Comparative Study of Rhodium and Iridium Porphyrin Diaminocarbene and N-Heterocyclic Carbene Complexes

Thumbnail Image
Supplemental Files
Date
2014-04-01
Authors
Anding, Bernie
Ellern, Arkady
Woo, L. Keith
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

Iridium meso-tetratolylporphyrinato (TTP) mono- and bis-diaminocarbene complexes, [Ir(TTP)[═C(NHBn)(NHR)]2–x(C≡NBn)x]BF4, where R = Bn, n-Bu and x = 1, 0, were synthesized by nucleophilic addition of amines to the bis-isocyanide complex [Ir(TTP)(C≡NBn)2]BF4. Rhodium and iridium porphyrinato N-heterocyclic carbene (NHC) complexes M(TTP)CH3(NHC), where NHC = 1,3-diethylimidazolylidene (deim) or 1-(n-butyl)-3-methylimidazolylidene (bmim), were prepared by the addition of the free NHC to M(TTP)CH3. The NHC complexes displayed two dynamic processes by variable-temperature NMR: meso-aryl–porphyrin C–C bond rotation and NHC exchange. meso-Aryl–porphyrin C–C bond rotation was exhibited by both rhodium and iridium complexes at temperatures ranging between 239 and 325 K. Coalescence data for four different complexes revealed ΔG⧧ROT values of 59 ± 2 to 63 ± 1 kJ·mol–1. These relatively low rotation barriers may result from ruffling distortions in the porphyrin core, which were observed in the molecular structures of the rhodium and iridium bmim complexes. Examination of NHC exchange with rhodium complexes by NMR line-shape analyses revealed rate constants of 3.72 ± 0.04 to 32 ± 6 s–1 for deim displacement by bmim (forward reaction) and 2.7 ± 0.4 to 18 ± 2 s–1 for bmim displacement by deim (reverse reaction) at temperatures between 282 and 295 K, corresponding to ΔGf⧧ of 65.2 ± 0.6 kJ·mol–1 and ΔGr⧧ of 66.2 ± 0.5 kJ·mol–1, respectively. Rates of NHC exchange with iridium were far slower, with first-order dissociation rate constants of (1.75 ± 0.04) × 10–4 s–1 for the forward reaction and (1.2 ± 0.1) × 10–4 s–1 for the reverse reaction at 297.1 K. These rate constants correspond to ΔG⧧ values of 94.2 ± 0.6 and 95.2 ± 0.2 kJ·mol–1 for the forward and reverse reactions, respectively. Equilibrium constants for the exchange reactions were 1.6 ± 0.2 with rhodium and 1.56 ± 0.04 with iridium, favoring the bmim complex in both cases, and the log(K) values for NHC binding to M(TTP)CH3 were 4.5 ± 0.3 (M = Rh) and 5.4 ± 0.5 (M = Ir), as determined by spectrophotometric titrations at 23 °C. The molecular structures also featured unusually long metal–Ccarbene bonds for the bmim complexes (Rh–CNHC: 2.255(3) Å and Ir–CNHC: 2.194(4) Å).

Comments

Reprinted (adapted) with permission from Organometallics 33 (2014): 2219, doi:10.1021/om500081w. Copyright 2014 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections