Ab Initio Molecular Orbital Investigation of the Unimolecular Decomposition of CH3SiH2+

Thumbnail Image
Supplemental Files
Date
1995
Authors
Gordon, Mark
Pederson, L. A.
Bakhtiar, R.
Jacobson, D. B.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

The potential energy surface for the decomposition of CH3SiH2+ was studied by ub initio electronic structure theory. At the MP2/6-31G(d,p) level of theory, CH3SiH2+ is the only minimum energy structure on the SiCH5+ potential energy surface. Lower levels of theory reported that +CH2SiH3 was also a local minimum, about 40 kcal/mol higher in energy with only a small (ca. 1-2 kcdmol) banier for conversion back to CH3SiH2+. However, at higher levels of theory, the C, structure of +CHzSiH3 has an imaginary frequency, indicating that it is a saddle point rather than a local minimum on the potential energy surface. The 0 K reaction enthalpies for 1,1 -dehydrogenation from silicon, 1,2-dehydrogenation, 1,l -dehydrogenation from carbon, and demethanation were calculated to be 30.2,69.1, 107.3, and 45.3 kcdmol, respectively. Activation energies (0 K) were calculated at the MP4/6-311++G(2df,2pd) level of theory with the classical barriers subsequently adjusted for zero-point vibrational energies. The 0 K activation energies for 1,l-dehydrogenation from silicon, l,Zdehydrogenation, and demethanation are predicted to be 66.6, 72.7, and 73.0 kcavmol, respectively. All attempts to locate a transition state for the insertion of the carbene-like species, CHSiHZ+, into Hz (reverse of the 1,l-dehydrogenation from carbon) were unsuccessful. This is not surprising since analogous carbene insertions are known to occur without a barrier. Thus, we conclude that this 1,l-H2 elimination from carbon proceeds monotonically uphill. The closed-shell structures for the products of the above reactions (CH3Si+, CH2SiH+, and CHSiH2+) were calculated at the MP2/6-31G(p,d) level of theory. Finally, triplet products were also examined.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry 99 (1995): 148, doi:10.1021/j100001a026. Copyright 1995 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 1995
Collections