

(Q1) S(G, T ) = |T (G)|, the number of instances of target type T in G. This corresponds to the

SPARQL query:

SELECT COUNT(*) WHERE { ?x rdf:type <T> . }

(Q2) S(G, T , C = c) = |{x ∈ T (G) : v(C, x) = c}|, the number of instances of target type T

in which the target attribute takes the class label c. This corresponds to the SPARQL

query:

SELECT COUNT(*) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

}

(Q3) S(G, T , C = c, Ai) =
∑

x∈T (G) and v(C,x)=c |Li(x)|. Assuming the attribute Ai =

(p1, . . . , pj) this corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

?x <p1> ?v1 . ... ?vj-1 <pj> ?vj .

}
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(Q4) S(G, T , C = c, Ai = a) =
∑

x∈T (G) and v(C,x)=c |Li(x, a)|. Assuming the attribute Ai =

(p1, . . . , pj) this corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <C> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

?x <p1> ?v1 . ... ?vj-1 <pj> a .

}

(Q5) S(G, T , C = c, Ai, agg, [vl, vh]).

SELECT COUNT(*) WHERE {

{ SELECT (agg(?vj) AS ?aggvalue) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

OPTIONAL { ?x <p1> ?v1 . ... ?vj-1 <pj> ?vj . }

} GROUP BY ?x

} FILTER(?aggvalue >= vl && ?aggvalue <= vh) }

We now proceed to describe how an RBC can be built using the supported SPARQL queries

without requiring access to the underlying dataset. The RBC estimates the following probabil-

ities from training data:

1. p̂(c)

2. p̂(agg(Ai) : c) for each attribute Ai where aggregation is used to estimate probabilities.

For simplicity, we discretize the aggregated values and predetermine the bins prior to

learning. Hence, we estimate p̂(agg(Ai) ∈ [vl, vh] : c) for each bin [vl, vh]

3. p̂(a : c) where a is in the range of Ai, for each attribute Ai where independent value or

average probability is used to estimate the probabilities.

The above three probabilities can be estimated (using Laplace correction for smoothing) as

follows:
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1. p̂(c) = S(G,T ,c)+1
S(G,T )+m where m is the number of class labels

2. p̂(agg(Ai) ∈ [vl, vh] : c) = S(G,T ,C=c,Ai,agg,[vl,vh])+1
S(G,T ,c)+m wherem is the number of bins (ranges)

3. p̂(a : c) = S(G,T ,C=c,Ai=a)+1
S(G,T ,C=c,Ai)+m

where a is in the range of Ai and m is the size of range of Ai

Hence, it is possible to learn RBCs from an RDF graph by interacting with the RDF store only

through SPARQL queries. This approach does not require access to the underlying dataset and

in most practical settings requires much less bandwidth as compared to transferring the data

to a local store for processing (see Section 2.5).

2.4 Updatable Models

In many settings, the RDF store undergoes frequent updates i.e., addition or deletion of sets

of RDF triples. In such settings, it is necessary to update the predictive model to reflect the

changes in the RDF store used to build the model. While in principle, the algorithm introduced

in Section 2.3 can be re-executed each time there is an update to the RDF store, it is of interest

to explore more efficient solutions for incrementally updating the RBC model by updating only

the relevant statistics.

Given a dataset D and a learning algorithm L, let L(D) be a predictive model built from

the dataset D. Let θ be a primitive query required over the dataset D to build L(D).

Definition 2.11. [Updatable Model [Koul et al. (2010)]] Given datasets D1 and D2 such that

D1 ⊆ D2, we say that a primitive query θ is updatable iff we can specify functions f and g such

that:

1. θ(D2) = f(θ(D2 −D1), θ(D1))

2. θ(D1) = g(θ(D2), θ(D2 −D1))

We say that the predictive model constructed using L is updatable iff all primitive queries

required over the dataset D to build L(D) are updatable.

The following propositions show that the primitive query (Q1) of the RBC model is updat-

able, whereas the rest of the queries are not updatable. Hence, in general, the RBC model is

not updatable.
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Proposition 2.12. The primitive query S(G, T ) is updatable.

Proof. This query counts the number of instances of target type T in G, which is the cardinality

of {x : (x, rdf:type, T ) ∈ G}. Since G1 ⊆ G2 we have S(G2, T ) = S(G2 − G1, T ) + S(G1, T ), and

also S(G1, T ) = S(G2, T )− S(G2 − G1, T ).

Proposition 2.13. The primitive query S(G, T , C = c, A = a) is not updatable.

Proof. We prove by showing a counter example. Let the target class be T , the target at-

tribute be C = (c1), an attribute A = (p1, . . . , pi, . . . , pn), and suppose we have the follow-

ing RDF graphs: S1 = {(x, rdf:type, T ), (x, c1, c)}, S2 = {(x, p1, o1), . . . , (oi−1, pi, oi)} , and

S3 = {(oi, pi+1, oi+1), . . . , (on−1, pn, a)}. Suppose the graph before update is G1 = S1 ∪ S2 and

after an insertion of S3 the graph becomes G2 = S1∪S2∪S3. For brevity let θ(G) = S(G, T , C =

c, A = a). We will show that there exists no functions f for the query θ(G2), which counts the

total number of leaves of A(x, a) such that x has the class label c. In G2 the attribute graph

A(x) is S2 ∪ S3, and hence θ(G2) = 1. However, A(x) is partitioned among S2 and S3, so

θ(G1) = 0 and θ(G2 −G1) = 0, therefore in this case f(θ(G2 −G1), θ(G1)) = f(0, 0) = 1 = θ(G2).

Now consider another case where initially the graph is G3 = S1 and after insertion of S3 the

graph becomes G4 = S1 ∪ S3. In this case we have θ(G4) = 0, θ(G3) = 0, and θ(G4 − G3) = 0,

and so f(0, 0) = 0. Since a function can not map an input to more than one output, this shows

that there exists no function f to maintain the query result.

Similarly, it can be shown that the primitive queries S(G, T , C = c), S(G, T , C = c, A), and

S(G, T , C = c, A, agg, [vl, vh]) are not updatable.

Corollary 2.14. RBC model is not updatable.

The proof of Proposition 2.13 shows that when an attribute graph is partitioned across

multiple updates, there exists no function to update the required counts. This raises the question

as to whether we can ensure updatability by requiring that each update involves only complete

attribute graphs. However, this requirement is not sufficient for the query to be updatable. To

see why, consider G1 = {(x, rdf:type, T ), (x, c1, c), (x, p1, o), (o, p2, a)} and G2 − G1 =

{(y, rdf:type, T ), (y, c1, c), (y, p1, o), (o, p2, b)}, then f(0, 1) = 2. The extra count from θ(G2)
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is due to o being shared between two datasets despite the fact that each attribute graph is

complete. This motivates the restriction of not allowing the update to reuse certain subjects or

objects. We formalize this notion as follows.

Definition 2.15. [Clean Update] Assume G1 ⊆ G2, and let V (G) = {s : (s, p, o) ∈ G} ∪ {o :

(s, p, o) ∈ G} denote the set of all subjects and objects of an RDF graph G. An update (from

G1 to G2 by insertion, or from G2 to G1 by deletion) is said to be clean if [∀(s, p, o) ∈ G2][s /∈

V (G1) ∩ V (G2 − G1)]. That is, triples in G2 − G1 share objects with only the leaves of attribute

graphs in G1.

Proposition 2.16. RBC models are updatable if every update is clean.

Proof. Let D1 and D2 be two RDF datasets such that D1 ⊆ D2. We first consider the primitive

query θ(G) = S(G, T , C = c, A = a). Since every update is clean, the attribute graphs A(x)

for all attributes in A, and all instances x ∈ T (G1) and x ∈ T (G2 − G1) remain the same

after insertion (or deletion). Hence,M(D2) =M(D1) ∪M(D2 −D1) and similarlyM(D1) =

M(D2)−M(D2 −D1) for the multiset attributed dataset reductions. It follows that θ(G2) =

θ(G1) + θ(G2 − G1) and θ(G1) = θ(G2) − θ(G2 − G1). Similar argument also holds true for the

other queries used for learning a RBC.

Thus, RBC model can be updated incrementally in a restricted setting where every update

is clean in the sense defined above. When clean updates are not available, RBC models can still

be incrementally updated if we are willing to sacrifice some accuracy; and rebuild the model

periodically by querying the entire RDF store, with the frequency of rebuild chosen based on the

desired tradeoff between computational efficiency and model accuracy. Regardless of whether

the RBC model is updatable or not, answering of aggregate queries from RDF stores answering

can be optimized using an aggregate view maintenance algorithm [Hung et al. (2005)]. Since

we assume that the data descriptor does not change as frequently as the data, the aggregate

queries needed by the RBC model can be set up and maintained as views on the RDF store.
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2.5 Communication Complexity

In this section, we analyze the communication complexity, i.e., the amount of data transfer

needed to build an RBC model. We compare the communication complexity of building an RBC

model from RDF data in the following two scenarios: (i) posing statistical queries needed for

learning the model against a remote RDF store which is the approach proposed in this paper;

and (ii) retrieving the entire RDF dataset from a remote RDF store for local processing.

Given an RDF dataset D = (G, T ,A, C) where A = (A1, . . . , An). Suppose the RDF store

holds the RDF graph G, and let |G| denote the size of this graph. The communication complexity

in scenario (ii) is simply O(|G|). We now analyze the communication complexity in scenario

(i). Let lC denote the length of tuple C, let rC denote the size of range of C, and let lA denote

the maximum length of an attribute tuple. Also let r1
A denote the maximum number of bins

of those attributes estimated by aggregation, let r2
A denote the maximum size of range of the

remaining attributes, and we define rA to be max(r1
A, r

2
A).

The size of query expressed in SPARQL, is O(1) for (Q1), O(lC) for (Q2), and O(lC + lA)

for (Q3), (Q4), and (Q5). Further, to estimate the probabilities to build an RBC, the following

number of calls for each query described in Section 2.3 are required:

(Q1) one.

(Q2) rC , once for each class label.

(Q3) rC · n, once for each class label and each attribute.

(Q4) O(rC · n · rA), once for each class label, each attribute, and each value of the attribute.

(Q5) O(rC · n · rA), same as (Q4).

Therefore, the total complexity is O(1) +O(lCrC) +O((lC + lA)rCn)+

O((lC + lA)rC · n · rA) + O((lC + lA)rC · n · rA) = O((lC + lA)rC · n · rA). In Section 2.7.1 we

provide results of experiments which show that O((lC + lA)rC ·n ·rA) is usually less than O(|G|)

in practice.
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2.6 Selective Attribute Crawling

In previous sections we have considered the problem of learning RBCs given an RDF dataset

D = (G, T ,A, C) in the setting where the learner has direct access to T ,A, and C, but not G.

Here we consider a more general problem where the learner does not have a priori knowledge of

A. This requires the learner to interact with the RDF store containing G in order to determine

A (e.g. by crawling and selecting attributes) that best optimizes a predetermined performance

criterion P . Since the number of attributes in an RDF store can be arbitrarily large we specify

an additional constraint Z to guarantee termination (e.g. number of attributes crawled, number

of queries posed, time spent, etc.).

Problem 2.17. Given an RDF dataset without attributes, D = (G, T , C), a hypothesis class

H, a performance criterion P , and constraint Z, the learning algorithm L outputs the following

while respecting Z: (i) The selected tuple of attributes A, and (ii) a classifier h ∈ H that

optimizes P .

For simplicity, we focus the setting where the constraint Z specifies the maximum the number

of attributes crawled. We consider the problem of identifying A of cardinality at most Z so as to

optimize P . This problem is a variant of the well-studied feature subset selection problem [Liu

and Motoda (1998); Guyon and Elisseeff (2003)], albeit in a setting where the set of features is a

priori unknown. Identifying attributes one at a time to optimize P can be seen as a search over

a tree rooted at T , where the edges are IRIs of properties and the nodes are the domains/ranges

of properties, and an attribute corresponds to a path from the root to an RDF literal (a leaf in

this tree). To complete the specification of the search problem, we need to specify operations

for expanding a node to generate its successors and define the scoring function for evaluating

nodes. Expanding a node consists of querying (i) the set of distinct properties outgoing from

a node, (ii) the range of each property, and (iii) the type of each range (e.g. numeric, string,

non-literal), each of which can be expressed as s SPARQL query. We define the score of a node

based on the degree of correlation of the node with the target attribute C. Specifically, for each

attribute (represented by a leaf), we compute mutual information [Cover and Thomas (1991)]

between it and the the target attribute C. The score of an internal node is defined (recursively)



19

as a function of its descendants, e.g. average of the scores of its children.

Formally, the score of an attribute A is:

Score(A) =
∑

C=c,A=a

p(A = a,C = c) log2

p(A = a,C = c)

p(A = a)p(C = c)
(2.3)

These probabilities can also be estimated based on the queries described in Section 2.3.

Given this framework, a variety of alternative search strategies can be considered, along with

several alternative scoring functions.

2.7 Experiments

We conduct three experiments each with a different goal. The first measures the commu-

nication complexity using the LinkedMDB [Hassanzadeh and Consens (2009)] dataset. The

second experiment combines the US Census dataset with a government dataset to evaluate

the accuracy of models using different attribute crawling strategies. Finally we demonstrate

learning of RBC from another government dataset through a live SPARQL endpoint.

2.7.1 Communication Complexity Experiment

The goal of this experiment is to measure the communication complexity under two different

approaches described in Section 2.5.

2.7.1.1 Dataset and Experiment Setup

The IMDB dataset is a standard benchmark that has been used to evaluate probabilistic

relational models including RBCs [Neville et al. (2003b)]. The task is to predict whether a movie

receives more than $2M in its opening week. We used LinkedMDB [Hassanzadeh and Consens

(2009)], which is an RDF store extracted from IMDB, with links to other datasets on the Linked

Open Data cloud [Cyganiak and Jentzsch (2011)]. We used links to Freebase1 which includes

foaf property to the Person class and three properties of class Person. Figure 2.1 shows the

RDF schema of the extracted dataset. Since LinkedMDB does not have openingReceipts, we
1http://www.freebase.com

http://www.freebase.com


20

add them by crawling the IMDB website2; also for the Freebase data, we parse the yearOfBirth

property for each Person from the dateOfBirth property. We extract 20 movies which are

released after 2006 such that each movie has at least one actor, one director, and one producer.

The target class is Movie and the target attribute is (openingReceipts). We consider a total of

10 attributes: (runtime), and (h, foaf, a) where h ∈ {hasActor, hasDirector, hasProducer}

and a ∈ {yearOfBirth, gender, hasAward}.

To show the growth of data transfer, we prepared 20 subsets of the dataset by corresponding

to 1 to 20 movies. A movie instance consists of the URI of the movie and all reachable linked data

for it. For communication complexity of learning RBC from RDF stores using statistical queries,

we used the proposed approach to build an RBC for each subset and logged the SPARQL queries

sent, saved the log in a plain text format, and measured the size of the logs. We compared

the results with the communication complexity of learning RBC by first retrieving the data

from a remote store for local processing as measured by the size of the corresponding dataset

in RDF/XML format on disk.

2.7.1.2 Results

Figure 2.2 shows that the size of the raw data exceeds that of the query when there are

more than three movie instances in the dataset. We also considered the case where the RDF

store compresses the raw data before transfer, and in this case the size of the compressed raw

data exceeds that of the query when there are more than 90 movie instances.

2.7.2 Selective Attribute Crawling Experiment

The goal of this experiment is to evaluate the accuracy of RBC models built using different

attribute crawling strategies. Recall that in this setting the learner is only given a SPARQL

endpoint of the RDF store, the target class, and the target attribute.
2http://www.imdb.com

http://www.imdb.com
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Figure 2.2 Comparison of size of data transfer for Experiment 2.7.1

Figure 2.3 Comparison of two crawling strategies for Experiment 2.7.2

2.7.2.1 Dataset and Experiment Setup

In this experiment we use datasets from Data.gov and US census 2000. The target class is

52 US states and we wish to predict whether a state’s violent crime rate is over 400 per 100,000

population, which is from dataset 311 of the Data-gov project [Ding et al. (2010a)]. We link

this with the US Census 2000 dataset for the corresponding states. This dataset was converted

to over 1 billion RDF triples by Tauberer (2011). Part of its RDF schema is shown in [Tauberer

(2011)]. It uses a property as a way to sub-divide the population, and a number at a leaf

represents the population that satisfies the conditions (properties) on the path from root. In

our experiment we normalize by dividing every number of a state by the state’s total population.
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We vary the maximum number of attributes to be crawled. We set the constraint to be the

number of attributes the learner is allowed to crawl. We apply two different attribute crawling

strategies (described below) separately and build RBC models using the crawled attributes. To

measure the accuracy of the built models, we randomly partition 52 states into 13 groups (of

4 states each) and perform cross validation. That is, for each group, the 4 states in the group

are held out and used for prediction, and the remaining are used for training the model. The

overall accuracy is the total number of correct predictions divided by the number of states (52).

We experiment with two crawling strategies: BreadthFirst (BFS) and BestFirst. BFS

chooses the node with the least depth to expand and BestFirst chooses the node that has

the highest score as defined in Section 2.6.

2.7.2.2 Results

As shown in Figure 2.3, BestFirst outperforms BFS with the exception of the case where the

number of attributes is 5. We examined the crawled attributes for BestFirst from for choices of

Z from 20 to 45, and found that the strategy focused on expanding the household property. This

is because attribute selection is guided by mutual information between a candidate attribute

and the target class. The sub-divisions of this property may provide very minimal additional

information compared to the first one crawled in this group, and hence they may not contribute

to the predictive accuracy. One way to circumvent this problem is to use a scoring function to

that measures the amount of information gain resulting from a candidate attribute given all

the attributes that have already been chosen. Another approach is to penalize the attributes

based on the depth of search. A third approach is to use the marginal improvement in the

accuracy of the RBC classifier resulting from inclusion of the attribute to decide whether to

retain it. Other alternatives worth exploring include different search strategies such as Iterative

Deepening Search (IDS, [Korf (1985)]).
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2.7.3 Live Demonstration

The goal of this experiment is to demonstrate learning of RBC from a government dataset

through a live SPARQL endpoint3 hosted on Rensselaer Polytechnic Institute [Ding et al.

(2010b)]. This endpoint supports aggregate and nested queries proposed in SPARQL 1.1.

2.7.3.1 Dataset and Experiment Setup

We used a Health Information National Trends Survey (HINTS, [Nelson et al. (2004)]) from

NCI which has been converted into RDF as part of the Data-gov project [Ding et al. (2010a)].

The survey represents a cross-sectional study of health media use and cancer-related knowledge

among adults in the United States, and it has been used by [Ackerson and Viswanath (2009)] to

study associations of covariates with different smoking statuses. There are 12080 participants

across two years (2003 and 2005), represented by 623544 total number of RDF triples, and

the raw RDF data (as TTL dump) has a size 35.9MB on disk. The task in our setting is to

predict the smoking status (never, former, or current) of a participant from 16 other attributes

such as race, sex, household income, and education. The dataset is propositional in nature

although represented in RDF format; that is, every attribute has exactly one value in terms of

the reduced multiset attribute data, hence the task reduces to learning of a conventional Naive

Bayes classifier. Nevertheless, the experiment demonstrates learning of RBC from large and

remote RDF store by querying its SPARQL endpoint.

2.7.3.2 Results

A total of 159 queries were posed to the live SPARQL endpoint, and the model was learned in

approximately 30 secs, using 2.8 GHz processor with 4 GB memory, and the network download

and upload speed is approximately 3 Mbps.
3http://logd.tw.rpi.edu/sparql

http://logd.tw.rpi.edu/sparql
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2.8 Conclusion

2.8.1 Summary

The emergence of RDF as a basic data representation format for Semantic Web has led to

increasing availability of all kinds of data in RDF. Transforming this data into knowledge calls

for approaches to learning predictive models from massive RDF stores in settings where (i) the

learning algorithm can interact with the data store only through a SPARQL endpoint; (ii) the

model needs to be updated in response to updates to the underlying RDF store; and (iii) the

attributes that can be used to build the predictive models are not known a priori and hence

need to be identified by crawling the RDF store. We have introduced an approach to learning

predictive models from RDF stores in such settings using Relational Bayesian Classifiers (RBCs)

as an example. We have implemented our solutions in an open source system available as part of

the INDUS toolkit for learning predictive models from massive data sets [Koul and Lin (2013)]

and demonstrated the its feasibility using experiments with several RDF datasets.

2.8.2 Related Work

The work on SPARQL-ML [Kiefer et al. (2008)] extends SPARQL with data mining support

to build classifiers, including statistical relational models such as RBC from RDF data. Other

works on learning predictive models from RDF data include [Bicer et al. (2011)] and [Tresp

et al. (2009)]. Bicer et al. (2011) defined kernel machines over RDF data where features are

constructed by ILP-based dynamic propositionalization. Tresp et al. (2009) represented RDF

triples as entries in a Boolean matrix, and matrix completion methods are used to train the

model and predict unknown triples off-line. However, all the approaches assume that the learner

has direct access to RDF data. In contrast, our approach does not require the learning algorithm

to have direct access to RDF data, and relies only on the ability of the RDF store to answer

aggregate SPARQL queries.
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CHAPTER 3. LEARNING CLASSIFIERS FROM RDF DATA WITH

SUBCLASS HIERARCHIES

As shown in Chapter 2, the massive size and distributed nature of LOD cloud present a

challenging machine learning problem where the data can only be accessed remotely, i.e. through

a query interface such as the SPARQL endpoint of the data store. In this chapter we further

extend our work and consider incorporating other ontological information that may be available

in an RDF store. Specifically, existing approaches to learning classifiers from RDF data in such

a setting fail to take advantage of RDF schema (RDFS) associated with the data store that

asserts subclass hierarchies which provide information that can potentially be exploited by the

learner. Against this background, in this chapter we present ProbAVT, an algorithm for learning

classifier from a remote RDF data store enriched with subclass hierarchies. ProbAVT encodes

the constraints specified in a subclass hierarchy using latent variables in a directed graphical

model, and adopts the Variational Bayesian EM approach to efficiently learn parameters. We

conduct experiments with several real world datasets and show that ProbAVT achieves equal or

better performance compared to other state-of-art models that incorporate subclass hierarchies,

and is able to scale up to large hierarchies over few thousand nodes.

3.1 Introduction

RDF data stores often have associated RDF schema (RDFS) that provide additional infor-

mation about RDF data. RDFS encode subclass hierarchies that provide background knowledge.

There is a body of work which shows that background knowledge in the form of hierarchical

groupings of attribute values can be exploited to produce compact yet accurate classifiers, and

to minimize over-fitting from sparse data [Zhang et al. (2005); Caragea et al. (2009); Kiefer
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et al. (2008); Rettinger et al. (2009)].

Against this background, we introduce ProbAVT, an algorithm for learning classifier from a

remote RDF data store in settings where the RDF data (ABox in the Semantic Web parlance)

is too large to be downloaded across the Internet by the learner and/or to fit in memory, but

RDFS (TBox in the Semantic Web parlance) is not. ProbAVT encodes the constraints specified

in a subclass hierarchy using latent variables in a directed graphical model, and adopts the

Variational Bayesian EM approach to efficiently learn parameters. Our experiments with several

real world datasets show that: (i) not surprisingly, ProbAVT outperforms its counterpart that

does not incorporate background knowledge in the form of subclass hierarchies; (ii) ProbAVT

achieves equal or better performance compared to other state-of-art models that incorporate

subclass hierarchies, and is able to scale up to large hierarchies over few thousand nodes. We

have implemented and incorporated ProbAVT into INDUS [Koul and Lin (2013)], an open

source suite of statistical query based learning algorithms for learning predictive models from

massive data.

The rest of the chapter is organized as follows: Section 3.2 formulates the problem of learning

classifiers from RDF data and the associated RDFS subclass hierarchies. Section 3.3 presents a

solution to incorporate subclass hierarchies using latent variables in a directed graphical model,

and adapts the Variational Bayesian EM approach for parameter learning. Section 3.4 presents

results of experiments on several real world. Finally Section 3.6 concludes with a summary of

of the key results and a brief discussion of related work.

3.2 Problem Formulation

In this chapter, we assume that an RDF graph may include subclass hierarchies, i.e. it

includes the following set of reserved predicates: rdfs:subClassOf (sc), rdfs:domain (dom),

rdfs:range (range), and rdf:type (type).

Definition 3.1. Given an RDF graph G, the TBox denoted by GT is the subset of G defined

by {(s, p, o) ∈ G : p ∈ {sc, dom, range}} ∪ {(s, type, o) ∈ G : o ∈ {rdfs : Class,

rdfs : Property}}.
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ac x

K
Nk

Figure 3.1 A graphical model representation of the proposed model to learn with subclass
hierarchies.

Definition 3.2. Given an RDF graph G, the ABox of G denoted by GA is G \ GT .

Let R be an rdfs:Class, we denote Sub(R) to be the set of all subclasses of R (including

R itself). In this work we further assume that the range of each attribute Ak can be asserted

by a subclass hierarchy Rk, and we denote R = (R1, . . . , RK). We introduce the problem of

learning from RDF data with subclass hierarchies.

Problem 3.3. [Learning from RDF data with subclass hierarchies] Given a subclass hierarchy

annotated RDF data set D = (G, T ,A, C,R), a hypothesis class H, and a performance criterion

P , the learning algorithm L outputs a classifier h ∈ H that optimizes P .

3.3 Learning Classifiers with Subclass Hierarchies

We use the Leaf function (2.10) to reduce each attribute graph into a multi-set, and transform

D into a multiset attributed dataset M(D) = {c (x) , (L (A1(x)) , . . . ,L (AK(x))) : x ∈ T (G)},

the multi-set of leaves of the attribute graph A(x, γ) when it is viewed as a directed acyclic

graph rooted in x.

We begin with modeling M(D) using a generative process that incorporates the abstrac-

tion provided by subclass hierarchies, this is achieved by introducing a latent variable to each

observed value in a multi-set; its graphical model is depicted in Figure 3.1 and the full joint

distribution is given by (3.1) where Nk is the cardinality of L (Ak(x)), and both xkn and akn

take a value from all nodes in the subclass hierarchy Rk.

p (c,a,x) = p (c)
K∏
k=1

Nk∏
n=1

p (akn | c) p (xkn | akn) (3.1)

We encode the subclass hierarchy of an attribute Ak by placing the following constraint:

p (xkn | akn) = 0 if xkn is not a descendent of akn in the subclass hierarchy rooted at Rk. We
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intend to interpret akn as the abstraction that represents the observed value xkn, and then use

p (akn | c) to model the class conditional probabilities as in naive Bayes. Alternatively, we can

write p (akn | c, xkn) ∝ p (c) p (akn | c) p (xkn | akn) to describe the distribution of abstractions

that best represent a value xkn given class, which depends on the parameters learned from the

dataset. To learn those parameters, we take the Variational Bayesian approach as in [Beal and

Ghahramani (2006)] where we wish to approximate the log marginal likelihoods given by:

ln p (c,x | m) = ln

ˆ
dθ p (θ | m)

I∏
i=1

∑
ai

p (ci,ai,xi | θ) (3.2)

We derive the lower bound by applying Jensen’s inequality via variational distributions

qθ (θ) and {qai (ai)}Ii=1.

ln p (c,x | m) ≥
ˆ
dθ qθ (θ) ln

p (θ | m)

qθ (θ)
+

I∑
i=1

ˆ
dθ qθ (θ)

∑
a

qai (ai) ln
p (ci,ai,xi | θ,m)

qai (ai)

(3.3)

Let Nca be the expected total number of times variable A = a when its parent C = c,

similarly let Nax be the expected total number of times variable X = x when its parent A = a.

We also let Ncx be the number of times C = c and X = x. The corresponding variational

E-step and M-step can be derived as follows [Beal and Ghahramani (2006)].

Variational E-step:

qai (ai) ∝ p (c,a,x | θ) (3.4)

Variational M-step:

ln θ̃ca = ψ (λca +Nca)− ψ

(∑
a

λca +Nca

)
(3.5)

ln θ̃ax = ψ (λax +Nax)− ψ

(∑
x

λax +Nax

)
(3.6)

where ψ(·) is the digamma function.
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Table 3.1 Accuracy results of three UCI datasets, using 10-fold cross validation with 95%
confidence interval.

Dataset NB NB-AVT ProbAVT

Mushroom 95.83 (±0.43) 99.85 (±0.08) 99.45 (±0.16)
Soybean 92.09 (±2.02) 94.73 (±1.68) 94.44 (±1.72)
Nursery 90.32 (±0.51) 90.32 (±0.51) 90.32 (±0.51)

Since in the E-step, every akn is independent of each other, we can simply maintain Ncax

that counts the number of times C = a, A = a, and X = x, which can be iteratively updated

by using the parameters in M-step and Ncx obtained from data. In the M-step, both Nca and

Nax can be derived from Ncax. Hence, Ncax can be initialized and maintained locally, and the

only sufficient statistic required from data is Ncx.

3.4 Experiments

We present two sets of experimental results, one using datasets from UCI repository and

another using RDF datasets.

3.4.1 UCI datasets with Subclass Hierarchy

We use three datasets (with only discrete attributes) from UCI repository (i.e., Mushroom,

Soybean, and Nursery) where the subclass hierarchies are supplied by domain experts. These

datasets correspond to a special case in our setting where Nk = 1 for all k, and the goal of

this set of experiments is to compare the proposed method (denoted by ProbAVT) against

an alternative model proposed by Zhang et al. (2006) that extends naive Bayes with subclass

hierarchies (denoted by NB-AVT), as well as a plain naive Bayes as a baseline (denoted by NB).

Table 3.1 shows the accuracy results of 10-fold cross validation. We observe that ProbAVT

compares favorably with NB-AVT, while they both outperform NB in Mushroom and Soybean

dataset.
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3.4.2 RDF datasets with Subclass Hierarchy

3.4.2.1 Public Contract Dataset

We use Task 2 dataset of the Linked Data Mining Challenge appeared in Data Mining on

Linked Data Workshop 20131. This RDF dataset contains heterogeneously integrated data

of UK public contracts using various vocabularies and ontologies such as Public Contracts

Ontology2, Simple Knowledge Organization System (SKOS)3, DBpedia4, etc. The task of the

challenge is to classify the contracts as multi-contract or not, and the training set have 48

multi-contracts out of a total of 216 contracts. A multi-contract is a contract that unifies two

or more unrelated commodities. In this experiment we only extract four discrete attributes:

(i) Kind, with range services/supplies/works; (ii) MainObject, with a range described by a

large SKOS vocabulary, and we interpret skos:broaderTransitive as a subclass hierarchy of 4539

nodes; (iii) AdditionalObject, with the same range as mainObject; and (iv) Location, encoded

using NUTS (Nomenclature of territorial units for statistics5) classification, with four levels of

hierarchy consists of 197 nodes.

The extracted dataset also corresponds to a special case where Nk = 1 for all k. The

dataset is relatively small in size however it is described by several large subclass hierarchies,

and NB-AVT is no longer tractable hence omitted from the results.

Table 3.2 shows the results of this experiment under 10-fold cross validation. Despite the

small size and difficulty of this dataset, ProbAVT still shows moderate improvements over NB:

ProbAVT achieves similar accuracy with NB, while having a lower precision and a significant

higher recall; in terms of ROC ProbAVT has about 7% higher area under curve.

3.4.2.2 Web Service Dataset

We use an RDF benchmark dataset from OWLS-TC v2.16 service retrieval test collection

that contains 578 OWL-S Semantic Web service descriptions. The attributes are input and
1http://keg.vse.cz/dmold2013
2http://opendata.cz/public-contracts-ontology
3http://www.w3.org/TR/skos-reference/
4http://dbpedia.org
5http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction
6http://projects.semwebcentral.org/projects/owls-tc/

http://keg.vse.cz/dmold2013
http://opendata.cz/public-contracts-ontology
http://www.w3.org/TR/skos-reference/
http://dbpedia.org
http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction
http://projects.semwebcentral.org/projects/owls-tc/
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Table 3.2 Classification results of Public Contract dataset, using 10-fold cross validation with
95% confidence interval.

Performance Measure NB ProbAVT

Accuracy 81.25 (±5.21) 81.73 (±5.15)
Precision 66.67 (±6.29) 55.00 (±6.63)
Recall 5.00 (±2.91) 27.50 (±5.95)
ROC 62.60 (±6.45) 69.90 (±6.12)

output concepts described by various subclass hierarchies (and even richer ontologies), and the

dataset corresponds to the general case where Nk ≥ 1, hence we compare our method against

two other relational methods: a relational Bayesian classifier [Neville et al. (2003b)] (denoted

RBC) and a modified relational probability tree [Neville et al. (2003a)] that incorporates subclass

hierarchies (introduced as part of SPARQL-ML toolkit [Kiefer et al. (2008)] and hence we denote

it by SML)

Table 3.3 shows four performance measures (FP rate, precision, recall, f-measure) for each

class under 10-fold cross validation. We observe that ProbAVT outperforms SML in all mea-

sures, and outperform RBC in all measures except precision.

3.5 Discussion

We also implemented ML/MAP EM to compute a point estimate of the parameters, and

as in [Beal and Ghahramani (2006)] we observe that the ML/MAP alternative can be easily

trapped in a local minimum depending on the initial conditions. Variational Bayesian EM on

the other hand computes a distribution over parameters and naturally incorporates a model

complexity penalty, hence offers an explanation of superior and more stable performance.

Our approach of using latent variables to encode subclass hierarchies provides an alternative

to the global cut framework proposed by Zhang et al. (2006). A cut on a hierarchy is a subset of

nodes such that every leaf of the hierarchy is a descendant of some member in the cut. Loosely

speaking, a cut defines a hard abstraction over a hierarchy, whereas our proposed method defines

a soft and more general abstraction using latent variables, recall that we write p (akn | c, xkn)

to describe the distribution of abstractions that best represent a value xkn given class. One
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disadvantage of learning a soft abstraction is that it can be less comprehensible, although it

may be of interest to derive an optimal closest cut from a learned soft abstraction such that

they give comparable performance. Another major difference between these two methods is that

a cut is seen as a model structure where as latent variables introduce parameters within the

model, and they present different learning challenges. Structure learning for the cut framework

requires a search over the cut space, which Zhang et al. (2006) uses the conditional log likelihood

to define the cut refinement criterion; however, introducing latent variables can be intractable

to estimate the marginal likelihood of parameters. Despite these challenges, our experimental

results show that adopting the Variational Bayesian EM approach [Beal and Ghahramani (2006)]

is an efficient solution to our problem and can be scaled to large hierarchies over few thousand

nodes. Furthermore with the proposed simple dependency structure (Figure 3.1), Variational

Bayesian EM can be executed using only a sufficient statistic from data, which can be queried

remotely without direct access to data.

3.6 Conclusion

3.6.1 Summary

Rapid growth of RDF data in the Linked Open Data (LOD) cloud offers unprecedented

opportunities for analyzing such data using machine learning algorithms. The massive size and

distributed nature of LOD cloud present a challenging machine learning problem where the data

can only be accessed remotely, i.e. through a query interface such as the SPARQL endpoint of

the data store. Existing approaches to learning classifiers from RDF data in such a setting fail

to take advantage of RDF schema (RDFS) associated with the data store that asserts subclass

hierarchies which provide information that can potentially be exploited by the learner. Against

this background, we present ProbAVT, an algorithm for learning classifier from RDF data

and the associated schema. ProbAVT encodes the constraints specified in a subclass hierarchy

using latent variables in a directed graphical model, and adopts the Variational Bayesian EM

approach to efficiently learn parameters. Our experiments with several real world datasets

show that: (i) not surprisingly, ProbAVT outperforms its counterpart that does not incorporate
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background knowledge in the form of subclass hierarchies; (ii) ProbAVT achieves equal or better

performance compared to other state-of-art models that incorporate subclass hierarchies, and

is able to scale up to large hierarchies over few thousand nodes. We have implemented and

incorporated ProbAVT into INDUS [Koul and Lin (2013)], an open source suite of statistical

query based learning algorithms for learning predictive models from massive data.

3.6.2 Related Work

ProbAVT extends Chapter 2 to exploit background knowledge in the form of RDFS subclass

hierarchies, and yet still learns without direct access to RDF data.

Other works that incorporate subclass hierarchy include SPARQL-ML [Kiefer et al. (2008)]

that extends SPARQL with data mining support to build statistical relational models from

RDF and RDFS data, the global cut framework proposed by Zhang et al. (2006, 2005), and a

link-based text data proposed by Caragea et al. (2009). However, these works assume that the

learner has direct access to all RDF data (both TBox and ABox). In contrast, our approach

only assumes that the learner has direct access to the ontology (TBox) associated with the data

which is usually much smaller than ABox, and relies on SPARQL queries to access the instance

data (ABox).

ProbAVT can be seen as a topic model [Blei and Lafferty (2009); Blei (2012)] or a directed

graphical model with hidden variables [Beal and Ghahramani (2006)]. In fact it is also a

special case of Infinite Semantic Hidden Models [Rettinger et al. (2009)] which incorporates

expressive ontologies (i.e. SHOIN (D)) to learning predictive models by encoding logic rules

as constraints in the variables of Hidden Markov Models. In our case we only encode subclass

hierarchies using the constraint p (xkn | akn) = 0 if xkn is not a descendent of akn, however this

simplicity allows the model to be learned with sufficient statistics and scales to large hierarchies

over few thousand nodes.

3.6.3 Future Work

It is of interest to visualize the soft abstraction learned from data such that it is more

comprehensible, and identify conditions for which they can relate to the hard abstractions in
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the global cut framework proposed by Zhang et al. (2006, 2005). Another direction of future

work includes modeling of dependencies between multiple attributes, and one way towards this

goal is to adapt a multi-modal topic model [Balasubramanyan and Cohen (2011); Chang et al.

(2009); Nallapati et al. (2008)] in our setting such that the model can be learned or approximated

with sufficient statistics so that direct access to data is not required. It is also interesting to

enrich the expressivity of ontologies (e.g. subproperty hierarchy) within the same setting.
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CHAPTER 4. LEARNING CLASSIFIERS FROM DISTRIBUTIONAL

DATA

In this chapter we set aside our motivation of learning from RDF data (or linked data in

general) and investigate a novel type of learning problem which we call distributional instance

classification. We motivate, precisely formulate, and present solutions for this problem. We will

resume our setting of linked data in Chapter 5 where we will solve a more challenging problem

that utilizes the results presented in this chapter.

Many data mining applications give rise to distributional data wherein objects or individuals

are naturally represented as K-tuples of bags of feature values where feature values in each

bag are sampled from a feature and object specific distribution. We formulate and solve the

problem of learning classifiers from distributional data. We consider three classes of methods

for learning distributional classifiers: (i) those that rely on aggregation to encode distributional

data into tuples of attribute values, i.e., instances that can be handled by traditional supervised

machine learning algorithms; (ii) those that are based on generative models of distributional

data; and (iii) the discriminative counterparts of the generative models considered in (ii) above.

We compare the performance of the different algorithms on real-world as well as synthetic

distributional data sets. The results of our experiments demonstrate that classifiers that take

advantage of the information available in the distributional instance representation outperform

or match the performance of those that fail to fully exploit such information.

4.1 Introduction

The standard classification problem entails assigning an instance x from an instance space

X (that is typically modeled by a tuple of measurements or attribute values) a label from a set
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of mutually exclusive classes C. A classifier h is a mapping h : X 7→ C. The goal of learning

in such a setting is to identify a classifier from a space of classifiers H, one that optimizes a

desired performance measure, e.g., accuracy of the classifier. Consider for example, a clinical

diagnosis scenario which calls for classifying a patient as healthy or suffering from a particular

illness based on a set of tests or measurements. Suppose the kth feature or test result takes

values from the domain ∆k. The standard approach is to represent each patient oi by a K-tuple

or a K-dimensional vector of feature values xi = (xi1, . . . , xiK) ∈ ∆1×∆2×· · ·∆K (where each

xik ∈ ∆k) that encode the results of specific medical tests or measurements [Bishop (2006)].

The goal is to predict the class label ci ∈ {Healthy , Ill} for each patient oi. However, because

of the variability associated with physiological measurements such as the heart rate, blood

pressure, or body temperature of an individual, it is often necessary to repeat the tests or

measurements in order to arrive at a reliable diagnosis. If the measurements are synchronous,

then it is possible to represent each patient by a collection or bag of instances (K-tuples of feature

values) and model the problem of predicting the class label for each patient as a multiple instance

learning problem [Dietterich et al. (1997); Zhou (2004)]. However, because the different tests

or measurements have different sources of variability associated with them, it is not uncommon

to carry out the tests in an asynchronous fashion, with each test repeated different number of

times. Hence, as illustrated in Table 4.1, it is far more meaningful to model the input to

the classifier, in this case, an individual oi, by a K-tuple of bags (multi-sets) of feature values

(Bi
1, . . . , B

i
K) where each Bi

k represents a bag of values of the kth feature of object oi, sampled

from the specific feature and individual specific distribution. Note that, in general, the size of

the bag Bi
k can differ from feature to feature and for a given feature, from one object to another.

Many big data applications give rise to distributional data wherein objects or individuals are

naturally represented as K-tuples of bags of feature values where feature values in each bag are

sampled from a feature and object specific distribution. We refer to the resulting representation

xi = (Bi
1, . . . , B

i
K) of an object oi as the distributional instance (DI) representation of oi.

We refer to the problem of learning classifiers that predict the class labels of distributional

instances as the distributional instance learning (DIL) problem. One way to apply traditional

approaches to classification in this setting is to simply replace each bag of feature values Bi
k by
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an aggregate value, e.g., the mean or mode computed from the observed values of the feature

for a given individual. However, such an aggregation process can result in significant loss of

useful information. It is much more natural to view the input to the classifier as a K-tuple of

bags of attribute values. Against this background, we formulate and solve the DIL problem.

We consider representative algorithms from three classes of methods for DIL: (i) those that

rely on aggregation to encode distributional data into tuples of attribute values, i.e., instances

that can be handled by traditional supervised machine learning algorithms; (ii) those that are

based on generative models of distributional data; and (iii) the discriminative counterparts of

the generative models considered in (ii) above. We compare the performance of the different

algorithms on two real-world as well as one synthetic distributional data sets. The results

of our experiments demonstrate that DIL algorithms that take advantage of the information

available in the distributional instance representation outperform or match the performance of

their counterparts that fail to fully exploit such information. We conclude with a brief summary

of the main results, discussion of related work, and some directions for further research.

4.2 Distributional Instance Classification Problem

We introduce some key definitions before proceeding to formulate the problem of learning

classifiers from distributional data. For brevity subscripts are omitted when they are clear from

context.

Definition 4.1 (Distributional Instance Representation). Let ∆1, . . . ,∆K be K sets (discrete

of continuous) that correspond to the domains of a finite number (K) of measurable attributes

of objects to be classified, and C a finite set of class labels. A Distributional Instance repre-

sentation xi of an object or individual oi is a K-tuple of bags (multi-sets) of feature values

xi = (Bi
1, . . . , B

i
K) where each Bi

k represents a bag of values of the kth feature of object oi,

sampled from the specific feature and individual specific distribution. We denote by sk the size

of kth domain, sk = |∆k|.

Note that the widely used bag of words representation of text is a special case of distribu-

tional representation where K = 1 and ∆1 is simply the vocabulary of the document collection.
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Definition 4.2. Let ci ∈ C be the class label of xi. A distributional data set D =

{(x1, c1), . . . , (xn, cn)} is a multi-set of labeled distributional instances.

Example 4.3. Table 4.1 shows an example of a distributional data set consisting of three

objects (patients).

Definition 4.4 (Distributional Classifier). Each classifier h accepts as input, a distributional

instance x, and outputs a predicted class label h(x) ∈ C.

Definition 4.5 (Distributional Classifier Learning Problem). Given a distributional data set

D, a hypothesis class H of classifiers, and a performance criterion f , a distributional classifier

learning algorithm L outputs a distributional classifier h ∈ H that optimizes f .

4.3 Distributional Instance Learning Algorithms

We consider three basic approaches to DIL: (i) those that rely on aggregation to encode dis-

tributional data into tuples of attribute values, i.e., instances that can be handled by traditional

supervised machine learning algorithms; (ii) those that are based on generative models of dis-

tributional data; and (iii) the discriminative counterparts of the generative models considered

in (ii) above.

4.3.1 Aggregation

Here we represent each bag of features in the DI representation of an instance by a single

value, by applying a suitable aggregation function, e.g., min, max, average for continuous ∆

and mode for discrete ∆. Hence we reduce the data set into a traditional attribute-value data

set where each instance is represented by a finite number of attributes each of which takes

a single value from the set of possible values for the corresponding attribute. This approach

reduces the problem of learning from distributional data to the standard supervised learning

problem which can be solved using a variety of existing supervised learning algorithms [Bishop

(2006); Murphy (2012)].

Within this framework, we consider a variety of sophisticated aggregation schemes proposed

by Perlich and Provost (2006). Without loss of generality, consider a distributional data set D
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in which the distributional instances are encoded using DI representation and class labels are

binary, i.e., C = {+,−}. Suppose that Bi
k is the bag of values of kth attribute of an instance

xi. After Perlich and Provost (2006), we define V i
k =

(
vik1, . . . , v

i
ksk

)
to be a vector of counts

(or histogram) of values in Bi
k where vikt is the number of occurrences of the tth value dkt ∈ ∆k.

Next we define an unconditional reference vector as V (∗)
k =

∑
i V

i
k , and also a class-conditional

reference vector for c ∈ C as V (c)
k =

∑
i δc,ciV

i
k where δ is a Kronecker delta function. A number

of aggregation schemes can be defined using various measures of distance between V i
k and the

reference vectors [Perlich and Provost (2006)] (see below). Let DIST be a set of M distance

functions between two vectors such as cosine or Euclidean, then we describe three aggregation

schemes as follows.

1. Unconditional vector distances (UCVD): We compute an M -element vector

(distm(V
(∗)
k , V i

k ))Mm=1 where distm ∈ DIST . We concatenate the feature vector represen-

tations from each of the K bags of features of xi to obtain a single feature vector of length

MK.

2. Class-conditional vector distances (CCVD): We compute a |C|M -sized vector, e.g.,

(distm(V
(+)
k , V i

k ), distm(V
(−)
k , V i

k ))Mm=1. The rest follows the scheme of UCVD and reduces

into a traditional attribute-value data set where each instance is a vector of length |C|MK.

3. Differences of class-conditional vector distances (DCCVD): We compute the pair-wise

difference between every two class-conditional vector distances, resulting with a vector of

size M |C|(|C| − 1)/2, e.g., (distm(V
(+)
k , V i

k )− distm(V
(−)
k , V i

k ))Mm=1.

By applying this process to each of the distributional instances in the data set D, we can

effectively reduce the problem of learning distributional classifiers to the well-studied problem

of supervised learning of classifiers in the traditional setting where each object to be classified

is represented by a tuple of attribute values.

4.3.2 Generative Models

We consider a joint distribution p (B1, . . . , BK , c). For simplicity, under the naive Bayes

assumption that bags of features are conditionally independent given the class label c the most
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probable class label is given by:

hNB (x) , arg max
c∈C

p (c | B1, . . . , BK)

= arg max
c∈C

p (c)

K∏
k=1

p (Bk | c) .

We can now consider a variety of models for p (Bk | c) including those based on Bernoulli

or multinomial event models [McCallum and Nigam (1998)], Dirichlet distribution [Ferguson

(1973); Minka (2012)] or Dirichlet-multinomial (Polya) distribution [Madsen et al. (2005); Minka

(2012)]. We denote these models by NB(Ber), NB(Mul), NB(Dir), and NB(Pol) respectively,

and outline each of them below.

Let bkt ∈ {1, 0} denote the presence or absence of dkt ∈ ∆k in an attribute bag Bk and,

similarly, let vkt denote the number of occurrences of dkt. A class-conditional bag probability,

p (Bk | c), can be modeled by event models such as Bernoulli (4.1) or multinomial (4.2):

p (Bk | c;θ) ,
sk∏
t=1

θbktckt (1− θckt)1−bkt (4.1)

p (Bk | c;θ) , p (|Bk|)
(
∑sk

t=1 vkt)!∏sk
t=1 vkt!

sk∏
t=1

θvktckt (4.2)

where θckt = p (dkt | c).

Next, the Dirichlet distribution (4.3) allows us to treat Bk as a sample from a distribution

which, in turn, is drawn from another distribution as follows:

p (Bk | c;α) , p
(
V̄k | c

)
, D (αck)

=
Γ(
∑sk

t=1 αckt)∏sk
t=1 Γ(αckt)

sk∏
t=1

v̄αckt−1
kt (4.3)

where αck = (αck1, . . . , αcksk) is a vector parameter of Dirichlet distribution for class c ∈ C and

V̄k = (v̄k1 · · · v̄ksk) is the normalized vector of counts of values in Bk with v̄kt = vkt/
∑

t vkt.

Finally, we describe the Dirichlet-multinomial (Polya) distribution (4.4) that compounds a
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Dirichlet distribution with a multinomial distribution:

p (Bk | c;α) , p (Vk | c)

,
ˆ
p (Vk;θck) p (θck;αck) dθck (4.4)

=
Γ (
∑

t αckt)

Γ (
∑

t vkt + αckt)

sk∏
t=1

Γ (vkt + αckt)

Γ (αckt)

where θck = (θck1, . . . , θcksk) is a vector of multinomial parameters.

For all four models, their parameters, which is a set of parameters for each class and for

each attribute, are estimated by maximum likelihood employing the Laplace correction.

4.3.3 Discriminative Models

We consider the discriminative counterparts of the generative models described in Sec-

tion 4.3.2 using standard techniques for transforming a generative model into its discrimina-

tive counterpart (e.g., a naive Bayes model into a logistic regression model [Bouchard and

Triggs (2004)]). The details of this derivation is presented in Appendix A. Discriminative

models [Minka (2005)] can be acquired by plugging in four different distributions (shown in

Section 4.3.2) for p (B | c) in the following equation.

p (c = 1 | x) ,
1

1 + exp
(

ln p(c=0)
p(c=1) +

∑K
k=1 ln p(Bk|c=0)

p(Bk|c=1)

) (4.5)

There exists an equivalent parametric form for posterior distribution, p (c | x;w). We estimate

a vector of parameters w as

w∗ = arg max
w

n∑
i=1

ln p (ci | xi;w)− λ ||w||22 . (4.6)

It is possible to adopt `2–regularization by setting λ > 0 to reduce over-fitting to training data.

Given the estimated parameter w∗, prediction on a distributional data instance is given by

h (x) = arg maxc∈C p (c | x;w∗). Discriminative models for Bernoulli and multinomial distribu-

tions define posterior distribution as below (respectively):

p (c = 1 | x;w) ,
1

1 + exp
(
w0 +

∑
k,t bktwkt

)
p (c = 1 | x;w) ,

1

1 + exp
(

ln p(c=0)
p(c=1) +

∑
k,t vktwkt

)
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which are logistic regression models. Parameters for these two models can be estimated with

optimization tools specialized in logistic regression (e.g., Fan et al. (2008)). For Dirichlet and

Polya distributions, we first formulate p (c | x;α) by substituting p (B | c) in (4.5) with (4.3)

and (4.4), respectively. By setting w = ln (α), we drop the constraint α > 0 and employ an

unconstrained gradient ascent method1.

4.4 Experimental Results

We report results of experiments designed to answer the following questions.

(i) How do representative DIL algorithms within each of the three classes of DIL methods

outlined in Section 4.3 compare with each other?

(ii) How do the three classes of DIL methods compare with each other?

(iii) How do classifiers that take advantage of the information available in the distributional

instance representation compare with their counterparts that reduce DIL to traditional

supervised learning (by transforming distributional instances into tuples of attribute val-

ues)?

We use two real world data sets to address questions (i) and (ii) above, and we use a synthetic

data set to address question (iii).

4.4.1 Experiment I

4.4.1.1 Data Sets and Experimental Setup

Due to lack of publicly available distributional data benchmarks, we turn to available data

sets that can be modeled as distributional data.

The first data set, the Last.fm data set, is crawled from a social music network Last.fm2

using its API3 (an example is shown in Figure 4.1). We select two disjoint groups that contain
1In our experiments, we used Hessian-free Newton method implemented by Mark Schmidt. See http://www.

di.ens.fr/~mschmidt/Software/minFunc.html
2http://www.last.fm/
3http://www.last.fm/api

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://www.last.fm/
http://www.last.fm/api


45

u1 u2

t1t2 t3

a1 tt1 tt2 tt3tt4a2tt5 a3 tt6 tt7

at1at2 at3at4 at5 at6at7 at8 at9

Figure 4.1 A portion of Last.fm data set with entities and links among them. Entities are
users u, tracks t, track’s tags tt, artists a, and artist’s tags at. Corresponding dis-
tributional data instances are x1 = {{t1, t2} , {a1, a2} , {tt1, . . . tt5} , {at1, . . . , at7}}
and x2 = {{t1, t3} , {a1, a3} , {tt1, . . . , tt7} , {at1, . . . at6, at8, at9}}.

approximately equal number of users (2098/2081). We collect the track, artist, track’s tags,

and artist’s tags favored by each user and represent them as bags. All collections of tags are

processed with stop-word removing and stemming, using Apache Lucene4. We use only tracks

and artists whose number of occurrences greater or equal than 45 and 100, correspondingly. The

result is a distributional data set of 8340 tracks attributed to one or more of the 3753 artists.

Likewise, we eliminate the track tags and artist tags that occur fewer than 350 times and 120

times respectively.

The second data set is obtained from the Splog (spam blogs) data set which contains 700

authentic and 700 spam blogs in HTML format [Kolari et al. (2006)]. For each blog, we extracted

four attributes: a bag of words, a bag of anchors (words marked up with hyperlinks), a bag

of URLs, and a bag of HTML tags. Then, similarly we remove infrequent elements for each

attribute and remove instances with missing values. The statistics of the two data sets are

shown in Table 4.2.

We compare the three classes of DIL described in Section 4.3. Specifically, for the aggregation

models we select: (i) mode aggregation combined with a simple naive Bayes classifier (denoted

Mode+NB); (ii) CCVD combined with a Gaussian naive Bayes (denoted CCVD+NB); and

(iii) CCVD combined with a logistic regression (denoted CCVD+LR). We only selected CCVD

among the complex aggregation schemes since it is reported to yield more accurate classifier
4http://www.luccene.apache.org/

http://www.luccene.apache.org/
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Table 4.2 Data set statistics. Since bags contain duplicate elements, the size of a bag may
exceed the domain size.

Data set Attribute Domain Average
(+/− count) Size Bag Size

track 8340 120
Last.fm track’s tag 5077 15874

(2098/2081) artist 3753 58
artist’s tag 3640 10535

word 7968 2627
Splog anchor 7819 316

(695/693) URL 7833 937
HTML tag 152 538

by Perlich and Provost (2006). For `2-regularized discriminative models, we set λ = 1 in (4.6)

without optimization. We evaluate both data sets using 10-fold cross-validation and draw their

ROC (Receiver Operating Characteristic) curves with AUC (Area Under Curve).

4.4.1.2 Results

Among the models based on aggregation, CCVD+LR outperforms the rest in both accuracy

and AUC measures, thus confirming the conclusions reported by Perlich and Provost (2006).

Among generative models, NB(Pol) outperforms the rest on both accuracy and AUC, while

NB(Dir) is also competitive for the Last.fm data set. For discriminative models, DM`2(Pol),

DM`2(Dir), and DM`2(Ber) are equally competitive on the Last.fm data set; and DM`2(Pol)

outperforms the rest for the Splog data set. The `2-regularized discriminative models generally

outperform their un-regularized counterparts (with the exception of DM`2(Mul) on the accuracy

measure for the Splog data set). Indeed, in this case un-regularized models are special cases

of regularized models with the hyperparameter λ = 0; and in principle, the results of our

regularized models could be improved further by optimizing the hyperparameter.

To answer the second question, we compare the best model from each approach. Considering

the accuracy measure alone, NB(Pol) and DM`2(Pol) consistently outperforms the rest for both

data sets. We observe that the best models under the AUCmeasure is a subset of the best models

under the accuracy measure, and this is possibly because in general AUC is statistically more
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θ′

θ′′

α′

α′′

c

z

x′

x′′

n

|B′|

|B′′|

Figure 4.2 Generation process for the synthetic data. We control c and z to generate n data
with bags of size |B| = |B′|+ |B′′|. Dirichlet parameter α′ and α′′ is deterministi-
cally generated given c and z.

discriminant than accuracy [Huang and Ling (2005)]. If we now consider the AUC measure

alone, we observe that NB(Pol), NB(Dir), and CCVD+LR are equally competitive for the

Last.fm data set, while NB(Pol) outperforms the rest for the Splog data set. In summary,

NB(Pol) and DM`2(Pol) show similar performance.

4.4.2 Experiment II

The second experiment is designed to examine as to how the classifiers that take advantage of

the information available in the distributional instance representation compare with those that

do not fully exploit such information. Recall that among the models described in Section 4.3,

only NB(Dir), NB(Pol), DM(Dir), and DM(Pol) model distributions of distributional instances.

Since naive Bayes models and discriminative models have the same likelihood p (B | c), we only

consider naive Bayes models in this experiment.

We deliberately crafted scenarios in which some of the models that do not take advantage

of the information available in the would fail to discriminate between two classes. For example,

Mode+NB would fail if p(c | mod(B)) is close to 0.5; NB(Mul) would fail if the parameters for

both classes (i.e. its sufficient statistics V̄ (+)
k and V̄

(−)
k ) are similar; and CCVD would fail if

two reference vectors are similar and their distances from the DIL representation of the object

to be classified are also similar.
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4.4.2.1 Data Set and Experimental Setup

We generated a synthetic data set with binary class (C = {+,−}) and a single attribute

(K = 1) by combining samples from two Polya distributions. The two Polya distributions

have domains ∆′ = {0, 1} and ∆′′ = {2, 3} whose Dirichlet parameters are α′ and α′′ respec-

tively. The generation process is shown in Figure 4.2, where Dirichlet parameters are defined

deterministically as follows,

α′ =


(z, z) c = +(
z−1, z−1

)
c = −

, α′′ =


(
z−1, z−1

)
c = +

(z, z) c = −

and we draw a bag B′ from Polya distribution as follows,

θ′ ∼ Dir
(
α′
)

x′ ∼ Mult
(
θ′
)

B′ ,
{
x′1, . . . , x

′
|B′|

}
.

Similarly, B′′ are drawn from Polya distribution with α′′. Finally the bag B for an instance is

defined as B′∪B′′. The process generates a set of n instances with a label c where each instance

is characterized by z, |B′|, and |B′′| which we will denote by f (n, c, z, |B′| , |B′′|). A balanced

data set with 2n instances can be described as f (n,+, z, |B′| , |B′′|) ∪ f (n,−, z, |B′| , |B′′|).

We defined three groups of balanced data sets where generations of data sets in a group

only differ in z. The first group is balanced data sets with n = 500 and |B′| , |B′′| = 40, and

the second group differs by |B′′| = 80. A data set in the third group is defined as the union

of two balanced data sets of 1000 instances where their (|B′| , |B′′|) are (40, 80) and (80, 40),

respectively. Given a fixed z, a data set in the first two groups can be represented as

⋃
c∈{−,+}

f
(
500, c, z, 40,

∣∣B′′∣∣)
where |B′′| is 40 or 80 respectively, while a data set in the third group is

⋃
c∈{−,+}

f (500, c, z, 40, 80) ∪ f (500, c, z, 80, 40) .
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Figure 4.3 Accuracies of six classifiers on different groups of data sets where each synthetic
data set consists of samples drawn from a stochastic process which is a composition
of two Polya processes.

We repeat this process five times with different random seeds to obtain five different distribu-

tional data sets. We estimate the accuracy of the classifiers using 10-fold cross-validation. We

report the average accuracy of the DIL methods over the five data sets, in each case, estimated

using 10-fold cross-validation.

4.4.2.2 Results

Figure 4.3 shows the results of this experiment. We observe that all naive Bayes mod-

els behave similarly in all three groups. In particular, accuracies for NB(Dir), NB(Pol), and

NB(Ber) increase as z increases, while NB(Mul) is unable to discriminate between the two

classes. NB(Mul) fails because V̄ (+)
k and V̄ (−)

k are designed to be similar by setting the Dirichlet

parameters of both classes to be complement of each other.5 Performance of NB(Dir) matches

with NB(Pol), because the bag length is constant for all instances. As z increases, the good

performance of NB(Ber) can be explained by observing it is more likely that the bag of feature

values for the negative class contain all 0’s or all 1’s.

Interestingly, the behaviors of Mode+NB and CCVD+LR vary across three groups of ex-

periments. In the case of Mode+NB, it fails in Group 2 because it is most likely that one of

two values of the second bag B′′ is chosen as mode for an instance independent to the label of

the instance6; whereas it fails in Group 3 because all values are equally likely to be the mode.
5Take B′ for example, for the positive class, the bags are likely to contain approximately equal numbers of

0’s and 1’s whereas for the negative class, the bags are likely to contain either a majority of 0’s or a majority of
1’s; hence this ensures that the expected multinomial parameters for both classes are (0.5, 0.5).

6With a rare chance, mode can be a value of the bag B′ if an instance contains three values with 40 counts.
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In the case of CCVD+LR, in all three groups, the expected class-conditional reference vectors

are identical for both classes. The first and the third group guarantee the expected distance

of positive instances and that of negative instances are the same. For the second group, the

expected distances differ due to the asymmetry in |B′| and |B′′|.

Overall, these experiments clearly demonstrate that DIL methods that take advantage of the

information available in the distributional instance representation can potentially outperform

those that do not fully exploit such information.

4.5 Conclusion

4.5.1 Summary

Many data mining applications naturally give rise to distributional data wherein objects or

individuals to be labeled are naturally represented as K-tuples of bags of feature values sampled

from a feature and object specific distribution. We have introduced distributional instance

learning problem, i.e., the problem of learning classifiers from distributional data. We have

considered three classes of methods for learning such classifiers: (i) those that rely on aggregation

to encode distributional data into tuples of attribute values, i.e., instances that can be handled

by traditional supervised machine learning algorithms; (ii) those that are based on generative

models of distributional data; and (iii) the discriminative counterparts of the generative models

considered in (ii) above. We have compared the performance of the different algorithms on real-

world as well as synthetic distributional data sets. The results of our experiments demonstrate

that DIL algorithms that take advantage of the information available in the distributional

instance representation outperform or match the performance of their counterparts that make

use of aggregation schemes that discard such information.

4.5.2 Related Work

The DIL problem is a generalization of (i) the traditional supervised learning problem where

an object to be classified is represented by a tuple of attribute values [Bishop (2006)], and (ii)

In other words, B′ consists of only one value and B′′ consists of even number of two values.
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the problem of learning document classifiers and image classifiers using a bag of words represen-

tation of documents [McCallum and Nigam (1998)], and bag of visual words representation of

images [Tirilly et al. (2008)] (which represent special cases of learning distributional classifiers

with K = 1).

The problem of learning distributional classifiers is related to the multiple instance learning

(MIL, Dietterich et al. (1997); Zhou (2004)), where an object to be classified is represented as

a bag of instances and each instance is represented by a tuple of feature values. Only the label

of the bag is specified in the training set, and MIL assumes that a bag is labeled negative if

and only if all of its instances are negative, and a bag is labeled positive if and only if at least

one of its instances is positive [Dietterich et al. (1997)]. Since then, recent work on MIL has

relaxed the standard MIL assumption to allow all the instances in a bag to contribute to the

bag’s label. However, unlike MIL which models an object to be classified by a bag of tuples of

feature values, DIL models an object to be classified as a tuple of bags of feature values. Both

MIL and DIL reduce to the same problem when the number of features (K) is one.

DIL bears some resemblance to Latent Dirichlet Allocation (LDA, Blei et al. (2003)) or more

generally probabilistic topic models [Blei (2012)], which are generative probabilistic models for

documents that model each word in a document by a mixture of latent topics (i.e., distributions

over a fixed vocabulary). While the topic models are typically learned in an unsupervised

setting, a document’s topic distribution can be effectively used for document classification as

demonstrated by Blei et al. (2003). Supervised topic models such as sLDA proposed by Blei

and McAuliffe (2008) can be seen as a special case of DIL where the number of bags (K) in

the DI representation of the objects to be classified (in this case, documents) is equal to one.

However, recent work on topic models, e.g., Block-LDA [Balasubramanyan and Cohen (2011)],

Nubbi [Chang et al. (2009)], and Link-PLSA-LDA [Nallapati et al. (2008)] has begun to explore

topic models for objects with multiple features (K > 1). Block-LDA models documents where

each document contains collections of entities of different types (which can be modeled by

different bags that make up a distributional instance in DIL). DIL can be seen as a supervised

variant of such topic models, i.e., supervised topic models defined over multiple features (K > 1)

with discrete domain.
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DIL can be used to model learning from relational data [Getoor and Taskar (2007)] and

RDF data [Manola and Miller (2004)]. For example, relational Bayesian classifiers [Neville

et al. (2003b); Lin et al. (2011)] model an object (nodes in a network) to be classified using

bags of values of features from those objects that are related to it via relational links.

4.5.3 Future Work

We have explored only some of the simplest approaches to DIL. It would be interesting to

explore DIL models that account for dependencies between feature values within a bag as well

as between bags. It would be useful to consider variants of kernel methods (e.g., SVM) that

use kernel functions to compute similarity between distributional instances, e.g., adaptations

of kernel functions for distributions [Jaakkola and Haussler (1998); Jebara et al. (2004)] to

the setting with K > 1. Of particular interest in this context are support measure machines

(SMM) introduced by Muandet et al. (2012) which extend SVMs by representing distributions

as mean embeddings in the reproducing kernel Hilbert space, which allows the application of

standard kernel methods for classifying probability distributions. One subtle difference between

the DIL formulation in this paper and that of SMMs is that the input to an SMM classifier is

a probability distribution whereas the input to a distributional classifier is a K-tuple of bags

where each bag is a finite sample drawn from a feature and object specific (albeit unknown)

distribution. It would be interesting to consider DIL variants of decision trees, random forests,

support vector machines, nearest neighbor classifiers, etc. as well as variants of DIL models

and algorithms that can handle ordinal or continuous valued features. Of particular interest are

DIL algorithms that can effectively handle massive data sets with billions or trillions of objects

and millions or billions of attributes each represented using bags ranging in size from tens of

thousands to millions of values.
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CHAPTER 5. LEARNING CLASSIFIERS FROM CHAINS OF

MULTIPLE INTERLINKED RDF DATA STORES

We extend based on previous chapters and consider the problem of learning predictive

models from multiple interlinked RDF stores. Specifically we: (i) introduce statistical query

based formulations of several representative algorithms for learning classifiers from RDF data;

(ii) introduce a distributed learning framework to learn classifiers from multiple interlinked RDF

stores that form a chain; (iii) identify three special cases of RDF data fragmentation and describe

effective strategies for learning predictive models in each case; (iv) consider a novel application of

a matrix reconstruction technique from the field of Computerized Tomography [Herman (2009)]

to approximate the statistics needed by the learning algorithm from projections using count

queries, thus dramatically reducing the amount of information transmitted from the remote

data sources to the learner; and (v) report results of experiments with a real-world social

network data set (Last.fm), which demonstrate the feasibility of the proposed approach.

5.1 Introduction

We motivate the problem of learning predictive models from multiple interlinked RDF stores

using the scenario shown in Figure 5.1. In this case, one might want to use data from Facebook

and New York Times to predict the interest of a user in belonging to a Facebook group, based on

the distribution of tags associated with the New York Times news stories that the user has shared

with her social network on Facebook. This is an instance of the node prediction problem [Bhagat

et al. (2011)]. In general, building such predictive models entails using information from multiple

interlinked, physically distributed, autonomously maintained RDF stores. In such a setting, it

is neither desirable nor feasible to gather all of the data in a centralized location for analysis,
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Figure 5.1 A motivating scenario of two RDF stores that are linked to form a chain of RDF
stores: Facebook users share posts about news items published in New York Times.

because of access, memory, bandwidth, and computational restrictions. In other settings, access

to data may be limited due to privacy and confidentiality constraints [Aggarwal and Yu (2008);

Wu et al. (2010)]. This calls for techniques for learning predictive models (e.g. classifiers) from

multiple interlinked RDF stores that support only indirect access to data (e.g. via a query

interface such as SPARQL). Barring Lin et al. (2011) who proposed an approach to learning

relational Bayesian classifiers [Neville et al. (2003b)] from a single remote RDF store using

statistical queries against its SPARQL endpoint, to the best of our knowledge, there has been

very little work on this problem.

Against this background, we consider the problem of learning predictive models frommultiple

interlinked RDF stores. Specifically we: (i) introduce statistical query based formulations

of several representative algorithms for learning classifiers from RDF data; (ii) introduce a

distributed learning framework to learn classifiers from multiple interlinked RDF stores that

form a chain; (iii) identify three special cases of RDF data fragmentation and describe effective

strategies for learning predictive models in each case; (iv) consider a novel application of a

matrix reconstruction technique from the field of Computerized Tomography [Herman (2009)]

to approximate the statistics needed by the learning algorithm from projections using count

queries, thus dramatically reducing the amount of information transmitted from the remote

data sources to the learner; and (v) report results of experiments with a real-world social

network data set (Last.fm), which demonstrate the feasibility of the proposed approach.

The chapter is organized as follows: Section 5.2 begins with learning classifiers from a single

remote RDF store. Section 5.3 extends learning to multiple interlinked RDF stores. Section 5.4

describes the experiments and the results. Finally Section 5.5 concludes with a summary, related
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work, and future work.

5.2 Learning Classifiers from RDF Data

5.2.1 RDF Learner Defined

We begin by defining the problem of learning classifiers from a single RDF data source. We

recall the formulation from Section 2.2 and adapt these definitions for the setting required by

this chapter.

Recall that an RDF triple is (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) where s is the subject,

p the predicate, and o the object of the triple and I, B, and L are pairwise disjoint infinite

sets of URIs, Blank nodes, and Literals respectively. An RDF graph is a set of RDF triples.

Given an RDF graph G, and a target class T which is a distinguished URI of type rdfs:Class

in G, we denote the set of instances of the target class as T (G) = {x : (x, rdf:type, T ) ∈ G}.

An attribute A (of a target class T ) is a tuple of predicates (p1, . . . , pJ) such that the domain

of p1 is T , the range of pj is the domain of pj+1, and the range of pJ is a literal. Given an

instance xi of the target class T and an attribute Ak = (pk1, . . . , p
k
J), we define Bi

k to be the bag

(multi-set) of literals matched by the variable ?vJ in the Basic Graph Pattern [W3C SPARQL

Working Group] ((x, pk1, ?v1) AND (?v1, p
k
2, ?v2) . . . (?vJ−1, p

k
J , ?vJ)) where vj ∈ V are variables.

For convenience we denote the range of pkJ by ∆k, and let |∆k| = sk. A target attribute is a

distinguished attribute denoted by Ac, which describes the class label of an instance, hence we

assume that each instance has exactly one class label, i.e.,
∣∣Bi

c

∣∣ = 1 for every xi ∈ T (G); for

brevity the class label is denoted by ci and the set of all possible values of ci is denoted by

C. An RDF data set D is a tuple (G, T ,A, Ac) where G is an RDF graph, T a target class in

G, A = (A1, . . . , AK) a tuple of attributes, and Ac is a target attribute. Given an RDF data

set D = (G, T ,A, Ac), its induced multiset attributed data set [Lin et al. (2011)] is defined as

M(D) = {((Bi
1, . . . , B

i
K), ci) : xi ∈ T (G)}.

Definition 5.1. The input to an RDF node classifier h is (Bi
1, . . . , B

i
K) where xi is an instance

of a target class T , and the output h(xi) ∈ C is a class label.

An RDF Learner L [Lin et al. (2011)] is an algorithm that, given an RDF data set D =
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(G, T ,A, Ac), its induced multiset attributed data set M(D), a hypothesis class H, and a

performance criterion P , outputs a classifier h ∈ H that optimizes P .

5.2.2 Representative Classes of RDF Learners

We consider two basic approaches to learn from RDF data: (i) those that rely on aggrega-

tion to encode nodes to be classified as tuples of attribute values, i.e., instances that can be

handled by traditional supervised machine learning algorithms; and (ii) those that are based on

generative models of data. Specifically, we reduce the problem into a Distributional Instance

Classification problem (Section 4.2) and adapt the algorithms described in Section 4.3.1 and

Section 4.3.2. Note that the discriminative models in Section 4.3.3 were not considered in this

chapter because these models generally do not have sufficient statistics that are easily computed,

hence they are less suitable in the setting of remote and distributed data sources assumed in

this chapter.

5.2.2.1 Aggregation

Here we represent each bag of attributes inM(D) by a single value, by applying a suitable

aggregation function, e.g., min, max, average for continuous values and mode for discrete

values. Hence we reduce the data set into a traditional attribute-value data set where each

instance is represented by a finite number of attributes, each of which takes a single value from

the set of possible values for the corresponding attribute. We also consider a more sophisticated

aggregation scheme called Class-Conditional Vector Distances (CCVD) proposed by Perlich and

Provost (2006) (see Section 4.3.1 for details).

Regardless of which aggregation scheme described above, by applying an aggregation scheme

to each of the instances in M(D), we can effectively reduce the problem of learning from an

RDF data set to the well-studied problem of supervised learning in the traditional setting where

each instance to be classified is represented by a tuple of attribute values.
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5.2.2.2 Generative Models

We consider a joint distribution p (B1, . . . , BK , c). For simplicity, under the naive Bayes

(NB) assumption that bags of attributes are conditionally independent given the class label c

the most probable class label is given by:

hNB (x) , arg max
c∈C

p (c | B1, . . . , BK)

= arg max
c∈C

p (c)
K∏
k=1

p (Bk | c) .

As described in Section 4.3.2, we can consider a variety of models for p (Bk | c) including those

based on Bernoulli or multinomial event models [McCallum and Nigam (1998)], Dirichlet distri-

bution [Ferguson (1973); Minka (2012)] or Dirichlet-multinomial (Polya) distribution [Madsen

et al. (2005); Minka (2012)] (denoted by NB(Ber), NB(Mul), NB(Dir), and NB(Pol) respec-

tively).

5.2.3 Sufficient Statistics

We describe the sufficient statistics to estimate the parameters (via maximum likelihood)

for each attribute Ak and for each of the models in Section 5.2.2, and provide the corresponding

SPARQL queries to obtain these statistics.

• Aggregation function: agg(Bi
k) and the class label for each instance xi where agg is

some aggregation function. If naive Bayes is learned on the reduced data set then the

following is sufficient: number of instances with the class label c and d = agg(Bi
k) for

every combination of c and d. The former can be expressed by an aggregation query and

the later is equivalent to S(G, T , C = c, Ak, agg, d) by Lin et al. (2011).

• CCVD and NB(Pol): for each c ∈ C, V i
k for each instance xi such that ci = c. Its SPARQL

query can be expressed by:

SELECT ?x ?vj COUNT(?vj) WHERE {

?x rdf:type <T> .

?x <classLabel> c .
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?x <p1> ?v1 . ... ?vj-1 <pj> ?vj .

} GROUP BY ?x ?vj

• NB(Ber) and NB(Mul): V (c)
k for each c ∈ C. Its SPARQL query can be expressed by:

SELECT ?vj COUNT(?vj) WHERE {

?x rdf:type <T> .

?x <classLabel> c .

?x <p1> ?v1 . ... ?vj-1 <pj> ?vj .

} GROUP BY ?vj

• NB(Dir): for each c ∈ C, log(v̄kt) =
∑

i log(vikt) − log(
∑

t v
i
kt) for the subset of instances

xi such that ci = c (see Minka (2012))1. An alternative statistic though not minimal is

V i
k for each instance xi such that ci = c.

5.2.4 Approximating V i
k

In Section 5.2.3 we observe that V i
k (conditioned on some class c ∈ C) is required for a

number of models (CCVD, NB(Dir), and NB(Pol)). However, as shown by the experiment

in Section 5.4.4, obtaining V i
k for each xi is quite expensive. Instead, it is much cheaper to

obtain approximate summaries of each V i
k . For example, define V ∗kt =

∑
i v
i
kt and let V ∗k =(

v∗k1, . . . , v
∗
ksk

)
; similarly define V i

k∗ =
∑

t v
i
kt and let Vk∗ =

(
v1
k∗, . . . , v

I
k∗
)
where I is the total

number of instances. In other words, if V i
k for all i ∈ [1, I] are represented as an I-by-sk matrix

where vikt is the value of row-i and column-t, then V ∗k and Vk∗ are its column and row projections

respectively. We say that V ∗k is the projection towards the leaf of the attribute chain Ak and

hence we refer V ∗k as the leaf projection2; similarly we refer Vk∗ as the root projection. Here

we propose to approximate V i
k from the leaf and root projections in order to save the size of

communication.

The problem of reconstructing a matrix from its projections is closely related to the problem

of reconstructing a 3D representation of an object from images of its slices, that has been widely
1This requires log function which is currently not supported by SPARQL.
2Equivalently, V (c)

k is the leaf projection for those xi where ci = c.
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Figure 5.2 Distributed learning framework from multiple interlinked RDF stores. In practice
there can be interactions (queries and RDF links) between any two data sources,
in the figure only the adjacent interactions are drawn for simplicity.

studied in the field of Computerized Tomography (CT) (see Herman (2009) for a review). The

problem of reconstructing V i
k from its root and leaf projections is a special case of the matrix

reconstruction problem. Hence, we can adapt existing approaches from CT, and one of the

simplest such methods is Algebraic Reconstruction Technique (ART, Gordon et al. (1970)).

ART is an iterative algorithm for solving a system of linear equations where each equation

encodes the projection angle and its projected value from a matrix. Here we describe the

update equation in our simplified case of column and row projections. Let xit be the element

of row-i and column-t of an I-by-T matrix, representing our reconstructed matrix; and let X∗

and X∗ be its column and row projections respectively. Let V ∗ and V∗ be the true column and

row projections respectively (i.e., those computed from the original matrix). Then the update

equation is xit := xit + λ
(
V i
∗−Xi

∗
T +

V ∗t −X∗t
I

)
where λ is a relaxation parameter between 0 and 1.

5.3 Learning Classifiers from Multiple Interlinked RDF Data Stores

We now turn to the problem of learning predictive models from multiple, interlinked data

sources. Consider the scenario shown in Figure 5.2. We assume that each data source corre-

sponds to an RDF store that can be queried through an access interface (e.g. SPARQL query

server), and (optionally) a sandbox that is set up with write access for each user (i.e. learner).



61

We can use SPARQL 1.1 update queries [W3C SPARQL Working Group] to store intermediate

results of queries in the sandbox for use by the learner. Also we can use SPARQL 1.1 federated

queries [W3C SPARQL Working Group] to retrieve query results from other remote servers as

needed and store them in the sandbox for use by the learner. Thus, an RDF data set D is

fragmented across sites [1, N ] into data set fragments D1, . . . , DN such that
⋃N
n=1Dn = D; we

further assume that the learner may be subject to access constraints Z1, . . . , ZN associated with

D1, . . . , DN such that
⋃N
n=1 Zn = Z. An access constraint may restrict the class of queries that

can be answered by a data source, e.g. due to privacy considerations or the query answering

capabilities of the data source. The task of learning from multiple interlinked RDF stores can

be stated as follows.

Definition 5.2. A Distributed RDF Learner Ld is an algorithm that, given the fragments

D1, . . . , DN of a training data set D distributed across the sites [1, N ] through a set of access

interfaces A1, . . . , AN with access constraints Z =
⋃N
n=1 Zn, a hypothesis class H, and a per-

formance criterion P , outputs a classifier h ∈ H that optimizes P using only the interactions

against D that are allowed by Z.

It is useful to consider three generic ways in which an RDF data set can be fragmented

across multiple interlinked RDF stores.

5.3.1 Characterizing RDF Data Fragmentation

The simplest case of RDF data set fragmentation corresponds to the setting where there

are no links between individual data stores. However, in general, the data stores may contain

triples (edges) that link two or more data stores. E.g., a triple (i, c, j) could be in D1 while

(j, c, k) could be in D2. We refer to the set of all resources that play the role of either the subject

or the object of an RDF triple in a data set as the resources of a data set; we use the term

subject resources to refer to the set of all resources that appear only as the subject of an RDF

triple in the data set; we use the term object resources to refer to the set of all resources that

appear only as the object of an RDF triple in the data set. We can now identify three special

cases of data fragmentation across multiple interlinked RDF stores (Figure 5.3):
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Figure 5.3 Two fragmented data sources D1 and D2 showing an example of both OLNF
and ILNF, because both subject resources S1 ∪ {S3, S4} and object resources
{S2, S3} ∪ {S1, S4} for each fragment are disjoint. However it is not LFNF be-
cause S1 and S3 are shared.

1. The link-free normal form (LFNF) where different fragments do not share any resources.

2. The out-link normal form (OLNF) where different fragments do not share any subject

resources.

3. The in-link normal form (ILNF) where different fragments do not share any object re-

sources.

The scenario in Figure 5.1 is an example of OLNF. Note that formally an RDF store holds a

set of triples (edges), and in general the resources (nodes) are not necessarily owned by any

data store; thus, it is possible that a set of data sources can simultaneously conform to both

OLNF and ILNF as in Figure 5.3. However in practice, the domain name of a resource often

indicates its ownership; hence if a set of data sources satisfy both OLNF and ILNF we can use

the domain name of the resources to determine which normal form is more appropriate to use.

We further note that the three normal forms described above are not exhaustive, i.e., an RDF

data set can, in general, be fragmented in ways that do not conform to any of the three normal

forms considered here.

We observe that obtaining the statistics needed for learning classifiers from multiple RDF

stores when the data fragmentation corresponds to LFNF reduces to combining the results of the

statistical queries from the individual sources, e.g., the root and leaf projections (see Figure 5.4,

top). Because we can decompose the statistical queries in this fashion, the communication
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Figure 5.4 Computation of root projection and leaf projection under different data fragmen-
tations: (i) LFNF (top); and (ii) OLNF and ILNF (bottom).

complexity of learning classifiers from multiple RDF data sources in LFNF is equivalent to that

of learning classifiers from a single RDF store obtained by taking the union of the RDF triples

from the respective sources.

5.3.2 Learning Classifiers under OLNF and ILNF

WLOG we focus on only OLNF. We consider a chain of interlinked RDF stores (e.g. Fig-

ure 5.1). Specifically, we address the problem of obtaining the sufficient statistics in Section 5.2.3

without having to gather the data from multiple RDF stores into a central location. First we

describe how to obtain the leaf and root projections in such a setting. Consider an attribute

Ak, and let Jn be the number of resources shared between Dn and Dn+1,. We define a Jn-by-

Jn+1 matrix Mn where the value at row-rn and column-cn is the total number of paths that

connect the shared resources indexed by rn and cn respectively. We set J0 to be I (number of

instances), and set JN to be sk (number of possible values for attribute Ak). Now, we have

V ∗k = 1TM1 · · ·MN and Vk∗ = M1 · · ·MN1. We note that it is more efficient to multiply the

matrices from the left to right for V ∗k , and from right to left for Vk∗ (see Figure 5.4, bottom).

Thus, the leaf projection V ∗k =
(
v∗k1, . . . , v

∗
ksk

)
is computed starting at D1 by transferring 1TM1

to D2, and so on ending up with V ∗k at DN which is then transferred to the learner. The root

projection Vk∗ =
(
v1
k∗, . . . , v

I
k∗
)
is computed in a similar fashion starting at DN and working
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Figure 5.5 RDF Schema of Last.fm data set.

towards D1. It is easy to see that the communication costs associated with the computation of

the leaf and root projections respectively are given by sk +
∑N−1

n=1 Jn and I +
∑N−1

n=1 Jn.

In the case of V i
k required by CCVD, NB(Dir), and NB(Pol), we first gather the leaf pro-

jection V ∗k and the root projection Vk∗ as described above, and use ART to reconstruct the

corresponding V i
k (see Section 5.2.4), which is used to construct the predictive model. In the

case of aggregation, we use the approximated V i
k to compute the aggregation function agg(Bi

k).

We note that NB(Ber) and NB(Mul) classifiers can be learned from the leaf projections (for

each class c ∈ C) alone, which guarantees that the classifiers learned from an OLNF fragmented

RDF data set are identical to their centralized counterparts (that are learned from the data set

obtained by combining the fragments).

5.4 Experiments and Results

5.4.1 Data Sets

We used a real world data set crawled from a social music network Last.fm3 using its API

(its schema is shown in Figure 5.5). We selected two disjoint groups that contain approximately

equal number of users (2098/2081), and include those tracks and artists whose number of

occurrences are greater than or equal to 45 and 100, respectively. Likewise, we eliminated all

the track’s tags and artist’s tags that occurred fewer than 350 and 120 times. All collections

of tags are preprocessed by removing stop words and stemming, using Apache Lucene. The

resulting data set is converted to RDF format which includes 8340 tracks attributed to one or

more of the 3753 artists. From this data, we extracted two subsets: (i) Dataset-Track, which

includes only the tags associated with the tracks; and (ii) Dataset-Artist, which includes only
3http://www.last.fm/

http://www.last.fm/
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Table 5.1 Results for Experiment 5.4.2 that report accuracy (%) and standard deviation (in
parentheses) from 10-fold cross validation. Starred (*) indicates the OLNF model
is provably exact with respect to its centralized counterpart. Bolded indicates best
results for each column based on paired t-test on 10-fold cross validation with alpha
= 0.05.

Model
Dataset-Track Dataset-Artist

Centralized OLNF Centralized OLNF

Mode+NB 71.4(3.2) 53.2(1.2) 70.8(2.5) 59.8(1.4)
CCVD+LR 81.1(2.3) 75.7(3.5) 81.7(1.9) 68.9(6.3)

NB(Ber) 71.3(2.5) 71.3(2.5)* 69.5(1.8) 69.5(1.8)*
NB(Mul) 82.0(2.4) 82.0(2.4)* 81.7(2.5) 81.7(2.5)*
NB(Dir) 81.4(2.7) 78.0(3.3) 79.9(1.9) 74.1(4.2)
NB(Pol) 82.2(2.1) 81.6(2.4) 82.2(2.3) 81.8(2.5)

the tags associated with the artists. In both cases, the task is to predict the group of the user.

We simulate the OLNF setting by suitably fragmenting the datasets. For example in the case of

Dataset-Track we store the triples of isMember and favorite in D1 and the triples of hasTag

in D2 such that Track resources are shared between D1 and D2.

5.4.2 Learning Classifiers from OLNF RDF Data Fragments

The first set of experiments was designed to compare the performance of the proposed

approaches to learning classifiers from an RDF data set that is fragmented (in OLNF) across

multiple RDF stores with their centralized counterparts that have access to the entire data set

in a single location. We trained two aggregation models and four generative models described

in Section 5.2.2: the mode aggregation coupled with a naive Bayes classifier (Mode+NB), the

CCVD aggregation coupled with a logistic regression classifier (CCVD+LR), and the four naive

Bayes generative models NB(Ber), NB(Mul), NB(Dir), and NB(Pol). Note that NB(Ber) and

NB(Mul) need only leaf projections and therefore their models under OLNF is provably exact

with respect to its centralized counterparts. The rest of the classifiers in the OLNF setting rely

on the ART approximations of V i
k and hence their performance is a function of the quality of

the approximation. In this experiment, the termination threshold (difference between the true

projection and its ART reconstruction) is set to 5% of the size of the matrix, and λ is set to

0.25.



66

The results in Table 5.1 show that: (i) not surprisingly, the performance of Mode+NB,

CCVD+LR, NB(Dir), and NB(Pol) that rely on ART approximation of the needed statistics

in the OLNF setting is always no better than that of their centralized counterparts which do

not have to rely on the ART approximation and can instead use the statistics obtained directly

from the entire data set; (ii) NB(Pol), despite its reliance on the ART approximation in the

OLNF setting, shows performance that is competitive with its centralized counterpart although

the latter has the advantage of using statistics obtained directly from the entire data set; and

(iii) NB(Mul) surprisingly, is quite competitive with NB(Pol) in both centralized and OLNF

settings despite using less information than NB(Pol).

5.4.3 Sensitivity of ART

The previous experiment used a fixed termination threshold for the iterative ART approxi-

mation procedure. Because the performance of the classifiers that rely on ART approximations

of V i
k is a function of the quality of the approximation which in turn depends on the the number

of ART iterations, we designed an experiment to explore this dependence. In this set of experi-

ments, we used 80% of the data for training, and 20% of the data for testing. First we measure

the error of the reconstruction as estimated by (i) projection error which is the sum of absolute

differences of each element between the true and reconstructed leaf and root projections; and

(ii) matrix error which is the sum of absolute difference of each element between the true and

reconstructed matrices. We also measure the classification accuracies of the trained models in

the case of Mode+NB, CCVD+LR, NB(Dir), and NB(Pol) which make use of the ART approx-

imation. The results summarized in Figure 5.6 show that the projection error approaches zero

after a sufficiently large number of iterations; however, the matrix error remains relatively high

even after 1000 iterations. In the case of classification accuracies, we note three clear trends

shown in Figure 5.7: (i) Mode+NB using the ART approximation does not quite approach

Mode+NB that uses statistics obtained directly from the data regardless of the number of ART

iterations; (ii) the performance of NB(Dir) lags that of NB(Pol) during the first few iterations

of ART but both achieve comparable performance with increasing number of ART iterations;

and (iii) CCVD+LR starts off with the worst performance but shows steady improvement with
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Figure 5.6 Projection and matrix errors at various stages of ART approximation.
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Figure 5.7 Classification performance using data reconstructed at various stages of ART ap-
proximation.

increasing number of ART iterations. However, theoretical underpinnings of these observations

remain to be investigated.

5.4.4 Communication Complexity

The third experiment was designed to measure the communication cost of obtaining the

projections required by the ART approximation. Since the size of query is negligible compared

to the query results in our setting, we measure only the size of query results transferred, as the

size of the underlying data set is varied. We used Dataset-Track and Dataset-Artist described

in Section 5.4.1 considering subsets of users ranging from 400 to 4000 in steps of 400, retaining

in each case only the resources (tracks, artists, tags) that are connected to the subset of users.

We recorded the size of raw RDF data in TTL format, the size of leaf projection, the size of

root projection, and finally the size of matrix (stored as an adjacency list).
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Figure 5.8 Communication complexities over the size of data sets (measured by number of
Users).

The results of this experiment summarized in Figure 5.8 show that, not surprisingly, the

size of raw data as well as matrices are significantly larger than the leaf and root projections,

demonstrating the advantages of ART approximation in learning classifiers from large, OLNF-

fragmented RDF data sets over alternative approaches that transmit the data or the matrix (as

opposed to only the leaf and root projections) from the data source(s) to the learner. In the case

of Dataset-Artist, we observe that the size of matrix even exceeds that of raw data, and this

can be explained by the fact that a majority of artists are shared among (indirectly connected

to) different users which blows up the size of the matrix, whereas in the RDF representation

the artist resources and their tags only appear once in the data set.

5.5 Conclusion

5.5.1 Summary

The emergence of many interlinked, physically distributed, and autonomously maintained

RDF stores such as the LOD cloud offers unprecedented opportunities for predictive modeling

and knowledge discovery from such data. However existing machine learning approaches are

limited in their applicability because it is neither desirable nor feasible to gather all of the

data in a centralized location for analysis due to access, memory, bandwidth, computational

restrictions, and sometimes privacy or confidentiality constraints. Against this background

we propose to learn classifiers from multiple interlinked RDF stores via their SPARQL query

interfaces. Specifically we have: (i) introduced statistical query based formulations of several
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representative algorithms for learning classifiers from RDF data; (ii) introduced a distributed

learning framework to learn classifiers from multiple interlinked RDF stores; (iii) identified

three special cases of RDF data fragmentation and describe effective strategies for learning

in each case; (iv) considered a novel application of a matrix reconstruction technique from the

field of Computerized Tomography [Herman (2009)] to approximate the statistics needed by the

learning algorithm from projections using count queries, thus dramatically reducing the amount

of information transmitted from the remote data sources to the learner; and (v) reported results

of experiments with a real-world social network data set, which demonstrate the feasibility of

the proposed approach.

5.5.2 Related Work

Most of the existing work on learning predictive models from RDF data (e.g. Nickel et al.

(2012); Lösch et al. (2012)) assume that the learner has direct access to data. Lin et al.

(2011) proposed an approach to learning relational Bayesian classifiers [Neville et al. (2003b)]

from a remote RDF store in a setting where the learner can only query the RDF data store

through a restricted class of statistical queries. This paper extends the work by Lin et al.

(2011) to the setting of multiple interlinked RDF stores using a larger class of predictive models

including Mode+NB, CCVD+LR, NB(Dir) and NB(Pol) where, for practical reasons, we have

to approximate the relevant statistics. Our approach takes advantage of SPARQL 1.1 update

queries [W3C SPARQL Working Group] and federated queries [W3C SPARQL Working Group],

which extends the remote access framework first introduced in Qi et al. (2013) to multiple RDF

stores. As opposed to federated query processing approaches for RDF data [Buil-Aranda et al.

(2013); Schwarte et al. (2011); Karnstedt et al. (2012)], which focus on the problem of answering

queries formulated in a general purpose query language from multiple RDF data sources, our

focus in this paper is on answering restricted classes of statistical queries needed for learning

classifiers from RDF data. Restricting the classes of queries to those that useful in the learning

predictive models from RDF data allows us to take advantage of optimizations such as the

efficient accumulation of projections (Section 5.3.2).

The work by Lin et al. (2011) was inspired by a general learning framework proposed by
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Caragea et al. (2005) for learning classifiers from distributed tabular data [Caragea et al. (2004,

2005)]. However, to the best of our knowledge the approaches described in this paper are among

the first of their kind for learning classifiers from an RDF data set that is fragmented across

multiple interlinked RDF stores.

5.5.3 Future Work

ART, the method for reconstructing an approximation of a matrix from its projections is

among the simplest such technique originally developed in the field of CT. Other promising ma-

trix reconstruction methods worth exploring in our setting include filtered backprojection [Her-

man (2009)] and quadratic optimization [Herman (2009)]. The kinds of RDF data fragmentation

considered in this paper are relatively simple, albeit interesting special cases. It would be inter-

esting to consider learning classifiers in a setting where an RDF data set is fragmented across

multiple RDF stores that are connected through more complex linkage patterns including in

particular, trees and DAGs as opposed to the linear chains considered in this study. Lastly

it is of interest to consider richer classes of predictive models and the corresponding learning

problems, including those that model dependency between attributes (e.g. adaptations of sta-

tistical relational learning [Getoor and Taskar (2007)]), or feature construction strategies for

linked data [Rossi et al. (2012)].
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CHAPTER 6. GENERAL CONCLUSIONS

6.1 Summary and Contributions

The growing adoption of Linked Data has made it possible to link and share many disparate,

previously isolated, distributed, autonomously generated and managed data across virtually

every domain of human endeavor, including government, life sciences, geography, social media,

and commerce. This offers unprecedented opportunities for using disparate data sources in

predictive modeling and decision making in a broad range of applications ranging from scientific

discovery to public policy [Hert et al. (2011); Sahoo et al. (2009)]. However, there has been very

limited work on effective approaches to learning predictive models from Linked Data. Existing

machine learning approaches are limited in their applicability in this setting:

• Many data sets that are part of LOD are so large that it is not feasible to retrieve the

entire data set from an RDF store for local analysis due to main memory, bandwidth, or

computational constraints. In other settings, access to data may be limited due to the

privacy or confidentiality considerations [Aggarwal and Yu (2008); Wu et al. (2010)].

Aimed with overcoming this limitation, we introduce an approach (Chapter 2 [Lin

et al. (2011)]) to learning Relational Bayesian Classifiers (RBCs, [Neville et al. (2003b)])

from a single but remote RDF data store, using statistical queries through the SPARQL

endpoint of the RDF store. In Chapter 4 [Lin et al. (2013)] we generalize the representation

of a linked data instance into K-tuples of bags of feature values, and introduced a novel

type of learning problem which we call distributional instance classification. We offer an

alternative motivation, precisely formulate, and present solutions for this problem.

• RDF triples in an RDF store have often associated with them, RDF Schema (RDFS, Brick-

ley and Guha (2004)) that specify set of classes that organize RDF objects (subjects and
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objects of predicates) and predicates into type hierarchies as well as domain and range

restrictions on RDF predicates (i.e., the type of RDF objects that can appear as subjects

or objects of a predicate respectively).

Aimed with overcoming this limitation, we introduce in Chapter 3 an algorithm for

learning classifier from a remote RDF data store enriched with subclass hierarchies. Our

algorithm encodes the constraints specified in a subclass hierarchy using latent variables

in a directed graphical model, and adopts the Variational Bayesian EM approach to ef-

ficiently learn parameters. We show with several real world datasets that our solution

achieves equal or better performance compared to other state-of-art models that incorpo-

rate subclass hierarchies, and is able to scale up to large hierarchies over few thousand

nodes.

• LOD includes many loosely linked, physically distributed, autonomously maintained RDF

stores where it is neither desirable nor feasible to gather all of the data in a centralized

location for analysis, because of access, memory, bandwidth, and computational restric-

tions.

Aimed with overcoming this limitation, in Chapter 5 [Lin and Honavar (2013)] we

formulate the problem of, and provide solutions to, learning predictive models from mul-

tiple interlinked RDF stores. Specifically we extend Chapter 2 by incorporating the set

of classifiers introduced in Chapter 4, and further extend the problem by considering a

chain of multiple interlinked RDF stores. In particular we consider a novel application of

a matrix reconstruction technique from the field of Computerized Tomography [Herman

(2009)] to approximate the statistics needed by the learning algorithm from projections

using count queries, thus dramatically reducing the amount of information transmitted

from the remote data sources to the learner.

6.2 Future Work

In addition to the future work outlined at the end of each chapter, there are some potential

broader directions that may be fruitful for future studies. These are summarized as follows.



73

• Chapter 5 applies a matrix reconstruction technique to approximate the statistics needed

by the learning algorithm. However there are other approaches that may be used in the

same setting, e.g. matrix sketching [Liberty (2013)] and matrix sampling [Achlioptas

et al. (2013)] techniques. Instead of reconstructing the data matrices, these approaches

could potentially be applied to obtain a summary of the data matrices (either a sketch

or a sample) and then learn a model directly from the summary. The major challenge

would be to develop a systematic and scalable algorithm to compute such summaries in

various settings of multiple interlinked RDF stores. In certain cases these summaries could

themselves be approximated again in order to maintain tractability due to the complex

interlinking of data.

• Although Chapter 2 establishes the conditions under which the RBC models can be in-

crementally updated in response to addition or deletion of RDF data, there is still much

work to be studied in the setting where RDF stores are subject to frequent updates. In

particular, it is of interest to explore interesting cases to incrementally update models

from multiple interlinked RDF stores.

• Chapter 2 provides a relatively straightforward solution to the setting where the relevant

attributes for prediction are not known a priori, by selectively crawling the RDF data for

attributes of interest in the case of a single remote RDF store. A natural extension is to

extend selective crawling to the case of multiple interlinked RDF stores. Furthermore, by

following RDF links, other RDF stores may be incrementally discovered and crawled on

the fly.
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APPENDIX A. DERIVATION OF DISCRIMINATIVE MODELS IN

SECTION 4.3.3

Conditional Likelihood

Conditional likelihood for two-class classification problem with naive Bayes assumption

P (c = 1 | xi) =
P (xi, c = 1)

P (xi, c = 1) + P (xi, c = 0)

=
1

1 + P (xi,c=0)
P (xi,c=1)

=
1

1 + exp
(

ln
(
P (xi,c=0)
P (xi,c=1)

))
=

1

1 + exp
(

ln
(
P (xi|c=0)P (c=0)
P (xi|c=1)P (c=1)

))
=

1

1 + exp
(

ln P (c=0)
P (c=1) + ln P (xi|c=0)

P (xi|c=1)

)
=

1

1 + exp

(
ln P (c=0)

P (c=1) + ln
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1,...,B
i
K |c=0)
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i
K |c=1)
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=

1
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P (c=1) + ln
∏K
j=1

P(Bi
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P(Bi
j |c=1)

)
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1

1 + exp

(
ln P (c=0)

P (c=1) +
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j=1 ln
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j |c=0)
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j |c=1)
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=

1

1 + exp
(

ln P (c=0)
P (c=1) +

∑K
j=1

(
lnP

(
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j | c = 0

)
− lnP

(
Bi
j | c = 1
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Logistic Regression

Basic logistic regression formulation with parameter w,

P (c = 1 | xi;w) =
1

1 + exp
(

ln P (c=0)
P (c=1) +

∑K
j=1 (lnP (Bj | c = 0;w)− lnP (Bj | c = 1;w))

)
Logistic Regression for Bernoulli

Let Pcjt = θcjt is a parameter for Bernoulli for class c, jth attribute, and tth value of jth

attribute. Bjt is presence of t.

lnP (Bj | c) =

sj∑
t=1

ln
(
θ
Bjt

cjt (1− θcjt)1−Bjt

)
=

sj∑
t=1

(
ln θ

Bjt

cjt + ln (1− θcjt)1−Bjt

)
=

sj∑
t=1

(Bjt ln θcjt + (1−Bjt) ln (1− θcjt))

=

sj∑
t=1

(Bjt (ln θcjt − ln (1− θcjt)) + ln (1− θcjt))

We parametrize w.r.t. Bjt. Hence,

P (c = 1 | xi;w) =
1

1 + exp
(

ln P (c=0)
P (c=1) + w0 +

∑
j,tB

i
jtwjt

)
=

1

1 + exp
(
w0 +

∑
j,tB

i
jtwjt

)
Multinomial

lnP (Bj | c) = lnP (|Bj |) + ln f (Vj) +

sj∑
t=1

ln θ
vjt
cjt

= lnP

( sj∑
t=1

vjt

)
+ ln f (Vj) +

sj∑
t=1

vjt ln θcjt

Incorporating two classes together.

P (c = 1 | xi;w) =
1

1 + exp
(

ln P (c=0)
P (c=1) +

∑
j,t v

i
jtwjt

)
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ln P (c=0)
P (c=1) can be viewed as fixed w0. For a balanced data, ln P (c=0)

P (c=1) = 0.

Dirichlet

lnP (Bj | c) = ln
Γ
(∑sj

t=1 αcjt
)∏sj

t=1 (Γαcjt)
+

sj∑
t=1

(αcjt − 1) ln v̄jt

= ln Γ

( sj∑
t=1

αcjt

)
−

sj∑
t=1

ln (Γαcjt) +

sj∑
t=1

αcjt ln v̄jt −
sj∑
t=1

ln v̄jt

In the form of logistic regression we write:

P (c = 1 | x;α) =(
1 + exp

(
ln P (c=0)

P (c=1) +
∑K

j=1

(
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Gradient

Let hj
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Define a function hj ,
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j
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)
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j
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)
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j
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)
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Its partial derivative is

∂h0
j

(
V̄j ;α0

)
∂α0ab

= ψ0

( sj∑
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)
−
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Hence,
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(
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)
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= (−1)δc,1

(
ψ0

( sj∑
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αcjt
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sj∑
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ψ0 (αcjt) + ln v̄ab

)
Let g be a function inside of exponential.

g
(
V̄ i;α

)
= ln

P (c = 0)

P (c = 1)
+

K∑
j=1

hj
(
V̄ i
j ;α

)
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We want to maximize conditional log likelihood ` (α)

arg max
α

` (α) = arg max
α

n∑
i=1

lnP
(
ci | V̄ i;α

)
= arg max

α

n∑
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ci lnP
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Log probability is

lnP (Vj | c) = ln
Γ
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Gradient
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