Impact of Trap Design, Windbreaks, and Weather on Captures of European Corn Borer (Lepidoptera: Crambidae) in Pheromone-Baited Traps

Thumbnail Image
Date
2006-12-01
Authors
Reardon, Brendon
Sumerford, Douglas
Sappington, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sappington, Thomas
Collaborating Professor
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

Pheromone-baited traps are often used in ecological studies of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). However, differences in trap captures may be confounded by trap design, trap location relative to a windbreak, and changes in local weather. The objectives of this experiment were, first, to examine differences in O. nubilalis adult (moth) captures among the Intercept wing trap, the Intercept bucket/funnel UNI trap, and the Hartstack wire-mesh, 75-cm-diameter cone trap (large metal cone trap) as well as among three cone trap designs. Second, we examined the influence of the location of the large metal cone trap relative to a windbreak on the number of moths captured. Third, we examined the relationship between nightly mean air temperature, relative humidity, wind speed, precipitation, and the number of moths captured in large metal cone traps. The number of moths captured was significantly influenced by trap design, with large metal cone traps capturing the most moths. Wing and bucket traps were ineffective. Differences among trap captures were significant among trap locations relative to a windbreak. Under strong (>14 kph) or moderate (7 < 14 kph) wind speeds, traps located leeward of the windbreak captured the most moths, but when wind speeds were light (<7 kph), traps not associated with windbreaks captured the most moths. The multiple regression model fitted to the relationship between number of moths captured per Julian date and nightly weather patterns was significant. Nightly mean air temperature was the most influential parameter in the model, and its relationship with moth capture was positive.

Comments

This article is from Journal of Economic Entomology 99 (2006): 2002, doi:10.1603/0022-0493-99.6.2002.

Description
Keywords
Citation
DOI
Copyright
Collections