Bayesian models and inferential methods for forecasting disease outbreak severity

Thumbnail Image
Date
2016-01-01
Authors
Michaud, Nicholas
Major Professor
Advisor
Jarad Niemi
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
Statistics
Abstract

Timely monitoring and prediction of the trajectory of seasonal influenza epidemics allows hospitals and medical centers to prepare for, and provide better service to, patients with influenza. The U.S. Outpatient Influenza-like Illness Surveillance Network, or ILINet, collects data on influenza-like illnesses from over 3,300 health care providers, and uses these data to produce indicators of current influenza epidemic severity.

ILINet data provide an unbiased estimate of the severity of a season's influenza epidemic, and are typically reported at a lag of about two weeks.

Other sources of influenza severity, such as indices calculated from search engine query data from Google, Twitter, and Wikipeida, are provided in near-real time. However, these sources of data are less direct measurements of influenza severity than ILINet indicators, and are likely to suffer from bias.

We begin by describing general methods for inference on state space models implemented in the NIMBLE R package, and demonstrate these inferential methods as applied to influenza outbreak forecasting. We then examine model specifications to estimate epidemic severity which incorporate data from both ILINet

and other real-time, possibly biased sources. We fit these models using Google Flu Trends data, which uses the number of Google searches for influenza related keywords to calculate an estimate of epidemic severity.

We explicitly model the possible bias of the Google Flu Trends data, which allows us to make epidemic severity predictions which take advantage of the recency of Google Flu Trends data and the accuracy of ILINet data, and we preform estimation using Bayesian methods. Models with and without explicit bias modeling are compared to models using only ILINet data, and it is found that including GFT data significantly improves forecasting accuracy of epidemic severity. We also propose hierarchical models which incorporate multiple seasons of influenza data, and evaluate the forecasting benefits that hierarchical modeling confers.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2016