






75

Figure 4.17: Possibility of triggering page overflow per instruction by each benchmark

5.0E+07

6.0E+07

7.0E+07

8.0E+07

Figure 4.18: Memory traffic overhead generated by fat-write handling. Data presented shows
how many bytes of extra traffic is needed across multiple simpoints

not have any overflow in FM but gives 10 overflows per ten-million instructions in LCP. In

general, a more compressed page is likely to have more overflows as there are less free space

available. However, FM is able to get both better compression ratio and lower possibility of

overflow because of its flexibility in block layout.

Since LCP and FM handle fat-write with different methods and at different cost, it is

unfair to use number of fat-writes to quantify the overhead. Instead we use bandwidth to

quantify the overhead. Figure 4.18 shows amount of extra traffic generated by FM and LCP,

respectively, to handle fat writes. For most benchmarks, both FM and LCP perform very

well with little bandwidth overhead. In some other cases, the bandwidth overhead has a

strong correlation with the frequency of heavy events in the fat write, such as page moves.

Of all benchmarks, libquantumn shows the most difference between FM and LCP. A careful

inspection of the detailed stats shows the program has very poor compressibility, thus LCP only

has few exception slots in each page, leading to a high page recompression frequency. LCP can

be designed in such a way that compression be turned off for benchmarks with high overhead

so that libquantumn could be removed from comparison. Without removing libquantumn, the



76

60.00q

80.00q

100.00q

120.00q

140.00q

160.00q

180.00q

as
ta
r

b
w
av
es

b
zi
p
2

ca
ct
u
sA
D
M

ca
lc
u
lix

ga
m
es
s

gc
c

ge
m
sF
D
TD

go
b
m
k

gr
o
m
ac
s

h
2
6
4
re
f

h
m
m
er

lb
m

le
sl
ie
3
d

lib
q
u
an
tu
m

m
cf

m
ilc

n
am

d

o
m
n
et
p
p

p
er
lb
en

ch

p
o
vr
ay

sj
en

g

so
p
le
x

sp
h
in
x3

to
n
to

xa
la
n
cb
m
k

ze
u
sm

p

G
eo

M
ea
n

Baseline

LCP

FM

Figure 4.19: Normalized IPC of single-core workloads. All IPCs are normalized to baseline
system that has uncompressed main memory

overall weighted bandwidth overhead of FM is only 29.3% of LCP. After removing libquantumn,

the ratio is 48.5%. In short, FM incurs significantly less overhead in handling fat writes.

4.6.4 Overall Performance

The performance gain from memory compression in DDR3 memory comes from several

sources. First, page faults are reduced because of the increase of effective memory capacity.

Second, the over-fetch effect may combine reduce the number of cache misses (because of

prefetching), and it also improves bandwidth utilization. Note that we do not include page

fault simulation in our evaluation work. Any speedup shown here are results from over-fetch

effect. In other words, on top of performance gain from page faults reduction.

Figure 4.19 shows the IPC speedup of single-core workloads. Uncompressed main memory

is used as baseline and all IPCs are normalized to it. On average, single core benchmarks show

3.5% improvement with LCP scheme and 5.5% improvement with FM. This is purely from

over-fetch effect. We also constructed 100 4-core random workloads using SPEC benchmarks.

As bandwidth is more likely to be the performance bottleneck in multi-core system and the

over-fetch effect helps reduces bandwidth pressure, the IPC speedup is expected to be more

prominent in 4-core workloads. Both LCP and FM have performance gain, reaching 5.1% and

7.5% SMT speedup, respectively.

4.6.5 Over-Fetch Cache

In this section, the performance of OFC (Over-Fetch Cache) is evaluated on single-core

benchmarks. A small 4KB is used as OFC to store additionally fetched data. When a memory



77

0.00q
5.00q

10.00q
15.00q
20.00q
25.00q
30.00q
35.00q
40.00q
45.00q
50.00q

as
ta
r

bw
av
es

bz
ip
2

ca
ct
us
AD

M
ca
lc
ul
ix

ga
m
es
s

gc
c

ge
m
sF
DT

D
go
bm

k
gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sje
ng

so
pl
ex

sp
hi
nx
3

to
nt
o

xa
la
nc
bm

k
ze
us
m
p

Av
er
ag
e

OFC Hit Rate

OFCkHitkRate

Figure 4.20: Hit rates of OFC (Over-Fetch Cache) for each benchmark

read request reaches memory controller, OFC is checked first to see data is already in the cache.

If so, a read request can be served immediately without actual DRAM access.

Figure 4.20 shows the hit rate of OFC. The hit rate can reach as high as 43% for some

benchmarks like cactusADM. However, for benchmarks like aster and mcf, the hit rate is

virtually zero, possibly because their memory access pattern causes thrashing in the OFC. For

other benchmarks including libquantumn and milc, their hit rate is also zero because of their

poor compressibility. The average OFC hit rate is 12%.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

2KB 4KB 8KB 16KB 32KB

OFC Hit Rate Over Different Cache Sizes

Figure 4.21: OFC hit rate of bwaves benchmark over when OFC size ranges from 2KB to 32KB

Intuitively, hit rate of the over-fetch cache increases with its size. Figure 4.21 shows the

OFC hit rate of bwaves benchmark when the size of OFC changes from 2KB to 32KB. As

expected, the hit rate improves from 8.85% to 20.44% when cache size increases. Using the

cacti cache simulator [32], we calculate that even if a large 32KB OFC is used, the cache only

occupies 0.36 mm2 chip area assuming 32nm fabrication technology. Therefore, OFC is effective

with low cost.



78

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

baseline

fm

ideal

Figure 4.22: Normalized power (full-rank Memory), normalized to full rank non-compressed
memory scheme (baseline)

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

baseline

fm

ideal

Figure 4.23: Normalized power (32-bit sub-rank Memory), normalized to 32-bit sub-ranked
non-compressed memory scheme (baseline)

4.6.6 Memory Power Evaluation

In this section, we will show how much power/energy efficiency is gained through combining

sub-ranked DRAM and compressed main memory. Power saving is mainly affected by sub-

ranking configuration and block compressibility, and these techniques/factors apply to both

FM and LCP without being affected much if at all by different page structures. Thus we only

include the FM and FM-ideal simulation. The FM-ideal mode is an ideal case of FM with no

overhead operation, thus it presents theoretical upper bound of power saving.

Figure 4.25 shows average power breakdown from all workloads. From the figure, we can

tell that the memory background power stays about the same across different sub-ranking

configurations with FM. The slight decrease of background power across different sub-ranking

configuration is caused by uneven memory requests distribution, bringing in slightly longer

power-down time. The I/O termination power is mostly decided by number of data-bus trans-

actions and their sizes. Across all configurations, we see visible saving in this part due to

reduced memory traffic. The operation power is determined by the number of micro operations



79

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

baseline

fm

ideal

Figure 4.24: Normalized power (16-bit sub-rank Memory), normalized to 16-bit sub-ranked
non-compressed memory scheme (baseline)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

RW_burst

IOTerm

Operation

Background

Figure 4.25: Memory power breakdown of multi-core workloads; y-axis is power consumption
in micro-watts

in DRAM, like precharge and activation. Whenever a request is fulfilled by the OFC or request

combining, a series of such operations can be saved, leading to considerable power savings. The

read/write burst (RW-burst) power is saved in similar manner.

Figure 4.22, 4.23 and 4.24 demonstrate power saving of all configurations. Three MEM-

M workloads give high power saving, namely MEM-M-1, MEM-M-2 and MEM-M-5. This is

because their combined compression ratios are very close to the high compressibility range

(50%). They all have considerably high OFC hit ratio (> 40%), saving the DRAM operation

power because of less memory accesses. The ILP-3 workload shows extra power consumption in

the normal FM mode, mainly due to its benchmark combination. BZip2 and perlbench happen

to be in this workload and they have extremely low compression ratio and increase memory

traffic because of fat write overhead. Of all workloads, the highest power saving is 45%. On

average, full-rank, 32-bit sub-rank and 16-bit sub-rank shows 13%, 15% and 16% power savings,

respectively, compared to the corresponding sub-ranked and non-compressed memory.



80

4.7 Summary

In this paper we present a novel flexible main memory compression design. The main goal

of this work is to find a practical memory architecture that adapts to modern computing needs.

An advanced page header BMT loaded with pointers to memory blocks makes Flexible Memory

as a lightweight memory management utility. By combining advantage of low-overhead compact

memory structure, state-of-the-art compression algorithm and techniques to reduce overhead,

Flexible Memory is able to obtain an average 1.5x memory effective capacity gain. We further

studied its potential of reducing memory traffic by utilizing an Over-Fetch Cache, which also

helps achieving an average of 14% of power saving.



81

CHAPTER 5. FLEXIBLE ECC IN COMPRESSED MEMORY

5.1 Introduction

As DRAM density and capacity scales, memory systems become more prone to memory

errors that could lead to system crash or data corruption [28, 40, 5, 6, 64, 41]. One of the

most effective way to detect and correct memory errors is to append ECC (Error Correction

Code) to data in memory, which requires specially designed devices with extra DRAM chips,

forming nine-device DIMM, to hold ECC parity bits. Extra chips incur higher power over-

head for keeping and accessing parity bits. For most commonly used SECDED (Single Error

Correction Double Error Detection) code, power overhead is about 12.5% of memory subsys-

tem power consumption. Performance of today’s portable computers (smart phones) is usually

constrained by their battery life. Energy and cooling cost is also one of the major concerns

in data centers. Reducing the power overhead without losing reliability protection is crucial

to improving performance of these systems. Selective Error Protection presented in Chapter 3

is a effective solution that focuses on lowering overall protection cost. In this chapter, we are

investigating in a design to lower the cost of ECC per protected unit capacity. It could be

combined with SEP perfectly.

Block-level hardware memory compression is a promising technique in increasing the effec-

tive memory capacity and bandwidth without significantly costing significant or even any extra

power [13, 48, 49]. Besides, we have designed and presented Flexible Memory in Chapter 4

that leverages advanced memory mapping structures to achieve high capacity gain and lower

compression overhead. Other than improving memory capacity, compression can also be helpful

in reducing cost of memory reliability protection schemes for several reasons. First, memory

compression provides free space to hold ECC code without having too add extra device, like



82

conventional ECC DIMMs. Second, the ECC bits in freed space does not cost extra power to

keep and transfer. Therefore, it is ideal if compression and memory protection can be combined

together to provide a very low-cost ECC scheme on commodity DRAM modules.

However, combining ECC and compression is non-trivial. Compressibility of data blocks

in memory varies greatly, resulting in very different free space size. Although most blocks are

expected to free up enough space for ECC, the other

Previous works [64, 65, 59, 30, 41, 38, 8] attempt to store parity bits together with data to

avoid overhead of extra chips for ECC code. By doing so, non-ECC DIMM can have protection

without added power overhead. However, at the same time effective capacity is also reduced in

order to make room for ECC. This lowers power efficiency per unit capacity. The root reason

behind the trade-off is that ECC code space overhead is fixed no matter how or where it is

stored. Thus, in order to solve this problem completely, ECC space overhead must be lowered.

Memory compression has the potential to reduce or eliminate ECC space overhead, which then

lowers power overhead.

It has been proved that memory data has considerable compressibility [49, 48, 13]. With

simple compression algorithms like BDI [50], around 50% of capacity can be freed. The freed

up space could be used to accommodate ECC code. In ideal case, this do not incur any extra

space overhead for ECC. Therefore, there is no associated power overhead.

Some recent research works studied the possibility of having a protected and compressed

main memory system without needing to add extra device. MemZip [54] is a compressed

memory design with memory reliability in mind. It does not try to utilize memory space freed

up by memory compression at all. Instead, all these spaces are dedicated for non-traditional

purposes and holding ECC is one of them. Although MemZip only brings minimum overhead,

it does not make any promise about protection coverage. Therefore, some memory regions may

be unprotected if its data does not compress well. COP [43] cleverly leverages the fact that

multiple-bit error in a single memory block is rare. And it is safe enough to use this as a criteria

to tell compressed and protected blocks apart from incompressible blocks, thus saving storage

overhead of adding extra flags. However, in rate occasions where they are indistinguishable,

COP relies on last level cache to store such blocks and prevent them from entering main memory



83

at all. Also multiple-bit error, though rare, could still happen and cause silent data corruption

in COP scheme. Frugal ECC [31] identifies that in a compressed and protected memory design,

compression algorithm should be optimized towards high protection coverage instead of good

compression ratio. Following this discovery, Frugal ECC optimized compression algorithm and

gained an improved protection ratio. However, like MemZip Frugal ECC does not provide the

ability to share extra free space to hold overflowed data, which would have to go to a reserved

compression exception region and making memory protection more costly.

In a compressed and protected memory, protection coverage is a metric about what per-

centage of memory can be protected with free space produced only by compression without

using dedicated memory space like extra chips or reserved storage to host its ECC data. A

high protection coverage signifies a lower-cost memory protection system. Improving protection

coverage is the one of the most important goals when designing a memory compression and

protection scheme.

To further improve protection coverage, we propose Flexible ECC that not only utilizes

state-of-the-art Coverage-oriented Compression algorithm, but also proposes and employees

a new Coverage-oriented block/page structure in this study, to maximize free space sharing

between different blocks and OS pages in order to ultimately make free space available for

more ECC codes.

Flexible ECC is based on Flexible Memory compression scheme for several reasons. First,

Flexible Memory scheme provides flexible memory block layout, i.e. the ability to place a

memory block anywhere in memory page and its page header BMT that can be extended for

various purposes, which all support flexible ECC code placement. We believe, this could help

making best uses of any free space that maybe unevenly distributed to different blocks within

same OS page. Second, FM provides the ability to have multiple OS pages to co-exist in same

page container and potentially allow them to share part of their free space. We believe Flexible

ECC could increase protection coverage with the help of Flexible Memory and state of the art

Coverage-oriented Compression algorithm.

Even with all optimization towards improving protection coverage, it is still possible for

some workloads to be less compressible and no space available at all for their ECC codes. It



84

is not acceptable to leave these memory data unprotected. Though Selective Error Protection

also leaves part of memory unprotected, their case is completely different ours. SEP carefully

picks which part of data needs protection according to their vulnerability or significance, thus

partly protecting memory does not lead to proportional loss of reliability. However, unprotected

region in our case is caused by compressibility of their data, not their vulnerability. It is entirely

possible that some important data has poor compressibility. Therefore, Flexible ECC design

must be able to accommodate the extreme cases while keep complication low. This calls for

the use of a dedicated memory region with flexible size to hold incompressible pages in these

extreme cases.

In this study,

• We discover that other than a compression algorithm designed towards high coverage,

flexibility to combine data and free space for ECC code can also improve ECC coverage.

• We present implementation details of Flexible ECC and evaluate its protection and per-

formance.

Rest of this chapter is organized as follows: Section 5.2 gives background information about

previous compression only schemes and a few other studies that combines memory compres-

sion with protection. Section 5.3 describes ideas behind Flexible ECC design and its detailed

implementation. Section 5.5 and Section 5.4 discuss about or experimental methodology and

evaluation results, respectively. Lastly, Section 5.6 summarize this work.

5.2 Related Works

In this section, we will discuss previous works related to designing a compressed and pro-

tected memory system.

5.2.1 Memory Compression

There are several memory compression works that do not involve memory protection but

targeting to capacity gain, like, MXT (Memory Expansion Technology) [57, 1, 58], RMCS

(Robust Memory Compression Scheme) [13] and Pekhimenko et al. proposed LCP (Linearly



85

Compressed Pages) [49, 48]. All these works attempt to achieve great compression ratio,

shooting for most capacity gain and minimizing performance/energy overhead associated with

their proposed scheme. However, they are not designed to support holding ECC code in their

free space.

5.2.2 Memory Compression and Protection

MemZip [54], however, abandons capacity enlargement as a design goal. Instead, it follows

same layout of conventional memory system, meaning that even if a memory block is compressed

to a smaller size, its allocated space is still 64 Byte (assuming cache-line size of 64 byte). This

avoids layout complication of compressed memory and any performance overhead caused by

it. Another merit of this design is its large amount of unused memory space, which is the gap

between actual memory block size and allocated block size. MemZip could easily hold ECC

code in these free spaces with minor modification. But, due to rigid memory layout, ECC code

has to tightly follow the word it is protection. And some larger free memory space can not be

shared between different blocks, so overall space utilization rate and protection coverage can

not be guaranteed.

COP [43] tries to compress each block and embed ECC to saved space to form a compressed

and protected block, while leaving other incompressible blocks untouched. Such a design usually

requires some dedicated flag bits to indicate whether a block is compressed or not so that when

reading it, memory controller knows whether it needs to decompress and verify ECC code or not,

otherwise it would become a write-only storage. However, COP identifies that in many cases

this flag is not needed because attempting to decompress and verify ECC code a compressed

block would usually result in multiple-bit error, which is very unlikely. Thus, COP could

accommodate both compressed and uncompressed blocks with little overhead. However, for a

small percentage of blocks that can not be distinguished in this way, COP stores them in last

level cache only and stop from being evicted into main memory. Performance of this approach

is limited by size of last level cache. Besides, COP can potentially hurt system performance

because it changes cache eviction and fetch cache behavior, which depends on compressibility

of memory data.



86

Frugal ECC [31] is another scheme design to both compress and protect main memory.

It optimizes compression algorithm to improve protection coverage instead of capacity gain.

Frugal also provides different protection tiers to improve protection coverage. However, page

structure of Frugal ECC prevents space sharing just like MemZip. No block can share their

extra space to help compressing another block even if they are in close proximity.

5.2.3 Coverage-oriented Compression

Coverage-oriented Compression (CoC) is proposed in Frugal ECC [31], it is the current

state-of-the-art memory compression algorithm that considers protection coverage as a major

design goal.

CoC is composed of three major components, namely Fitting Base Delta for data with

small value range, exponent compression for floating points data and frequent word pattern

for heterogeneously-typed data. FBD is in fact a revised version of Base-Delta-Immediate

compression that has larger delta ranges to increase amount of data covered under itself at

the cost of losing some compression ratio. Floating point numbers hard to compress because

of its avalanche effect, i.e. a slight change of its value may cause many binary bits to flip.

This algorithm focuses on exponent and sign part of floating point data while gives up on

compressing others parts in order to get a larger coverage. Frequent word pattern follows

similar design principal to improve compression coverage for heterogeneously-typed data.

5.3 Flexible ECC Design

Flexible ECC is designed with coverage-centered flexibility in mind. In other word, main

goal of Flexible ECC design is to maximize protection coverage with the help of memory layout

flexibility.

Protection coverage is defined as percentage of memory that is protected by specifically

ECC codes stored in memory space freed by memory compression. Therefore, even if entire

memory is protected, protection coverage might not be 100% because some part of memory

might still be protected by a dedicated space without reduced cost. The significance is that

those memory regions in compression protection coverage incurs very low or no storage overhead



87

and reduced energy overhead. Thus, increasing protection coverage is equivalent to lower cost

memory protection.

Compared to previous memory compression and protection schemes, Flexible ECC improves

protection coverage by introducing block/page level mechanisms to help incompressible data

find enough available space for their ECC from memory locations that are hard to use because

the space may not be adjacent to them. This can work on top of Coverage-oriented Compres-

sion because relying CoC alone might not be enough to always grantee high coverage. Any

compression algorithm, no matter how good it is at compressing to reduce data size can not

compress all possible data values, otherwise it would eventually compress any data value to

size zero if such compression algorithm exists and is applied to a set of data over and over to

ultimately reach zero, which is obviously unreal.Thus, there are bound to be some memory

blocks being incompressible, i.e. not having enough space to hold both its data and ECC,

which lowers protection coverage.

To illustrate the insufficiency of compression algorithm in the aspect of improving coverage,

we can think of an example like follows: Suppose 8-bit ECC is needed to protect 64-bit of data

block and a memory system contains 10 such blocks. It is possible that compression algorithm

is not able to provide 80-bit of free space for all blocks. Even in a better case where 80-bit

is generated by compression, the uneven distribution of it might cause problem. It is possible

that only two of the blocks are giving out the 80-bit space, but this space is not made available

to other eight blocks. This leads to a 20% low coverage.

Based on this observation, Flexible ECC shifts focus from compression algorithm to mem-

ory block/page management to seek improvement opportunity. We can still consider previous

example. If those two blocks are able to share their free space to the rest eight blocks, then

this memory system can reach 100% protection coverage instead of 20%. Or in other words,

a major goal of Flexible ECC is to make space available to a wider range of consumers and

give consumers more choices to store their ECC. It may seem simple to do, but most mem-

ory compression management scheme do not readily support flexibility like this. Therefore,

A well designed memory compression framework with high flexibility is needed to meet this

requirement.



88

Accordingly, we consider Flexible Memory as the best choice for Flexible ECC for several

reasons: 1) Flexible Memory has the ability to provide a compact layout that makes efficient

use of available space. 2) Flexible Memory compression scheme natively supports flexible layout

of pages and blocks with high degree of freedom, it. 3) Flexible Memory is mostly insensitive

to what compression algorithm is used.

Other than memory compression management framework, Flexible ECC has two other

major components, namely compression algorithm and ECC code. To achieve best protection

coverage, Flexible ECC compress data with state-of-the-art CoC from Frugal ECC. As for ECC

code, we choose most popular SECDED to generality.

Even though the basic idea behind compressed and protected memory of applying com-

pression on data to obtain free memory space to hold ECC is simple, there are quite some

important design/implementation details unclear. In rest of this section, we will further dis-

cuss these details to make Flexible ECC a practical design..

5.3.1 Ordering of Compression and ECC Generation

In order to have a compressed and protected memory, compression operation and ECC

generation are naturally needed. However, it is not straightforward as in what order they

should be applied to data, nor is it clear whether ECC should be generated from compressed

form of data or uncompressed form or whether ECC should be compressed at all, all of which

could make non-trivial difference in both performance and reliability.

To append ECC parity code to data in a compressed memory, there are several possible

options available to do so. These options vary from each other in subtle ways. For discussion in

this section, we would use following notation to make the representation clearer. cps() stands

for compression algorithm while ECC() represents chosen ECC coding method. data stands

for input data. Then we have four options to compress and protect data.

First option is cps(data + ECC(data)), namely generating ECC code off of uncompressed

data and concatenating them together to form a regular uncompressed ECC word. At last,

compress the ECC word altogether. This is the most natural way to compress and protect,

the only difference between it and traditional protection scheme the last step of compression.



89

However, for many frequency-based algorithms like Huffman encoding or value/pattern-based

compression algorithms like FPC, FPV and BDI, this method greatly decreases compressibility

of data, because ECC code is heterogeneous to type of data it is protection and likely to bring

in high entropy or irregularity. For algorithms that rely on having certain kind of pattern or

small value range to compress, such impact can sharply reduce compressibility or make the

data incompressible. Therefore, this option is not a good choice.

Second option is cps(ECC(data) + cps(data)). Which computes ECC parity code before

compression of data but append to it after compressed data. Then last step is compress

combined results. This does not hurt compressibility of data by adding ECC code like in

previous option any more. However, when ECC parity bit is compressed, it is weakened. Each

ECC parity bit is added to increase the Hamming distance between correct word and possible

erroneous word. When compressed, although the ECC bits are packed into a smaller space,

which is equivalent to having a shorter Hamming distance. Another more straightforward way

to understand it is that ECC code could suffer multi-bit error when there is actually only one

DRAM cell flip. This would ultimately hurt protection strength.

Besides, given generally poor compressibility of ECC parity bits, last compression would

not see much decrease in word size. Even in case it does compress successfully, protection is

weaker. Therefore, this option should not be considered either.

Third option can be represented as ECC(cps(data)) + cps(data). The difference between

this option and last one is that instead of applying ECC to uncompressed data, it tries to

append ECC to compressed data and then append generated parity bits to it. This method

requires compression of data only once before it is protected, maintaining the valuable data

pattern that can be utilized to improve compression. Afterwards, ECC code is generated and

stored in memory without being compressed. This option preserves both data compressibility

and ECC protection strength.



90

5.3.2 Coverage-Oriented Page/Block Layout Design Principles

After determining the generation process of protected block including both data and ECC,

next design target would be finding a place to store it in main memory. Their placement is a

non-trivial design issue that could greatly affect both protection coverage and performance.

Based on flexibility in data placement provided by FM and reach satisfactory performance,

we design a page/block layout following some principles.

Space sharing with high degree of freedom should be supported. This is the reason

we choose to base Flexible ECC on FM, because of its great flexibility to place a memory block

or page anywhere it is needed and the ability to extend its header BMT for reliability usages.

This is mainly used to make space sharing easier between blocks and pages. Without this

property, it would be hard to utilize all free spaces available and result in a lower coverage.

Both data and ECC should be easily addressable. Many compressed main memory

scheme complicates data layout and makes addressing harder, FM-based Flexible ECC is no

exception. This is the side effect of having great flexibility. However, FM embeds a extensible

page header that helps make it easier to address blocks and a customized page table to help

address pages and sub-pages. Flexible ECC should take advantage of them and keep data and

ECC addressable.

Two times access to retrieve data and ECC separately should be avoided. It

is possible for data and its ECC parity bits be far away from each other in terms of memory

space. It is possible DRAM would need to issue two read commands to two different row buffer

to read both ECC and data, which could potentially double access latency. Therefore, certain

limitation and/or optimization should be included to avoid cases like this.

5.3.3 Block-level Layout

Block-level layout refers to a set of methods to manage blocks within same compressed

page. In FM, a simple BMT is embedded into each compressed page. It is essentially a

set of < offset, size > pairs acting as pointers pointing to each block, either compressed or



91

uncompressed, in that page. Because it explicitly stores sizes and offsets of all blocks, each

block can be placed anywhere in the page and can have arbitrary size as needed.

Such a feature is very useful to Flexible ECC because BMT can be used to point a data

block to its ECC parity bits with some modifications. This gives a data block more options

regarding where to store its ECC bits, which translates to high protection coverage.

Therefore, we enhance BMT to FECC-BMT that supports more advanced features related

to improving protection coverage, like Easy Block Exception Handling and Block Space Sharing

(More details will be given later).

A memory block in Flexible ECC be one of the following four types based on their com-

pressibility and ECC code status:

• Compressible. A block that is compressible enough to hold at least its own ECC code

and not sharing its space to other blocks.

• Space Borrower. A block that is not compressible enough thus is borrowing space from

another block to hold its ECC code.

• Space Lender. A block that is very compressible such that is is able to lend its own space

to other blocks.

• Easy Exception Block. A block that is not compressible and not able to find another

memory block that has extra space.

Examples of these four blocks types are presented in Figure 5.2.

Figure 5.1 shows the structure of an FECC-BMT entry, all of its ECC flag value and

correspondence to above four block types. Compared to original BMT, FECC-BMT adds two

fields named ECC Flag and ECC Block ID. Note that ECC Block ID is different from its own

Block ID, which is not explicitly stored in BMT. Combining ECC Flag and ECC Block ID,

FECC-BMT could support space sharing between blocks within same page.

In the case of Compressible Block, as first block in Figure 5.2, ECC Flag are set to be

’00’, indicating that its ECC code are stored right after its data. ECC Block ID is not used in



92

Figure 5.1: Structure of Enhanced BMT in Flexible ECC, and four examples of its use case with
different ECC flag values.

this scenario. To find its ECC code, controller only needs to read out its trailing data without

extra addressing overhead.

Another type of memory block is called Space Borrower. It is the second block example

in Figure 5.2. A Space Borrower block does not have great compressibility that has to borrow

space from another block in order to be covered by ECC protection. ECC Flag for a Space

Borrower is set to ’01’ to show its status. ECC Block ID is used indicate which block is

providing needed space for it. When memory controller reads a Space Borrower, it can find its

ECC code using ECC Block ID.

Space Lender is actually the pairing part of a space borrower. It provides the space needed

by Space Borrower. A space lender is very compressible such that compressing it frees up

more space than its own EC need. So it could help another block by sharing that extra space

and become a Space Lender. Its ECC Flag bits are set to ’10’ and ECC Block ID is pointing to

its borrower. The reason we need to include ECC Block ID is because when fat-write happens

to lender, its may lose its ability to share space any more. Thus, its borrower must be found and

notified in order to find another lender to hold its ECC. Otherwise, error protection capability

or even data would be lost.

Another type of block are called Easy Exception Blocks. Because Flexible ECC is based

on FM, which allows free space be placed almost anywhere in the page. These free spaces



93

Figure 5.2: Examples of four types of blocks.

may be too small for entire memory blocks, but they act as buffer area for block expansions

or reorganizations in FM. In Flexible ECC, we can make use of them by storing ECC code in

them. They are especially useful in those cases where a block is incompressible and no other

block is allocated enough space to share. An incompressible can then pick its nearest free

space, even though it does not belong to any other block, and claim it as its dedicated ECC

block. Nearer space is preferred because they are more likely to be stored in same DRAM page

and can be accessible without having bank conflict. In previous works, such a block with no

compressibility at all has no choice but be stored in exception region with high overhead, while

Flexible ECC can handle cases like this easily with little or no overhead when there is any free

space in same page. Therefore, we call blocks like this Easy Exception Blocks.

Easy Exception Blocks are indicated by ECC Flag value of ’11’. Unlike other types of

blocks, EEB does not need size field any more because its size is always 64 Byte, otherwise, it

would not be incompressible. And 3-bit size field is then combined with 6-bit ECC Block ID

to form a 9-bit ECC Offset field, which is enough to indicate any sub-block in same page. In

the example shown in Figure 5.2, ECC of block #3 is placed in sub-block 0x1d8 indicated by

ECC Offset field.

In a word, thanks to high degree of flexibility inherited from FM and appropriate support

from FECC-BMT, Blocks within same page can freely share space with each other in order

to improve overall coverage. Any small chunk of free space can also be fully utilized to cover



94

incompressible pages with very low cost. In other word, as long as there However, this is based

on the presumption that their owner page could provide enough free space. Or in other word,

if a page is not compressible enough, block-level coverage optimization within that page would

not be able to help because of page size hard limit.

5.3.4 Page-level Layout

Given that block-level optimization efficiently utilizes available space within a page to effec-

tively improve protection coverage, and this is based on the presumption that OS page could

provide enough space. It is important to have page-level layout optimization too, which can

work together with block-level layout optimization towards achieving higher coverage.

Therefore, we design a page-level structure such that pages with limited available space can

utilize space from its peers efficiently to gain needed space.

Following the design of FM, Flexible ECC also manage pages in page container. FM requires

a page to be stored only within one page container to avoid excessive bank conflicts when reading

a page. However, this rule is in fact too tight when protection coverage is primary design goal

instead of performance. In many cases, we could alter the design a little bit to allow a page go

across page container boundary so that a less compressible page and a more compressible page

could be paired together and share space.

Pairing two pages that are in same page container is trivial and usually unnecessary. Because

if more than one pages are stored in a single page container, that means both of them are already

compressed to smaller sizes. In order to find free space in either one of the page only requires

a page expansion. Even in some cases, like one page is in a bad position that page expansion

could cause undesired overhead, an extra page table can be added to indicate that certain

sub-page is dedicated to hold overflow data and ECC with structure.

Therefore, we focus our discussion on inter page container page pairing, which includes pages

that do not compress well. We try to find the best layout that can pair two pages together so

that they can share free space to improve coverage while minimizing access overhead.

Figure 5.3 shows a layout to efficiently utilized extra space from one page to compensate

for lack of space in another page, we call it page pairing. As its name suggests, it pairs two



95

Figure 5.3: Page pairing in one super page container and their page table entries.

pages together and assign a 8KB super page container to them instead of 4KB regular page

containers. One of these two pages should start from beginning of super page container whereas

the other page should start from the end of it and grow reversely as we see in Figure 5.3 that

both first and second page grow into the mutual buffer.

The page in reverse order would be structured slightly different from other pages in its

BMT address and block offset calculation. Such a small difference should not cause a notable

difference in performance or coverage.

There are several benefits of page pairing structure. The most important one is its better

usage of free space for the page with less compressibility because mutual buffer area is always

set in middle of the super page container and each page could claim or release part of it to gain

or lose free space. Besides, the convergence-style layout keeps most part of each page within

either upper of lower half 4 KB area, which is aligned with DRAM row size. This helps reduce

bank conflicts.

Obviously, in order to support a page-pairing structure like this, page table must be re-

vised. Traditionally when two virtual pages are mapped to same physical page, it is generally

because of shared memory. However, page-pairing structure map two virtual pages to different

parts instead of sharing same memory region. Therefore, some modification to OS memory

management logic is necessary. Besides, two additional flags are needed. These flags include

a Super-Page-Container flag to show if this page is mapped to an double size (8 KB) page



96

container, instead of regular (4 KB) container. Another flag (Reversed Page flag) is needed to

show which of the two pages are placed at the end of page container with reversed ordering.

After enabling page-level space sharing through supporting page-pairing structure, a page

with insufficient space can utilize space from another page if such a page with sufficient space

exists. Even if OS could not find an appropriate pairing page at the moment, it could pre-

allocate an super page container for it and wait for compressible page to appear. However,

number of such pages should be strictly controlled otherwise a program with less compressible

data set could take up twice as much memory as it should have needed.

After combining block-level and page-level structure optimization, space sharing is greatly

improved. A block can utilize any space available in its page and a page is allowed to make use

of extra space from other pages. We believe this can help improve protection coverage.

5.3.5 Exception Memory Region

Though page-pairing layout helps improve protection coverage, it still can not guarantee a

100% coverage even combined with block-level optimization discussed before. This is because

compressibility and memory capacity poses a hard limit, which can not be overcome with

enabling space sharing. As long as this hard limit exists, there is always the possibility that

some data can not hold its own ECC data either for poor compressibility or simply lack of

available memory capacity. In this case, incompressible page should be accommodated in a

dedicated area in memory space together with its ECC in order to keep memory space 100%

covered.

However, setting up an Exception Memory Region involves complications too, like how

to minimize storage consumption and performance overhead. In fact, there are two major

problems in this issue.

First is address mapping in EMR. Unlike other parts of memory where memory blocks are

either addressed by FECC-BMT with explicit pointers or by implicit binary decomposition

mapping, Memory blocks and their ECCs together form none-power-of-two 72-byte blocks and

this causes trouble in address mapping. Since their sizes do not vary block by block, nor do they

need out-of-order block placement, it is a waste of space to have FECC-BMT included in each



97

page. For OS and user-level applications, the existence of ECC code should be transparent,

which makes address mapping even more difficult. Luckily, Segmented-BCRM memory system

design for Selective Error Protection introduced in Chapter 3 would be a perfect solution for

this problem only with some minor modifications.

Second problem is about sizing of EMR. On one hand, a small EMR may result in excessive

re-sizing that could involve large chunks of data movement, causing high latency in some mem-

ory operations. One the other hand, a large EMR could waste memory space. We therefore,

implement EMR in a balloon fashion that blows up gradually when a simple prediction shows

that in the near future more space is needed and shrinks down when it is predicted that less

space would be needed. The prediction is based on EMR utilization and delta of page numbers

in EMR in unit time.

However, in the case of failing to increase size of EMR due to memory capacity or utilization

issues, some pages would have to be evicted from physical memory space into hard disks as a

last resort. In the future, if it becomes needed, Virtual Memory would pick another least used

page and replace it with requested page.

5.4 Experimental Methodology

5.4.1 Benchmarks and Workloads

We construct single-core workloads with the SPEC CPU2006 suite [20] running with the

reference input data set. Only single-core workloads are constructed because compressibility

and protection coverage does not change according to number of cores or number or programs

running simultaneously.

During simulation, all workloads are fast-forwarded to skip initialization period as well as

a 500M instruction warm-up period. Semaphores are inserted to make sure simulations are

deterministic regarding starting point.



98

Table 5.1: Simulated System Configuration

Processor 1 core x86 64 ooo core 3.2GHz

L1 Data Cache Private, 64 Byte Block

8-way 64 KB/Core

L2 Cache (LLC) 64Byte Block

8-way, 4MB Shared

DRAM 2 Channels DDR3 800MHz

Model MT41J256M8-32M3gx8x8

Bus Frequency

tCL/tRP/tRCD

tRRD/tRC/tRAS

800 MHz

11/11/11

5/39/28

VDD/IDD0

IDD2P0/IDD2P1/IDD2N

IDD3N/IDD3P

IDD4R/IDD4W/IDD5

1.575 V/95 mA

12/37/43 mA

50/55 mA

156/145/195 mA

Cps/Decps Latency 5 cycles

ECC Code (72, 64) SECDED

Memory Sub-Ranking 32-bit sub-ranks

Simulation point length 100M Inst

5.4.2 Simulator and Configuration

Our simulator is based on Marssx86 [44], a cycle-accurate full system x86 64 simulator.

We also integrated modules to Flexible Memory and Flexible ECC. CoC (Coverage-oriented

Compression) algorithm is implemented according to descriptions of it in Frugal ECC [31].

This way, Flexible ECC and Frugal ECC can be compared fairly such that only memory

organization instead of difference in compression algorithm would make a impact on protection

coverage. Besides, An in-house detailed model of DDR3 memory system is integrated to provide

DRAM statistics. All DRAM power statistics are calculated according to the Micron power

calculator [23, 24]. Other detailed simulation parameters can be found in Table 5.1.



99

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Hard Exception

Page

Block

Figure 5.4: Distribution of compression exception handling in Flexible ECC. Block (blue bar) is ex-
ception handled by block-level methods; similarly, page means page-level methods; the rest are hard
exceptions that are higher cost and need dedicated memory region.

5.5 Evaluation

5.5.1 Compression Exceptions

Compression exceptions are enemies to efficiency of memory compression and protection

scheme. Each compression exception means extra resources including storage space and energy

budget must be spent to cover the exception.

Frugal ECC relies on CoC to reduce number compression exceptions while Flexible ECC

also has structural flexibility on top of CoC to reduce exceptions. Figure 5.4 shows the how

compression exceptions are handled in Flexible ECC.

In this figure, we can clearly see that block-level handling, including block space sharing

and easy exception (separate ECC block) takes care of most exceptions. On average, around

95.3% of them are handled by them. Out of the rest exceptions, 4.6% are handled by page-

level methods, specifically page pairing with super page container. Overall less 0.01% of all

exceptions are costly exceptions involving using reserved memory region and possibly cause two

times error. On contrary, if Frugal ECC provides same level of protection (without considering

half compression protection), all of these exceptions would be categorized as hard or costly

exceptions.

We can see that by introducing another layer of memory management that helps evening

compressibility and free space, cost of memory compression and protection can be reduced by

a large margin with Flexible ECC.



100

94.00%

96.00%

98.00%

100.00%

102.00%

104.00%

106.00%

108.00%

110.00%

Frugal ECC

Flexible ECC

Figure 5.5: IPC of all workloads normalized to that of Frugal ECC.

5.5.2 Performance

Performance improvement is tightly coupled with the reduction of compression exceptions.

Frugal ECC places overflow data from compression exception to a dedicated region, and ac-

cessing this region may cause an extra memory access than usual and second (extra) access

might incur bank conflict which would bring in more latency. This latency can be anywhere

between tens of nanoseconds to over a hundred nanoseconds.

Flexible ECC, however, provides multiple lower cost ways to handle compression exception

and related overflow data. And we have seen in Section 5.5.1 majority of them can be handled

by page or block-level flexible layout without causing significant overhead.

Figure 5.5 presents the performance of Flexible ECC in terms of IPC when normalized to

Frugal ECC as baseline. IPC improvement varies from 0.04% to 7.51% depending on workloads

compressibility and memory intensity. On average, this is a 1.67% IPC speedup. The source of

speedup is from saving unnecessary memory operations, thus shortening memory access latency.

5.6 Summary

We believe that compression is a perfect match with ECC-based memory protection because

it creates usable space out of crowded memory space to hold ECC codes with minimal or

sometimes no cost. However, combining them is non-trivial because compression targets for

high capacity while memory protection aims to provide high protection coverage with little

focus on capacity. Therefore, we study the possibility of designing a Flexible ECC scheme

based on Flexible Memory, which provides high degree of freedom to customize both layout of



101

blocks within an OS page and layout of pages in entire memory space. Such flexibility provides

the ability to adjust memory layout to enable space sharing at many different levels so that

Flexible ECC could make the most use out of freed space to improve protection coverage. Our

experiments show that Flexible ECC greatly reduces high cost compression exceptions than

previous state-of-the-art, this overall makes memory compression and protection schemes more

practical and efficient.



102

CHAPTER 6. CONCLUSION AND FUTURE WORK

Large-scale computers and clouds based on them have become a much more important part

in computing systems. Many computing tasks have been migrated from individual devices to

large-scale computers located in dedicated data centers. There are many reasons behind this

paradigm shift. Out of them, easier management high power-efficiency, strong reliability and

availability are most dominating reasons. However, when large-scale computers keep scaling

up by including more nodes, it has become challenging to maintain these properties. Memory

system, as a crucial part to many computing systems, is also facing these challenges.

We first present an efficient memory SEP mechanism to support a memory SEP system

using commodity memory modules and devices. It partitions the whole set of DRAM rows into

two regions, a non-protected region and an ECC protected region. A new address mapping

scheme called parameterized BCRM is proposed to map physical memory address into DRAM

device address components, and two efficient logic designs are presented. With this support,

the OS may dynamically adjust the sizes of the ECC protected region and the non-protected

region according to application demands. Our evaluation shows that the design incurs negligible

performance overhead and improves memory energy efficiency.

We then present Flexible Memory, a novel flexible main memory compression design. The

main goal of this work is to find a practical memory architecture that adapts to modern

computing needs. An advanced page header BMT loaded with pointers to memory blocks makes

Flexible Memory as a lightweight memory management utility. By combining advantage of low-

overhead compact memory structure, state-of-the-art compression algorithm and techniques to

reduce overhead, Flexible Memory is able to obtain an average 1.5x memory effective capacity

gain. We further studied its potential of reducing memory traffic by utilizing an Over-Fetch

Cache, which also helps achieving an average of 14% of power saving.



103

To further reduce storage and energy cost of memory protection, we designed Flexible ECC

that makes full use of available spaces in memory to hold ECC code for other blocks even though

the space is not adjacent to blocks. This provides an extra layer of system design that can

help improve protection coverage, which directly translates to lower cost of memory protection.

Flexible ECC is insensitive to compression algorithm choice or ECC code choice, and thus is

able to work with some priori compression and protection schemes. Our experiments show that

Flexible ECC provides highest known protection coverage ratio when compared with previous

state-of-the-art.

In summary, we propose three memory designs aiming to improve memory capacity, band-

width and reliability while keeping power cost low. They can be applied on a wide range of

computer systems. For small-scale systems like personal hand-held smart phones or tablets

that do not have the luxury to include large memory capacity or strong memory protection

because of hardware cost and battery lifetime concern, all three proposed schemes can help

improve in both realms. For larger-scale computers including personal computers and desktop

workstations, their growing concern over memory reliability can be resolved by implementing

either SEP or Flexible ECC, that provides low-cost ECC protection on commodity devices.

For extremely large-scale computers in data centers, Flexible Memory can be used to improve

performance of their memory system by giving low-cost capacity enlargement, higher band-

width resource and great energy efficiency. SEP and Flexible ECC can also be applied on them

to potentially strengthen reliability by using stronger ECC code and reduce reliability-related

energy cost. Overall, various types of computing systems could all benefit from these schemes

to have larger memory capacity, higher effective bandwidth and become more reliable at very

low cost.

In the future, we would like to extend our research topics to memory systems beyond DRAM

to newer memory technologies especially Non-Volatile Memory. They are considered promising

candidates to replace DRAM technology. However, they are at early stage of development and

still troubled by problems like limited write endurance, long access latency and high energy

cost per operation. We see an opportunity to have more sophisticated memory system design

to have an impact in this area and potentially make new technologies more practical and useful.



104

BIBLIOGRAPHY

[1] Abali, B., Franke, H., Poff, D. E., Saccone, R., Schulz, C. O., Herger, L. M., and Smith,

T. B. (2001). Memory expansion technology (mxt): software support and performance. IBM

Journal of Research and Development, 45(2):287–301.

[2] Ahn, J. H., Jouppi, N. P., Kozyrakis, C., Leverich, J., and Schreiber, R. S. (2009a). Future

scaling of processor-memory interfaces. In High Performance Computing Networking, Storage

and Analysis, Proceedings of the Conference on, pages 1–12.

[3] Ahn, J. H., Leverich, J., Schreiber, R. S., and Jouppi, N. P. (2009b). Multicore dimm: An

energy efficient memory module with independently controlled drams. Computer Architecture

Letters, 8(1):5–8.

[4] Alameldeen, A. R. and Wood, D. A. (2004). Frequent pattern compression: A significance-

based compression scheme for l2 caches. Dept. Comp. Scie., Univ. Wisconsin-Madison, Tech.

Rep, 1500.

[5] Baumann, R. (2005). Soft errors in advanced computer systems. IEEE Design & Test of

Computers, 22(3):258–266.

[6] Borucki, L., Schindlbeck, G., and Slayman, C. (2008). Comparison of accelerated DRAM

soft error rates measured at component and system level. In Proc. of IRPS, pages 482–487.

[7] Chen, G., Kandemir, M., Irwin, M. J., and Memik, G. (2005). Compiler-directed selective

data protection against soft errors. In Proc. of DAC, pages 713–716.

[8] Chen, L., Cao, Y., and Zhang, Z. (2013). E3CC: A memory error protection scheme

with novel address mapping for subranked and low-power memories. ACM Transactions on

Architecture and Code Optimization (TACO), 10(4):32:1–32:22.



105

[9] Corp., I. Intel 64 and ia-32 architectures software developer manuals. http://www.intel.

com/content/www/us/en/processors/architectures-software-developer-manuals.

html. Accessed: Oct. 1st 2014.

[10] Danilak, R. (2006). Transparent error correction code memory system and method. US

Patent 7,117,421.

[11] Dell, T. J. (1997). A white paper on the benefits of chipkill-correct ecc for pc server main

memory. IBM Microelectronics Division, pages 1–23.

[12] Denning, P. J. (1970). Virtual memory. ACM Comput. Surv., 2(3):153–189.

[13] Ekman, M. and Stenstrom, P. (2005). A robust main-memory compression scheme. In

Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd International Symposium on,

pages 74–85.

[14] Fan, X., Weber, W.-D., and Barroso, L. A. (2007). Power provisioning for a warehouse-

sized computer. In Proceedings of the 34th Annual International Symposium on Computer

Architecture, pages 13–23.

[15] Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., and Brightwell, R. (2012).

Detection and correction of silent data corruption for large-scale high-performance com-

puting. In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, page 78.

[16] Gao, Q. (1993). The Chinese remainder theorem and the prime memory system. In Proc.

of ISCA, pages 337–340.

[17] Govindavajhala, S. and Appel, A. (2003). Using memory errors to attack a virtual machine.

In Security and Privacy, 2003. Proceedings. 2003 Symposium on, pages 154–165.

[18] Haertel, M. J., Polzin, R. S., Kocev, A., and Steinman, M. B. (2012). Ecc implementation

in non-ecc components. US Patent 8,135,935.

[19] Hamming, R. (1950). Error correcting and error detection codes. Bell System Technical

Journal, 29(2):147–160.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


106

[20] Henning, J. L. (2006). Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.

News, 34(4):1–17.

[21] Hsiao, M. (1970). A class of optimal minimum odd-weight-column SEC-DED codes. IBM

Journal of Research and Development, 14(4):395–401.

[22] Hwang, A. A., Stefanovici, I., and Schroeder, B. (2012). Cosmic rays don’t strike twice:

Understanding the nature of DRAM errors and the implications for system design. In Proc.

of ASPLOS, pages 111–122.

[23] Inc., M. T. Micron system power calculator. http://www.micron.com/~/media/

Documents/Products/Technical%20Note/DRAM/TN41_01DDR3_Power.pdf. Accessed: Aug.

4th 2014.

[24] Inc., M. T. Micron system power calculator. http://www.micron.com/~/media/

Documents/Products/Power%20Calculator/DDR3_Power_Calc.XLSM. Accessed: Aug. 4th

2014.

[25] Intel Corproation (2015). Intel 64 and IA-32 architectures optimization reference

manual. http://www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-optimization-manual.html.

[26] Jacob, B., Ng, S. W., and Wang, D. T. (2008). Memory Systems Cache, DRAM, Disk.

Morgan Kaufmann.

[27] Jian, X., Duwe, H., Sartori, J., Sridharan, V., and Kumar, R. (2013). Low-power, low-

storage-overhead chipkill correct via multi-line error correction. In Proceedings of the Inter-

national Conference on High Performance Computing, Networking, Storage and Analysis,

pages 24:1–24:12.

[28] Johnston, A. H. (2000). Scaling and technology issues for soft error rates. In Proc. of

Annual Conference on Reliability.

http://www.micron.com/~/media/Documents/Products/Technical%20Note/DRAM/TN41_01DDR3_Power.pdf
http://www.micron.com/~/media/Documents/Products/Technical%20Note/DRAM/TN41_01DDR3_Power.pdf
http://www.micron.com/~/media/Documents/Products/Power%20Calculator/DDR3_Power_Calc.XLSM
http://www.micron.com/~/media/Documents/Products/Power%20Calculator/DDR3_Power_Calc.XLSM
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html


107

[29] Kalampoukas, L., Nikolos, D., Efstathiou, C., Vergos, H. T., and Kalamatianos, J. (2000).

High-speed parallel-prefix modulo 2n-1 adders. IEEE Transactions on Computers, 49(7):673–

680.

[30] Kim, J., Sullivan, M., and Erez, M. (2015a). Bamboo ecc: Strong, safe, and flexible codes

for reliable computer memory. In High Performance Computer Architecture (HPCA), 2015

IEEE 21st International Symposium on, pages 101–112.

[31] Kim, J., Sullivan, M., Gong, S.-L., and Erez, M. (2015b). Frugal ecc: efficient and versa-

tile memory error protection through fine-grained compression. In Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis,

pages 12:1–12:12.

[32] Labs, H. Cacti 5.3. http://quid.hpl.hp.com:9081/cacti/index.y. Accessed: Aug.

2nd 2014.

[33] Lee, J.-S., Kim, S.-D., and Weems, C. C. (2002). Performance analysis of a selectively

compressed memory system. Microprocessors and Microsystems, 26(2):63–76.

[34] Lee, K., Shrivastava, A., Issenin, I., Dutt, N., and Venkatasubramanian, N. (2006). Mit-

igating soft error failures for multimedia applications by selective data protection. In Pro-

ceedings International Conference on Compilers, Architecture and Synthesis for Embedded

Systems, pages 411–420.

[35] Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., and Keller, T. (2003).

Energy management for commercial servers. Computer, 36(12):39 – 48.

