Campus Units

Economics

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

2013

Journal or Book Title

IEEE Transactions on Power Systems

Volume

28

Issue

3

First Page or Article ID Number

2086

Last Page

2100

DOI

10.1109/TPWRS.2012.2228239

Abstract

Major transmission projects are needed to integrate and to deliver renewable energy (RE) resources. Cost recovery is a serious impediment to transmission investment. A negotiation methodology is developed in this study to guide transmission investment for RE integration. Built on Nash bargaining theory, the methodology models a negotiation between an RE generation company and a transmission company for the cost sharing and recovery of a new transmission line permitting delivery of RE to the grid. Findings from a six-bus test case demonstrate the Pareto efficiency of the approach as well as its fairness, in that it is consistent with one commonly used definition of fairness in cooperative games, the Nash cooperative solution. Hence, the approach could potentially be used as a guideline for RE investors. The study also discusses the possibility of using RE subsidies to steer the negotiated solution towards a system-optimal transmission plan that maximizes total net benefits for all market participants. The findings suggest that RE subsidies can be effectively used to achieve system optimality when RE prices are fixed through bilateral contracts but have limited ability to achieve system optimality when RE prices are determined through locational marginal pricing. This limitation needs to be recognized in the design of RE subsidies.

Comments

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/TPWRS.2012.2228239

Copyright Owner

IEEE

Language

en

File Format

application/pdf

Published Version

Share

COinS