Degree Type

Thesis

Date of Award

2013

Degree Name

Master of Science

Department

Mechanical Engineering

First Advisor

Kenneth M. Bryden

Abstract

Digital manufacturing eliminates the expense and time required to develop custom products. By utilizing this technology, designers can quickly create a customized product specifically for their performance needs. But the timescale and expense from the engineering design workflows used to develop these customized products have not been adapted from the workflows used in mass production. In many cases these customized designs build upon already successful mass-produced products that were developed using conventional engineering design workflows. Many times as part of this conventional design process significant time is spent creating and validating high fidelity models that accurately predict the performance of the final design. These existing validated high fidelity models used for the mass-produced design can be reused for analysis and design of unknown products. This thesis explores the integration of reduced order modeling and detailed analysis into the engineering design workflow developing a customized design using digital manufacturing. Specifically, detailed analysis is coupled with proper orthogonal decomposition to enable the exploration of the design space while simultaneously shaping the model representing the design. This revised workflow is examined using the design of a laboratory scale overhead mixer impeller. The case study presented here is compared with the design of the Kar Dynamic Mixer impeller developed by The Dow Chemical Company. The result of which is a customized design for a refined set of operating conditions with improved performance.

Copyright Owner

Benjamin Michael Sloan

Language

en

File Format

application/pdf

File Size

73 pages

Share

COinS