[36] Lei Fan, M. R. (2004). Implementation and energy analysis of base-delta-immediate com-

pression. Technical report.

[37] Li, C., Ding, C., and Shen, K. (2007). Quantifying the cost of context switch. In Proceedings

of the 2007 workshop on Experimental computer science.

http://quid.hpl.hp.com:9081/cacti/index.y


108

[38] Mehrara, M. and Austin, T. (2008). Exploiting selective placement for low-cost memory

protection. ACM Transactions on Architecture and Code Optimization (TACO), 5(3):14:1–

14:24.

[39] Micron Technology, Inc. (2014). DDR3 SDRAM MT41J256M8-32 Megx8x8Banks.

http://html.alldatasheet.com/html-pdf/506436/MICRON/MT41J256M8/9219/41/

MT41J256M8.html.

[40] Mukherjee, S., Emer, J., and Reinhardt, S. K. (2005). The soft error problem: an archi-

tectural perspective. In Proc. of HPCA, pages 243–247.

[41] Nair, P. J., Kim, D.-H., and Qureshi, M. K. (2013). ArchShield: Architectural framework

for assisting DRAM scaling by tolerating high error rates. In Proc. of ISCA, pages 72–83.

[42] Pagiamtzis, K. and Sheikholeslami, A. (2006). Content-addressable memory (cam) circuits

and architectures: a tutorial and survey. Solid-State Circuits, IEEE Journal of, 41(3):712 –

727.

[43] Palframan, D. J., Kim, N. S., and Lipasti, M. H. (2015). Cop: To compress and protect

main memory. In Proceedings of the 42Nd Annual International Symposium on Computer

Architecture, pages 682–693.

[44] Patel, A., Afram, F., Chen, S., and Ghose, K. (2011a). Marss: A full system simulator

for multicore x86 cpus. In Proceedings of the 48th Design Automation Conference, pages

1050–1055.

[45] Patel, A., Afram, F., Chen, S., and Ghose, K. (2011b). MARSSx86: A full system simulator

for x86 CPUs. In Proc. of DAC, pages 1050–1055.

[46] Patel, R. A. and Boussakta, S. (2007). Fast parallel-prefix architectures for modulo 2n-1 ad-

dition with a single representation of zero. Computers, IEEE Transactions on, 56(11):1484–

1492.

http://html.alldatasheet.com/html-pdf/506436/MICRON/MT41J256M8/9219/41/MT41J256M8.html
http://html.alldatasheet.com/html-pdf/506436/MICRON/MT41J256M8/9219/41/MT41J256M8.html


109

[47] Patterson, D. A. and Hennessy, J. L. (2008). Computer Organization and Design, Fourth

Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series

in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., 4th edition.

[48] Pekhimenko, G., Mowry, T. C., and Mutlu, O. (2012a). Linearly compressed pages: A

main memory compression framework with low complexity and low latency. In Proceedings of

the 21st international conference on Parallel architectures and compilation techniques, pages

489–490.

[49] Pekhimenko, G., Seshadri, V., Kim, Y., Xin, H., Mutlu, O., Gibbons, P. B., Kozuch,

M. A., and Mowry, T. C. (2013). Linearly compressed pages: a low-complexity, low-latency

main memory compression framework. In Proceedings of the 46th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 172–184.

[50] Pekhimenko, G., Seshadri, V., Mutlu, O., Gibbons, P. B., Kozuch, M. A., and Mowry,

T. C. (2012b). Base-delta-immediate compression: practical data compression for on-chip

caches. In Proceedings of the 21st international conference on Parallel architectures and

compilation techniques, pages 377–388.

[51] Reed, I. S. and Solomon, G. (1960). Polynomial codes over certain finite fields. Journal

of the society for industrial and applied mathematics, 8(2):300–304.

[52] Schroeder, B., Pinheiro, E., and Weber, W.-D. (2009). DRAM errors in the wild: A

large-scale field study. In Proc. of SIGMETRICS, volume 37, pages 193–204.

[53] Semiconductor, L. (2012). Rd1025 - ecc module. Reference Design 1025.

[54] Shafiee, A., Taassori, M., Balasubramonian, R., and Davis, A. (2014). Memzip: Exploring

unconventional benefits from memory compression. In High Performance Computer Archi-

tecture (HPCA), 2014 IEEE 20th International Symposium on, pages 638–649.

[55] Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B., Stearley, J., Shalf, J.,

and Gurumurthi, S. (2015). Memory errors in modern systems: The good, the bad, and the



110

ugly. In Proceedings of the Twentieth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 297–310.

[56] Teng, M.-H. (1983). Comments on ”the prime memory systems for array access”. ACM

Transactions on Computers (TC), C-32(11).

[57] Tremaine, R. B., Franaszek, P. A., Robinson, J. T., Schulz, C. O., Smith, T. B., Wazlowski,

M. E., and Bland, P. M. (2001a). Ibm memory expansion technology (mxt). IBM Journal

of Research and Development, 45(2):271–285.

[58] Tremaine, R. B., Har, D., Mak, K.-K., Smith, T. B., Wazlowski, M., and Arramreddy, S.

(2001b). Pinnacle: Ibm mxt in a memory controller chip. IEEE Micro, 21(2):56–68.

[59] Udipi, A. N., Muralimanohar, N., Balasubramonian, R., Davis, A., and Jouppi, N. P.

(2012). LOT-ECC: Localized and tiered reliability mechanisms for commodity memory sys-

tems. In Proc. of ISCA, pages 285–296.

[60] Udipi, A. N., Muralimanohar, N., Chatterjee, N., Balasubramonian, R., Davis, A., and

Jouppi, N. P. (2010). Rethinking dram design and organization for energy-constrained multi-

cores. ACM SIGARCH Computer Architecture News, 38(3):175–186.

[61] Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall: implications of the

obvious. ACM SIGARCH computer architecture news, 23(1):20–24.

[62] Yang, J. and Gupta, R. (2002). Frequent value locality and its applications. ACM Trans.

Embed. Comput. Syst., 1(1):79–105.

[63] Yang, J., Zhang, Y., and Gupta, R. (2000). Frequent value compression in data caches. In

Proceedings of the 33rd Annual ACM/IEEE International Symposium on Microarchitecture,

pages 258–265.

[64] Yoon, D. H. and Erez, M. (2010). Virtualized and flexible ECC for main memory. In Proc.

of ASPLOS, pages 397–408.

[65] Yoon, D. H. and Erez, M. (2011). Virtualized ECC: Flexible reliability in main memory.

IEEE Micro, 31(1):11–19.



111

[66] Zhang, Y., Yang, J., and Gupta, R. (2000). Frequent value locality and value-centric data

cache design. SIGARCH Comput. Archit. News, 28(5):150–159.

[67] Zheng, H., Lin, J., Zhang, Z., Gorbatov, E., David, H., and Zhu, Z. (2008). Mini-rank:

adaptive DRAM architecture for improving memory power efficiency. In Proc. of MICRO,

pages 210–221.

[68] Zhou, P., Zhao, B., Du, Y., Xu, Y., Zhang, Y., Yang, J., and Zhao, L. (2009). Frequent

value compression in packet-based noc architectures. In Proceedings of the 2009 Asia and

South Pacific Design Automation Conference, pages 13–18.

[69] Zimmermann, R. (1999). Efficient vlsi implementation of modulo (2 n±1) addition and

multiplication. In Computer Arithmetic, 1999. Proceedings. 14th IEEE Symposium on, pages

158–167.


