Supplementary Information: Crystal-crystal phase transformation via surface-induced virtual pre-melting

Valery I Levitas1*, Zhaohui Ren2, Yuewu Zeng2,3, Ze Zhang2,3 Gaorong Han2*

1Departments of Aerospace Engineering, Mechanical Engineering and Material Science and Engineering, Iowa State University, Ames, Iowa 50011, USA.

3State key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Cyrus Tang Centre for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, P. R. China.

1Center of Electron microscope of Zhejiang University, Hangzhou 310027, P. R. China
Movie S1. Large change in shape of the sample from rod to cube during heating at 600°C. This video was recorded about 1 min.

In-situ XRD investigation. In-situ XRD patterns of pre-perovskite PbTiO\textsubscript{3} nanofibers are shown in Fig. S1. Below 500°C, no phase transition has been observed for pre-perovskite PbTiO\textsubscript{3} nanofibers from Fig. S1a. At 550°C, obvious and new diffraction peaks grow in the XRD pattern, compared to that at 500°C, which is emphasized by a rectangular frame (dot line) in Fig. S1a. At 700°C (Fig. S1b), another phase has been obtained, which can be indexed into a conventional perovskite PbTiO\textsubscript{3} with cubic structure (a=3.97Å, space group: Pm-3m) (Glazer A.M., Mabud S.A. Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO\textsubscript{3}. *Acta Cryst.* B 1978, 34, 1065-1070). When temperature decreasing to 25°C again (Fig. S1b), this cubic PbTiO\textsubscript{3} transforms into a typical tetragonal perovskite PbTiO\textsubscript{3} (a=3.90Å, c=4.15 Å, space group: P4mm).
Fig. S1 (a) In-situ XRD patterns of pre-perovskite PbTiO₃ nanofibers at different temperature. (b) Indexed XRD patterns at several temperature points deriving from Fig. S1a. Pre-perovskite PbTiO₃: PP-PbTiO₃; Cubic perovskite PbTiO₃: CP-PbTiO₃; Tetragonal perovskite PbTiO₃: TP-PbTiO₃.
Fig. S2 *In-situ* TEM investigation of perovskite PbTiO$_3$ nanocrystals after phase transformation of pre-perovskite PbTiO$_3$ nanofibers at 600°C: (a) TEM image of perovskite PbTiO$_3$ nanocrystals; (b) and (c) Selected area electron diffraction pattern and HRTEM image of a PbTiO$_3$ nanocrystal as arrow points in Fig. S2a. These results confirm that the nanocrystals are single-crystal in nature, which can indexed into a conventional cubic structure (a=3.97Å, space group: Pm-3m) (3).
Fig. S3 XRD patterns of the pre-perovskite PbTiO\textsubscript{3} nanofibers after annealing in air for different time at 650°C. Note that the annealed sample for 10min at 650°C was quickly quenched to room temperature. The sample consists of PP and perovskite PbTiO\textsubscript{3} phase after 10min annealing and quick cooling to room temperature, while PbTiO\textsubscript{3} nanofibers adopt single tetragonal perovksite structure when the heating time is up to 30min and above.
Fig. S4 XRD patterns of the pre-perovskite PbTiO$_3$ nanofibers after annealing in air for different time at 800°C. The annealed sample after 5min annealing at 800°C was quickly quenched to room temperature. After heated in air for 5min at 800°C, the PP nanofibers almost transform into perovskite ones, and in particular, the regular morphology of the nanofibers basically keep.
Fig. S5 SEM images of the samples prepared at different conditions: (a) as-prepared by hydrothermal method; (b) annealed in air for 10 min at 650°C, and then quickly quenched to room temperature; (c) annealed in air for 60 min at 650°C and (d) annealed in air for 5 min at 800°C, and then quickly quenched to room temperature.