Decades of field data reveal that turtles senesce in the wild

Thumbnail Image
Date
2016-01-01
Authors
Bronikowski, Anne
Janzen, Fredric
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Janzen, Fredric
Professor Emeritus
Person
Bronikowski, Anne
Professor
Research Projects
Organizational Units
Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Lifespan and aging rates vary considerably across taxa; thus, understanding the factors that lead to this variation is a primary goal in biology and has ramifications for understanding constraints and flexibility in human aging. Theory predicts that senescence—declining reproduction and increasing mortality with advancing age—evolves when selection against harmful mutations is weaker at old ages relative to young ages or when selection favors pleiotropic alleles with beneficial effects early in life despite late-life costs. However, in many long-lived ectotherms, selection is expected to remain strong at old ages because reproductive output typically increases with age, which may lead to the evolution of slow or even negligible senescence. We show that, contrary to current thinking, both reproduction and survival decline with adult age in the painted turtle, Chrysemys picta, based on data spanning >20 y from a wild population. Older females, despite relatively high reproductive output, produced eggs with reduced hatching success. Additionally, age-specific mark–recapture analyses revealed increasing mortality with advancing adult age. These findings of reproductive and mortality senescence challenge the contention that chelonians do not age and more generally provide evidence of reduced fitness at old ages in nonmammalian species that exhibit long chronological lifespans.

Comments

This is a manuscript of an article from Proceedings of the National Academy of Sciences 113 (2016): 6502, doi: 10.1073/pnas.1600035113. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections