Natural user interfaces for interdisciplinary design review using the Microsoft Kinect

Thumbnail Image
Date
2015-01-01
Authors
MacAllister, Anastacia
Major Professor
Advisor
Eliot Winer
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

As markets demand engineered products faster, waiting on the cyclical design processes of the past is not an option. Instead, industry is turning to concurrent design and interdisciplinary teams. When these teams collaborate, engineering CAD tools play a vital role in conceptualizing and validating designs. These tools require significant user investment to master, due to challenging interfaces and an overabundance of features. These challenges often prohibit team members from using these tools for exploring designs. This work presents a method allowing users to interact with a design using intuitive gestures and head tracking, all while keeping the model in a CAD format. Specifically, Siemens' Teamcenter® Lifecycle Visualization Mockup (Mockup) was used to display design geometry while modifications were made through a set of gestures captured by a Microsoft KinectTM in real time. This proof of concept program allowed a user to rotate the scene, activate Mockup's immersive menu, move the immersive wand, and manipulate the view based on head position.

This work also evaluates gesture usability and task completion time for this proof of concept system. A cognitive model evaluation method was used to evaluate the premise that gesture-based user interfaces are easier to use and learn with regards to time than a traditional mouse and keyboard interface. Using a cognitive model analysis tool allowed the rapid testing of interaction concepts without the significant overhead of user studies and full development cycles. The analysis demonstrated that using the KinectTM is a feasible interaction mode for CAD/CAE programs. In addition, the analysis pointed out limitations in the gesture interfaces ability to compete time wise with easily accessible customizable menu options.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015