Campus Units

Chemistry, Materials Science and Engineering, Mathematics, Ames Laboratory

Document Type

Article

Publication Date

2009

Journal or Book Title

The Journal of Chemical Physics

Volume

130

Issue

9

First Page

094701

DOI

10.1063/1.3078033

Abstract

Scanning tunneling microscopy studies reveal that trace amounts of adsorbed S below a critical coverage on the order of 10 mML have little effect on the coarsening and decay of monolayer Ag adatom islands on Ag(111) at 300 K. In contrast, above this critical coverage, decay is greatly accelerated. This critical value appears to be determined by whether all S can be accommodated at step edges. Accelerated coarsening derives from the feature that the excess S (above that incorporated at steps) produces significant populations on the terraces of metal-sulfur complexes, which are stabilized by strong Ag–S bonding. These include AgS2, Ag2S2, Ag2S3, and Ag3S3. Such complexes are sufficiently populous and mobile that they can potentially lead to greatly enhanced metal mass transport across the surface. This picture is supported by density functional theory analysis of the relevant energetics, as well as by reaction-diffusion equation modeling to assess the mechanism and degree of enhanced coarsening.

Comments

The following article appeared in The Journal of Chemical Physics 130, no. 9 (2009): 094701, doi:10.1063/1.3078033.

Rights

Copyright 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS