Taking Advantage of Gold’s Electronegativity in R4Mn3–xAu10+x (R = Gd or Y; 0.2 ≤ x ≤ 1)

Thumbnail Image
Supplemental Files
Date
2014-01-01
Authors
Samal, Saroj
Pandey, Abhishek
Johnston, D. C.
Corbett, John
Miller, Gordon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, Gordon
University Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyChemistry
Abstract

Ternary R4Mn3–xAu10+x (R = Gd or Y; 0.2 ≤ x ≤ 1) compounds have been synthesized and characterized using single-crystal X-ray diffraction. The structure is a ternary variant of orthorhombic Zr7Ni10 (oC68, space group Cmca) and is isostructural with Ca4In3Au10. The structure contains layers of Mn-centered rectangular prisms of gold (Mn@Au8), interbonded via Au atoms in the b-c plane, and stacked in a hexagonal close packed arrangement along the a direction. These layers are bonded via additional Mn atoms along the a direction. The rare-earth metals formally act as cations and fill the rest of the space. The structure could also be described as sinusoidal layers of gold atoms, which are interconnected through Au–Au bonds. The magnetic characteristics of both compounds reveal the presence of nearly localized Mn magnetic moments. Magnetization M measurements of Y4Mn2.8Au10.2 versus temperature T and applied magnetic field H demonstrate the dominance of antiferromagnetic (AFM) interactions in this compound and indicate the occurrence of noncollinear AFM ordering at TN1 = 70 K and a spin reorientation transition at TN2 = 48 K. For the Gd analogue Gd4Mn2.8Au10.2, the M(H,T) data instead indicate the dominance of ferromagnetic interactions and suggest a ferrimagnetic transition at TC ≈ 70 K for which two potential ferrimagnetic structures are suggested. Linear muffin-tin orbital calculations on the stoichiometric composition “Y4Mn3Au10” using the local spin density approximation indicate a ∼1 eV splitting of the Mn 3d states with nearly filled majority spin states and partially filled minority spin states at the Fermi level resulting in approximately four unpaired electrons per Mn atom in the metallic ground state. The crystal orbital Hamilton population analyses demonstrate that ∼94% of the total Hamilton populations originate from Au–Au and polar Mn–Au and Y–Au bonding.

Comments

Reprinted (adapted) with permission from Chem. Mater., 2014, 26 (10), pp 3209–3218. Copyright 2014 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections