Document Type

Article

Publication Date

11-2010

Journal or Book Title

Journal of Insect Physiology

Volume

56

Issue

11

First Page

1631

Last Page

1637

DOI

10.1016/j.jinsphys.2010.06.006

Abstract

The beet armyworm, Spodoptera exigua, undertakes long-distance migration. We used flight mills to investigate the interaction between flight and reproduction in this species given the apparent absence of the oogenesis-flight syndrome. This syndrome, common in many migratory insects, is characterized by a suite of traits including migration during the pre-oviposition period followed by a switch to oogenesis. No negative effects of inter-ovipositional flight on lifetime fecundity were observed. Instead, adult reproductive output suffered when female flight was initiated the first day after eclosion and before oviposition, suggesting that migratory flight overlaps with the oviposition period rather than being confined to the pre-oviposition period. Mating status of both females and males had no negative influence on their flight performance except that flight distance and flight duration of 7-day-old mated females were significantly less than in unmated females. Furthermore, the number of eggs produced and mating frequency of females less than 7 days of age were not significantly correlated with flight performance, suggesting reproductive development paralleled and was independent of migratory behavior. This independent relationship between flight and reproduction of adults is consistent with the very short pre-oviposition period in this species, and suggests that resources are partitioned between these activities during pupal development. Together, our results uncovered neither obvious trade-offs nor mutual suppression between flight and reproduction in S. exigua, which indicates the lack of an oogenesis-flight syndrome for coordination of these two energy-intensive processes. We propose a conceptual model of migration for this species based on the current and previous studies.

Comments

This article is from Journal of Insect Physiology 56 (2010): 1631, doi:10.1016/j.jinsphys.2010.06.006

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf