Distributed Temperature Sensing using a SPIRAL Configuration UltrasonicWaveguide

Thumbnail Image
Date
2016-01-01
Authors
Periyannan, Suresh
Balasubramaniam, Krishnan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Distributed temperature sensing has important applications in the long term monitoring of critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks and buildings for fire risk. This paper presents novel techniques for such measurements, using wire in a spiral configuration and having special embodiments such a notch for obtaining wave reflections from desired locations. Transduction is performed using commercially available Piezo-electric crystal that is bonded to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes were employed. Time of fight (TOF) differences between predefined reflectors located on the waveguides are used to infer temperature profile in a chamber with temperature gradients. Both L(0,1) and T(0,1) wave modes were generated and the pros and cons of these two modes are highlighted.The ultrasonic measurements were compared with commercially available thermocouples.

Comments
Description
Keywords
Citation
DOI
Source
Copyright