Integration of ab-initio nuclear calculation with derivative free optimization technique

Thumbnail Image
Date
2008-01-01
Authors
Sharda, Anurag
Major Professor
Advisor
Leslie Miller
Masha Sosonkina
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

Optimization techniques are finding their inroads into the field of nuclear physics calculations where the objective functions are very complex and computationally intensive. A vast space of parameters needs searching to obtain a good match between theoretical (computed) and experimental observables, such as energy levels and spectra. Manual calculation defies the scope of such complex calculation and are prone to error at the same time. This body of work attempts to formulate a design and implement it which would integrate the ab initio nuclear physics code MFDn and the VTDIRECT95 code. VTDIRECT95 is a Fortran95 suite of parallel code implementing the derivative-free optimization algorithm DIRECT. Proposed design is implemented for a serial and parallel version of the optimization technique. Experiment with the initial implementation of the design showing good matches for several single-nucleus cases are conducted. Determination and assignment of appropriate number of processors for parallel integration code is implemented to increase the efficiency and resource utilization in the case of multiple nuclei parameter search.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2008