Structure-based prediction of protein-protein interaction sites

Thumbnail Image
Date
2012-01-01
Authors
Jordan, Rafael
Major Professor
Advisor
Vasant Honavar
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

Protein-protein interactions play a central role in the formation of protein complexes and the biological pathways that orchestrate virtually all cellular processes. Reliable identification of the specific amino acid residues that form the interface of a protein with one or more other proteins is critical to understanding the structural and physico-chemical basis of protein interactions and their role in key cellular processes, predicting protein complexes, validating protein interactions predicted by high throughput methods, and identifying and prioritizing drug targets in computational drug design. Because of the difficulty and the high cost of experimental characterization of interface residues, there is an urgent need for computational methods for reliable predicting protein-protein interface residues from the sequence, and when available, the structure of a query protein, and when known, its putative interacting partner.

Against this background, this thesis develops improved methods for predicting protein-protein interface residues and protein-protein interfaces from the three dimensional structure of an unbound query protein without considering information of its binding protein partner. Towards this end, we develop (i) ProtInDb (http://protindb.cs.iastate.edu), a database of protein-protein interface residues to facilitate (a) the generation of datasets of protein-protein interface residues that can be used to perform analysis of interaction sites and to train and evaluate predictors of interface residues, and (b) the visualization of interaction sites between proteins in both the amino acid sequences and the 3D protein structures, among other applications; (ii) PoInterS (http://pointers.cs.iastate.edu/), a method for predicting protein-protein interaction sites formed by spatially contiguous clusters of interface residues based on the predictions generated by a protein interface residue predictor. PoInterS divides a protein surface into a series of patches composed of several surface residues, and uses the outputs of the interface residue predictors to rank and select a small set of patches that are the most likely to constitute the interaction sites; and (iii) PrISE (http://prise.cs.iastate.edu/), a method for predicting protein-protein interface residues based on the similarity of the structural element formed by the query residue and its neighboring residues and the structural elements extracted from the interface and non-interface regions of proteins that are members of experimentally determined protein complexes. A structural element captures the atomic composition and solvent accessibility of a central residue and its closest neighbors in the protein structure. PrISE decomposes a query protein into a set of structural elements and searches for similar elements in a large set of proteins that belong to one or more experimentally determined complexes. The structural elements that are most similar to each structural element extracted from the query protein are then used to infer whether its central residue is or is not an interface residue. The results of our experiments using a variety of benchmark datasets show that PoInterS and PrISE generally outperform the state-of-the-art structure-based methods for predicting interaction patches and interface residues, respectively.

Comments
Description
Keywords
Citation
Source
Copyright
Sun Jan 01 00:00:00 UTC 2012