Combined Fragment Molecular Orbital Cluster in Molecule Approach to Massively Parallel Electron Correlation Calculations for Large Systems

Thumbnail Image
Supplemental Files
Date
2015-03-01
Authors
Findlater, Alexander
Zahariev, Federico
Gordon, Mark
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

The local correlation “cluster-in-molecule” (CIM) method is combined with the fragment molecular orbital (FMO) method, providing a flexible, massively parallel, and near-linear scaling approach to the calculation of electron correlation energies for large molecular systems. Although the computational scaling of the CIM algorithm is already formally linear, previous knowledge of the Hartree–Fock (HF) reference wave function and subsequent localized orbitals is required; therefore, extending the CIM method to arbitrarily large systems requires the aid of low-scaling/linear-scaling approaches to HF and orbital localization. Through fragmentation, the combined FMO-CIM method linearizes the scaling, with respect to system size, of the HF reference and orbital localization calculations, achieving near-linear scaling at both the reference and electron correlation levels. For the 20-residue alanine α helix, the preliminary implementation of the FMO-CIM method captures 99.6% of the MP2 correlation energy, requiring 21% of the MP2 wall time. The new method is also applied to solvated adamantine to illustrate the multilevel capability of the FMO-CIM method.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry A 119 (2015): 3587, doi:10.1021/jp509266g. Copyright 2015 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections