Preferential partner selection in an evolutionary study of Prisoner's Dilemma

No Thumbnail Available
Date
1996
Authors
Ashlock, Dan
Smucker, Mark
Stanley, E. Ann
Tesfatsion, Leigh
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
EconomicsMathematics
Abstract

Partner selection is an important process in many social interactions, permitting individuals to decrease the risks associated with cooperation. In large populations, defectors may escape punishment by roving from partner to partner, but defectors in smaller populations risk social isolation. We investigate these possibilities for an evolutionary Prisoner's Dilemma in which agents use expected payoffs to choose and refuse partners. In comparison to random or round-robin partner matching, we find that the average payoffs attained with preferential partner selection tend to be more narrowly confined to a few isolated payoff regions. Most ecologies evolve to essentially full cooperative behavior, but when agents are intolerant of defections, or when the costs of refusal and social isolation are small, we also see the emergence of wallflower ecologies in which all agents are socially isolated. Between these two extremes, we see the emergence of ecologies whose agents tend to engage in a small number of defections followed by cooperation thereafter. The latter ecologies exhibit a plethora of interesting social interaction patterns.

Comments

This is a working paper of an article from Biosystems 37 (1996): 99, doi:10.1016/0303-2647(95)01548-5.

Description
Keywords
Citation
DOI
Copyright
Collections