Campus Units

Chemistry, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

2007

Journal or Book Title

Journal of Chemical Physics

Volume

127

First Page

1

Last Page

19

DOI

10.1063/1.2805392

Abstract

An analytical expression is found for the accurate ab initiopotential energy curve of the fluorine molecule that has been determined in the preceding two papers. With it, the vibrational and rotational energy levels of F2 are calculated using the discrete variable representation. The comparison of this theoretical spectrum with the experimental spectrum, which had been measured earlier using high-resolution electronic spectroscopy, yields a mean absolute deviation of about 5cm−1 over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30cm−1 of the experimental value of 12953±8cm−1. The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation,spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev.41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.

Comments

The following article appeared in Journal of Chemical Physics 127 (2007): 204313, and may be found at doi:10.1063/1.2805392.

Rights

Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS