Enrichment of Lignin-Derived Carbon in Mineral-Associated Soil Organic Matter

Thumbnail Image
Date
2019-01-01
Authors
Huang, Wenjuan
Hammel, Kenneth
Hao, Jialong
Thompson, Aaron
Timokhin, Vitaliy
Hall, Steven
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hall, Steven
Assistant Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

A modern paradigm of soil organic matter proposes that persistent carbon (C) derives primarily from microbial residues interacting with minerals, challenging older ideas that lignin moieties contribute to soil C because of inherent recalcitrance. We proposed that aspects of these old and new paradigms can be partially reconciled by considering interactions between lignin decomposition products and redox-sensitive iron (Fe) minerals. An Fe-rich tropical soil (with C4 litter and either 13C-labeled or unlabeled lignin) was pretreated with different durations of anaerobiosis (0–12 days) and incubated aerobically for 317 days. Only 5.7 ± 0.2% of lignin 13C was mineralized to CO2 versus 51.2 ± 0.4% of litter C. More added lignin-derived C (48.2 ± 0.9%) than bulk litter-derived C (30.6 ± 0.7%) was retained in mineral-associated organic matter (MAOM; density >1.8 g cm–3), and 12.2 ± 0.3% of lignin-derived C vs 6.4 ± 0.1% of litter C accrued in clay-sized (<2 μm) MAOM. Longer anaerobic pretreatments increased added lignin-derived C associated with Fe, according to extractions and nanoscale secondary ion mass spectrometry (NanoSIMS). Microbial residues are important, but lignin-derived C may also contribute disproportionately to MAOM relative to bulk litter-derived C, especially following redox-sensitive biogeochemical interactions.

Comments

This article is published as Huang, Wenjuan, Kenneth Hammel, Jialong Hao, Aaron Thompson, Vitaliy Timokhin, and Steven Hall. "Enrichment of lignin-derived carbon in mineral-associated soil organic matter." Environmental science & technology (2019). doi: 10.1021/acs.est.9b01834.

Description
Keywords
Citation
DOI
Copyright
Collections