Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya

Thumbnail Image
Date
2011-01-01
Authors
Ouma, Johnson
Beadell, Jon
Hyseni, Chaz
Okedi, Loyce
Krafsur, Elliot
Aksoy, Serap
Caccone, Adalgisa
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Krafsur, Elliot
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

Background

Glossina pallidipes has been implicated in the spread of sleeping sickness from southeastern Uganda into Kenya. Recent studies indicated resurgence of G. pallidipes in Lambwe Valley and southeastern Uganda after what were deemed to be effective control efforts. It is unknown whether the G. pallidipes belt in southeastern Uganda extends into western Kenya. We investigated the genetic diversity and population structure of G. pallidipes in Uganda and western Kenya.

Results

AMOVA indicated that differences among sampling sites explained a significant proportion of the genetic variation. Principal component analysis and Bayesian assignment of microsatellite genotypes identified three distinct clusters: western Uganda, southeastern Uganda/Lambwe Valley, and Nguruman in central-southern Kenya. Analyses of mtDNA confirmed the results of microsatellite analysis, except in western Uganda, where Kabunkanga and Murchison Falls populations exhibited haplotypes that differed despite homogeneous microsatellite signatures. To better understand possible causes of the contrast between mitochondrial and nuclear markers we tested for sex-biased dispersal. Mean pairwise relatedness was significantly higher in females than in males within populations, while mean genetic distance was lower and relatedness higher in males than females in between-population comparisons. Two populations sampled on the Kenya/Uganda border, exhibited the lowest levels of genetic diversity. Microsatellite alleles and mtDNA haplotypes in these two populations were a subset of those found in neighboring Lambwe Valley, suggesting that Lambwe was the source population for flies in southeastern Uganda. The relatively high genetic diversity of G. pallidipes in Lambwe Valley suggest large relict populations remained even after repeated control efforts.

Conclusion

Our research demonstrated that G. pallidipes populations in Kenya and Uganda do not form a contiguous tsetse belt. While Lambwe Valley appears to be a source population for flies colonizing southeastern Uganda, this dispersal does not extend to western Uganda. The complicated phylogeography of G. pallidipeswarrants further efforts to distinguish the role of historical and modern gene flow and possible sex-biased dispersal in structuring populations.

Comments

This article is from Parasites & Vectors 4 (2011):122, doi: 10.1186/1756-3305-4-122. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections