Degree Type

Dissertation

Date of Award

2011

Degree Name

Doctor of Philosophy

Department

Computer Science

First Advisor

Hridesh Rajan

Abstract

The latest trend towards performance asymmetry among cores on a single chip of a multicore processor is posing new challenges. For effective utilization of these performance-asymmetric multicore processors, code sections of a program must be assigned to cores such that the resource needs of code sections closely matches resource availability at the assigned core. Determining this assignment manually is tedious, error prone, and significantly complicates software development. To solve this problem, this thesis describes a transparent and fully-automatic process called phase-based tuning which adapts an application to effectively utilize performance-asymmetric multicores. The basic idea behind this technique is to statically compute groups of program segments which are expected to behave similarly at runtime. Then, at runtime, the behavior of a few code segments is used to infer the behavior and preferred core assignment of all similar code segments with low overhead. Compared to the stock Linux scheduler, for systems asymmetric with respect to clock frequency, a 36% average process speedup is observed, while maintaining fairness and with negligible overheads.

A key component to phase-based tuning is grouping program segments with similar behavior. The importance of various similarity metrics are likely to differ for each target asymmetric multicore processor. Determining groups using too many metrics may result in a grouping that differentiates between program segments based on irrelevant properties for a target machine. Using too few metrics may cause relevant metrics to be ignored thereby considering segments with different behavior similar. Therefore, to solve this problem and enable phase-based tuning for a wide range of a performance-asymmetric multicores, this thesis also describes a new technique called lazy grouping. Lazy grouping statically (at compile and install times) groups program segments that are expected to have similar behavior. The basic idea is to use extensive compile time analysis with intelligent install time (when the target system is known) group assignment. The accuracy of lazy grouping for a wide range of machines is shown to be more than 90% for nearly all target machines and asymmetric multicores.

Copyright Owner

Tyler Sondag

Language

en

Date Available

2012-04-28

File Format

application/pdf

File Size

110 pages

Share

COinS